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ABSTRACT 

 

 

There is no doubt that in finding solution to the problem of fresh water scarcity and its 

high demand. Membrane distillation have been shown to be an effective alternative to 

replace conventional technologies which found uneconomical. As agricultural waste 

is abundantly available, kapok fibre has been chosen an alternative solution for 

synthetic membranes which not environmentally friendly. This study aims to 

determine the physical properties of raw kapok fibre in the membrane distillation 

system, to investigate the effect of operating parameters in membrane distillation for 

humic acid in terms of water permeability and rejection rate, and finally to determine 

the reusability of kapok fibre in the membrane distillation system. The physical 

properties of the raw kapok fibre have been determined with respect to morphology, 

absorption test, and water contact angle method. Then, it followed by investigating the 

performances of the kapok fibre through membrane distillation process with three 

different operating parameters. Next, reusability test was conducted through the 

membrane distillation system for about 20 hours. Characterisation test revealed the 

linkage structure of kapok fibre, the low increment of moisture content in the raw 

kapok fibre and the water contact angle exhibits 152.704°. Meanwhile, the first 

operating parameter used in membrane distillation system, which is the temperature of 

feed humic solution at 60°C has produced the highest permeate flux of 0.629 kg/m2h 

followed by 98.753 % of rejection at 40°C. Then, the lowest feed concentration of 

humic acid solution which 0.1 g/L showed the highest permeate flux of 0.634 kg/m2h 

followed by 97.47 % rejection rate. The 5 g of kapok fibre shows the highest permeate 

flux with 0.803 kg/m2h and 35g of kapok fibre shows highest rejection rate which 

98.91%. The long-time operation has resulted in a slow decrease of permeate flux from 

0.321 kg/hm2 to 0.089 kg/m2h after 20 hours. Therefore, the excellence hydrophobic 

property of the kapok fibre has successfully created an alternative solution for 

synthetic membrane studies in the membrane distillation process. 
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ABSTRAK 

 

 

 

Kekurangan sumber air bersih dan mempunyai permintaan yang tinggi pasti 

mempunyai jalan penyelesaian. Penyulingan membran telah terbukti menjadi alternatif 

yang berkesan untuk menggantikan teknologi konvensional yang didapati memerlukan 

kos yang tinggi. Oleh kerana terdapat banyak sisa pertanian yang tidak digunakan, 

serat kapok telah dipilih sebagai penyelesaian alternatif untuk membran sintetik yang 

bersifat tidak mesra alam. Kajian ini bertujuan untuk mengetahui sifat fizikal serat 

kapok asli dalam sistem penyulingan membran,bagi mengkaji kesan parameter dari 

segi kebolehtelapan air dan pengasingan asid humik, dan akhir sekali untuk 

menentukan kebolehgunaan semula serat kapok dalam sistem penyulingan membran. 

Sifat fizikal serat kapok asli telah dikaji berdasarkan morfologi, ujian penyerapan, dan 

ujian sifat hidrofobik. Kemudian, diikuti dengan penyiasatan prestasi serat kapok 

melalui proses penyulingan membran dengan tiga parameter yang berbeza. 

Seterusnya, ujian penggunaan semula serat kapok dijalankan melalui proses 

penyulingan membran selama 20 jam. Ujian ciri fizikal menunjukkan struktur 

hubungan serat kapok, kenaikan yang rendah pada kadar kelembapan serat kapok asli 

dan sudut kontak air yang menunjukkan 152.704 °. Sementara itu, parameter pertama 

pada 60ºC menghasilkan wap air paling tinggi iaitu 0.629 kg/m2h diikuti dengan 

98.753% pengasingan pada 40ºC. Parameter kedua, wap air tertinggi iaitu 0.634 

kg/m2h diikuti dengan 97.47% kadar pengasingan pada 0.1g/L asid humik. 5g serat 

kapok menunjukkan wap air paling tinggi dengan 0.803 kg/m2h diikuti dengan 

pengasingan paling tinggi iaitu 98.91% pada 35g serat kapok. Ujian penggunaan 

semula serat kapok menghasilkan penurunan wap air yang perlahan dari 0.321 kg/m2h 

kepada 0.089 kg/m2h selepas 20 jam. Oleh itu, sifat hidrofobik yang ada pada serat 

kapok telah menghasilkan penyelesaian alternatif kepada membran sintetik di dalam 

proses penyulingan membran. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1      Background of study 

 

The scarcity for fresh and clean water is due to the heavy polluted water systems that 

has also impacted the climate change recently. Accordingly in 2019, a wildfire at 

Amazon, which is the largest tropical rainforest has burned [1]. The Amazon absorbs 

tons of Carbon Dioxide (CO2) every year which tends to slow the global warming [2] 

as it can bring effect on biodiversity, oceans, human and weather with high content of 

CO2 in the atmosphere. The significant impact of weather that brings drought and 

heatwaves will increase the demand for clean water continuously for the coming 

generations [3]. Therefore, as the population growth increases, this greatly impact the 

demand for quality and quantity of water resources.  In addition, 70 % of the earth is 

covered with water and human beings think that is always more than enough for daily 

uses.  However, 3 % of the water available on the earth is pure water and the remaining 

is unavailable to be consumed [4]. Thus, humanity faces challenges as they need to 

deal with polluted drinking water sources, which contain hazardous contaminants and 

faeces. Accordingly, these matters become an interest to many researchers to explore 

for different approaches for efficient water production technology.  

The advanced technology of wastewater treatment is possible to discharge all 

contaminants in wastewater before it can be used as drinking water. However, the 

proposed advanced technology is expensive. Hence, membrane distillation (MD) is 

another reliable technology to enhance the treatment process of extremely polluted 
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water sources. Membrane distillation is a separating technology between two distinct 

types of miscible fluids at different temperatures through a hydrophobic membrane 

[5]. Simultaneously, the membrane is a thin barrier for a gas-liquid state that avoids 

the liquid to pass on the interface of the membrane. The membrane distillation process 

is operated with small and compact apparatus and also only low pressure required. 

Hence, the membrane distillation technology is more convenient and economical 

compared to other advanced and conventional technology [6].  

 In the membrane distillation process, the hydrophobic properties of the 

material or membrane used need to be stressed to avoid the liquid penetrating into the 

membrane but only water vapours are able to pass through the hydrophobic membrane 

[7]. This ensures the resulted permeate flux is clean and only pure water is produced. 

In this work, Ceiba Pentandra, or known as kapok fibre, has been proposed as a natural 

biopolymer for the distillation system. Additionally, the kapok fibre is well-known for 

its excellence hydrophobic and oleophilic properties [8]. These are the reason why the 

kapok fibre has been chosen as an alternative material to be applied for the membrane 

distillation system. Furthermore, humic acid was chosen to act as wastewater due to 

the distribution system of humic acid in the surface water bodies that can lead to the 

growth of bacteria. Hence, the membrane distillation process was conducted to 

produce pure and clean water.  

 

1.2      Problem Statement 

 

Throughout the world, it is assumed almost two million of people who depend on the 

source of drinking water is polluted that can spread various diseases and cause 

diarrhoeal deaths every year [9]. The availability of freshwater from river, streams and 

lake could not be rely on fully due to the water hygiene level since there are many 

contaminants specifically humic acid in the freshwater One of the pollution control 

measure is to remove all the contaminants specifically humic acid in the freshwater. A 

lack of clean water, which is free from contaminants that can be used has interfered in 

human beings’ healthy daily life. Conventional methods such as gravity separation, 

dissolved air flotation, coalescence, centrifugation, flocculation and coagulation either 

fail to remove the contaminants cost-effectively to meet discharge standards. Over the 
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years, innovation surrounding water treatment systems has intensified, beginning with 

conventional media filters to high-efficiency centrifuge filters, disk filters, membrane 

filtration including micro and ultrafiltration and non-membrane filtration systems. 

Membrane distillation, are in fact a standout among the best options for wastewater 

treatment. However, the traditional materials employed, and conventional wastewater 

treatments have been unable to meet the environmental standards and hence, have been 

ineffective in addressing the removal of contaminants in some instances. Moreover, 

most of the materials used to produce the absorbents were produced from polymeric 

materials and industrial by-products which are quite expensive. Then again, the costly 

capital and working expense has been the prevention to the wide application of the 

membrane distillation advances. Regardless of the possibility that the application of 

membrane distillation of wastewater is reasonable, pre-treatment of the wastewater is 

frequently needed for forestalling untimely film fouling. 

 The interest in using natural fibres as raw materials has been growing rapidly 

due to the increasing awareness towards sustainability of the environment. Recently, 

over the last few years, bio-based materials have secured high demand in the market 

and industries. In this study, the use of kapok fibre in the membrane distillation process 

is proposed to improve the quality of freshwater for drinking. However, studies of 

kapok fibre in the membrane distillation process is yet to be focused on more. 

Therefore, the investigation by means of physical properties of the kapok fibre is 

crucial to ensure the material’s suitability is feasible in the process. Kapok fibre shows 

great water repellence behaviour which suitable to be used in membrane distillation 

process and also well reusable trademark. Additionally, this membrane distillation 

process can separate the humic acid in freshwater and obtain clean water. The 

hydrophobic properties of kapok fibre ultimately prevent the humic acid from mixing 

with the clean water. Therefore, the separation of humic acid wastewater through the 

membrane distillation system via kapok fibre is carried out in various operating 

parameters to achieve the quality pure water. 
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1.3      Objective 

 

The objectives of this research were stated as below: 

 

(i) To determine the physical properties of raw kapok fibre as membrane in the 

membrane distillation system. 

 

(ii) To investigate the effect of operating parameters in membrane distillation for 

humic acid separation with respect of water permeability and humic acid 

rejection. 

(iii) To evaluate the reusability of kapok fibre as membrane in the membrane 

distillation system. 

 

1.4      Scope of the Study 

 

The scopes of the study were stated as below: 

 

(a) The morphology of raw kapok fibre before the membrane distillation process 

was observed through a scanning electron microscope (SEM) and optical 

microscope (OM). 

 

(b) The capability of kapok fibre to repel water was observed through the 

absorption test in humic acid solution and distilled water for 120 hours. 

 

(c) The water contact angle of kapok fibre before and after membrane distillation 

process was determined by using the Dino-Lite Digital Microscope. 

 

(d) The performance of the membrane distillation system by using kapok fibre as 

a barrier was evaluated by using various feed temperature of humic acid at 

40℃, 50℃ and 60°C. 
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(e) The effect of different concentrations of humic acid was evaluated at 0.1 g/L, 

0.2 g/L, 0.3g/L and 0.4 g/L in the distillation system performance toward 

permeate flux and percentage of rejection. 

 

(f) The amount of kapok fibre was varied at 5g, 15g, 25g and 35g in the membrane 

distillation module.  

 

(g) The reusability of kapok fibre during membrane distillation was conducted 

within the same membrane distillation unit and experimental procedure. 

 

1.5      Significant of Study 

 

The outcome of this research will contribute to the benefits of the inhabitants around 

the world bearing in mind that clean water is needed in daily routine especially for 

drinking. The higher demanding countries which are the most threatened by water 

shortage such as Libya, Western Sahara, Yemen, Djibouti and Jordan [9] to ensure 

they have adequate clean water source or supply to support the daily needs of the 

people and also for the food making sectors [4]. Specifically, food production 

industries may face a significant challenge in producing clean food if the water supply 

polluted and thus, this can further affect that the welfare of the community [10]. In 

short, water crisis contributes to health crisis, which can be reduced when there is a 

clean water source from each occupant house especially homes where children live. 

Moreover, for researchers, this research will be very interesting for them to discover a 

few potential ways to treat the freshwater and wastewater into clean, where more 

source of clean water can easily be accessed. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1      Membrane Distillation  

 

In the early stage of the membrane distillation technology in 1963, an organic 

membrane proposed in this application was a silicon rubber which has hydrophobic 

properties that is designed by an inventor, Bruce R Bodell. Then, in 1968, one more 

membrane distillation patent was introduced as an operation of mass transfer. After 

that, in 1999, Doig et al. verified that the silicon rubber used in the membrane 

distillation process does not give good results in the separation process [11]. In the 

same way, the effect of mass transfer through the hydrophobic silicon rubber 

membrane was studied. Recently, the study of membrane distillation process becomes 

an interest from year to year. 

 There are many conventional methods applied in separating trace elements 

from polluted water, for instance, coagulation, chemical precipitation and adsorption 

[12]. Nowadays, membrane distillation has become an interesting research among 

researchers due to the ability of the membrane distillation process to separate the 

highly contaminated water source. Membrane distillation is a method or technique that 

is widely used in the separation and treatment process, which apply temperature 

differences to produce pure water. The membrane distillation process is not only 

limited in the separation of water but also oil emulsion [13], liquid food product [14], 
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and heavy metal [15]. This economical technique only required small equipment for 

the process set up in ensuring the separation process generate a successful outcome. 

Moreover, using low-cost material such as plastics, this system can still operate 

efficiently and besides, plastic is a durable corrosion-resistant material. Concurrently, 

the membrane distillation process is a safe process to carry out on account of low 

pressure and temperature applied during the operations compared to other systems. 

The range of feed temperature acquired for this system ranges from 40°C to 80°C, 

which does not to reach a boiling point. A schematic diagram of the membrane 

distillation process is illustrated in Figure 2.1. The membrane distillation, which is also 

called as thermal membrane separation operates in such a way that it involved the 

evacuation process from the hot side of the hydrophobic membrane (feed solution) to 

the other side of the membrane where the water vapour is collected.  

 In the membrane distillation system, there is a physical barrier called a 

membrane, where only water vapour is allowed to pass through it. Indeed, the used 

membrane has water repellent nature called the hydrophobic properties. The 

membrane material becomes a tremendous interest to many researchers either in 

inorganic materials which consists of ceramic, glass and metal or organic materials 

which consist of the polymer. These materials used as the membrane can result in a 

different characteristic due to the nature of the membrane itself. The vapour-liquid 

equilibrium principle has taken into account, where the rising temperature will result 

to higher vapour pressure or water vapour according to the Raoult’s law [16].  

However, there are many conditions in the membrane distillation system that can affect 

the resulted permeate flux, which will be discussed in detail in the next section.  

 

Figure 2.1: Schematic diagram of membrane distillation operation [6].   
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2.1.1      Membrane distillation configuration and module.  

 

In this part, several arrangements of the membrane distillation are applied to produce 

vapour molecules through a hydrophobic membrane from feed solution will be 

discussed. Referring to permeate flux collected, membrane distillation configuration 

can be categorised into four groups as illustrated in Figure 2.2 which are direct contact 

membrane distillation (DCMD) [17], air gap membrane distillation (AGMD) [5], 

vacuum membrane distillation (VMD) [18], and sweeping gas membrane distillation 

(SGMD) [19]. Every membrane distillation configuration has different ways of 

permeating the water vapour.  

 

 

 

Figure 2.2: Configuration of membrane distillation. 

 

The position of the membrane in the DCMD process is placed directly to the 

hot feed solution and the cold flow water on two sides of the membranes as shown in 

Figure 2.3. The changes in temperature of hot and cold stream resulted in pressure 

drop will produce the vapour [20]. In particular, this pressure difference phenomena 

causes the tendency for the molecules of the aqueous solution to escape as vapour. The 

resulted vapour penetrates through the pore of the hydrophobic membrane which then 

condenses in the cold surface of the membrane module [21]. According to Fan et al., 

the developed F-TNF membrane through the DCMD process exhibits high permeate 

flux which is more than 12LMH at 80°C followed by high salt rejection which is more 

than 99.92% [17]. 
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Figure 2.3: Schematic diagram of DCMD experimental set-up [17]. 

 

AGMD is a variety of membrane distillation, whereby in the middle of the 

hydrophobic membrane and a surface of condensation, there is an air gap where it 

creates a cool area by the flowing cold water. The vapour molecules are passed through 

the hydrophobic membrane, where it penetrates over the air gap area and then forming 

condensed vapour in the cold side of the membrane distillation unit [22]. According to 

Leaper et al., the separation of  Sodium dodecyl sulfate (SDS) surfactant and Sodium 

chloride (NaCl) utilizing a commercial PTFE membrane shows high permeate flux 

which is 9.6 LMH (Liter/m2/h). The experimental setup for the PTFE membrane in 

AGMD configuration is illustrated in Figure 2.4 [23]. 

 

 

Figure 2.4: Schematic diagram of AGMD experimental set-up [23]. 
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 Compared to other configuration of the membrane distillation, the difference 

in VMD is the utilisation of a vacuum pump. Indeed, the membrane permeates sides 

which it contains vapour is where the process of suction occurred using the vacuum 

pump. The formed vapour, which penetrates through the membrane pores is sucked 

due to the pressure of the vacuum applied is way less than the saturation vapour 

pressure [20]. Then, the collected vapour is condensed in the condenser which is 

placed outside of the membrane module. The high-performance membrane used in 

saline-water distillation for treatment NaCl was investigated by using VMD process 

as illustrated in Figure 2.5. Thus, the maximum flux reached 27.28 kg/m2h at 75°C and 

the percentage of rejection was 99.8% [24].  

 

 

Figure 2.5 : Schematic diagram of VMD experimental set-up [24] . 

 

Meanwhile, the main difference in SGMD is the type of inert gas applied such 

as air or nitrogen. The vapour released at the membrane permeates side is carried by 

the inert gas to an external chamber which placed outside of the membrane module 

and the condensation process takes place after [25].  Figure 2.6 shows the SGMD 

process to determine the ability of intensification process of triethylene glycol (TEG) 

from binary solutions [19].  
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