AN OPTIMUM DESIGN OF A TWO-STAGE OPERATIONAL AMPLIFIER USING CARBON NANOTUBE FIELD-EFFECT TRANSISTOR AT 10 NM TECHNOLOGY NODE

CHUA WEE HENG

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

> Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

> > APRIL 2022

For my beloved mother and father, Yai Chai May and Chua Kim Siong Learned advisor and guider, Dr. Chessda Uttraphan A/L Eh Kan Finally, my fellow friends for continuous supports directly and indirectly in completing this thesis.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to my supervisor, Dr. Chessda Uttraphan A/L Eh Kan for his ideas, guidance, comments and concerning the idea of the research with kind supervision to accomplish this research. I would specially thank him for consistently motivating me to work harder.

Furthermore, I would also like to appreciate to my parents, Chua Kim Siong and Yai Chai May for giving support to me throughout this research. Last but not least, my fellow friends and those who are involved directly or indirectly in the success of this research for giving me the support and encouragement to overcome all the problems during the process of completing this research.

ABSTRACT

The shrinking of the metal oxide semiconductor field-effect transistor (MOSFET) technology nodes to the deep-nanometre size leads to serious short-channel effects. Among the various technologies and device structures that have been proposed, the carbon nanotube field-effect transistor (CNFET) is the most promising candidate to replace the MOSFET. The effect of the structural parameters of CNFET on the twostage operational amplifier (op-amp) performance is one of the active research areas in studying the CNFET when scaling down the CNFET based circuit from a larger technology node to a smaller technology node. This research investigates the CNFET structural parameters which are the number of tubes (N), the carbon nanotube (CNT) diameter (D_{CNT}), and the CNT pitch (S) to optimize the design of 32 nm and 10 nm two-stage CNFET op-amps. The op-amp circuits are optimized by balancing the openloop gain, unity-gain bandwidth (UGB), power dissipation, and output resistance to obtain the optimum structural parameters. The optimized 10 nm two-stage op-amp is then compared with 32 nm to evaluate the optimum structural parameters and circuit performances. The evaluated circuit performances consist of open-loop gain, UGB, power dissipation, output resistance, input common-mode range (ICMR), commonmode rejection ratio (CMRR), power-supply rejection ratio (PSRR), slew rate, and settling time. Furthermore, this research also investigates the effect of S on the CNFET drain current (I_{CNFET}) when migrating from 32 nm to 10 nm technology node. Simulation results show that the optimum design of the 10 nm two-stage op-amp has successfully improved the performance of the 32 nm circuit by more than 33% for all the performance metrics. The performance metric that improved the most is UGB, which increased by 109.99%. The investigation of the impact of S on the I_{CNFET} when the size of the CNFET is reduced to 10 nm technology node suggests that the S parameter should be taken into account in the 32 nm I_{CNFET} equation for accurate drain current estimation. On the other hand, for simplicity, S can be neglected in the 10 nm *I*_{CNFET} equation without sacrificing accuracy.

ABSTRAK

Pengecilan nod teknologi transistor kesan medan separuh pengalir oksida logam (MOSFET) ke ukuran sub-nanometer menyebabkan kesan saluran pendek yang serius. Antara pelbagai teknologi dan struktur peranti yang telah dicadangkan, transistor kesan medan karbon nanotiub (CNFET) dikatakan calon yang paling sesuai untuk menggantikan MOSFET. Kesan parameter struktur terhadap prestasi litar penguat kendalian dua-peringkat adalah salah satu bidang penyelidikan yang aktif dalam mengkaji CNFET ketika pengecilan saiz daripada nod teknologi yang lebih besar ke nod teknologi yang lebih kecil. Penyelidikan ini mengkaji parameter struktur CNFET iaitu bilangan tiub (N), garis pusat karbon nanotiub (CNT) (D_{CNT}) , dan jarak antara CNT (S) yang mengoptimumkan rekabentuk litar penguat kendalian dua-peringkat nod teknologi 32 nm dan 10 nm. Litar penguat kendalian ini dioptimumkan dengan penyimbangan gandaan gelung-buka, lebar jalur gandaan satu (UGB), pelesapan kuasa, dan rintangan keluaran untuk mendapatkan parameter struktur yang optimum. Litar penguat kendalian dua-peringkat optimum 10 nm kemudian dibandingkan dengan 32 nm untuk menilai parameter struktur optimum dan prestasi litar. Prestasi litar yang dinilai terdiri daripada gandaan gelung-buka, UGB, pelesapan kuasa, rintangan keluaran, julat ragam sepunya masukan (ICMR), nisbah penolakan ragam sepunya (CMRR), nisbah penolakan bekalan kuasa (PSRR), kadar slu, dan masa pengenapan. Selanjutnya, penyelidikan ini juga mengkaji kesan S terhadap arus saliran (ICNFET) ketika beralih dari nod teknologi 32 nm ke 10 nm. Hasil simulasi menunjukkan bahawa reka bentuk litar 10 nm yang optimum telah berjaya meningkatkan prestasi litar lebih daripada 33% untuk semua metrik prestasi. Metrik prestasi yang paling banyak meningkat ialah UGB, peningkatannya sebanyak 109.99%. Siasatan terhadap kesan S kepada I_{CNFET} apabila saiz CNFET dikurangkan kepada nod teknologi 10 nm mencadangkan bahawa parameter S harus diambil kira dalam persamaan ICNFET 32 nm untuk anggaran arus saliran yang tepat. Sebaliknya, untuk memudahkan pengiraan, S boleh diabaikan dalam persamaan *I*_{CNFET} 10 nm.

CONTENTS

	TITI	LE	i
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	v	
	ABS	vi	
	CON	TENTS	vii
	LIST	T OF TABLES	xi
	LIST	T OF FIGURES	xii
	LIST	OF SYMBOLS AND ABBREVIATIONS	xvii
	LIST	TOF APPENDICES	xxii
CHAPTER 1	INTI	RODUCTION	1
	1.1	Background of study	1
	1.2	Problem statement	2
	1.3	Objectives of the study	4
	1.4	Scope of the project	4
	1.5	Thesis structure outline	5
CHAPTER 2	LITH	ERATURE REVIEW	6
	2.1	MOSFET scaling	6
	2.2	The alternatives to the CMOS	7

	2.3	Carbon nanotube	8
	2.4	Carbon nanotube field-effect transistor	11
	2.5	Two-stage operational amplifier	15
	2.6	CNFET analog circuit design methods	17
		2.6.1 Non-optimized design methods	17
		2.6.1.1 Transconductance to drain	17
		current ratio	
		2.6.1.2 Bias point	20
		2.6.2 Optimized design methods	22
		2.6.2.1 Inverting amplifier	23
		2.6.2.2 Two-stage loaded operational	24
		amplifier	
		2.6.2.3 Dual-output second-generation	24
		current conveyor	
		2.6.2.4 Folded cascode operational	26
		amplifier	
		2.6.3 Comparison of various design	27
		methods	
	2.7	Summary	30
CHAPTER 3	RESE	CARCH METHODOLOGY	32
	3.1	Design process	32
	3.2	Two-stage CNFET operational amplifier	34
	3.3	Synopsys HSPICE circuit simulator	36
	3.4	CNFET device parameter values	37
	3.5	Supply voltages, input voltages, bias current,	39
		and passive components value	
	3.6	Two-stage CNFET operational amplifier	40
		netlist	
	3.7	Circuit optimization	45
	3.8	Simulation and measurement	48
		3.8.1 Open-loop configuration	48

				3.8.1.1 Open-loop gain and unity-gain	48
				bandwidth	
				3.8.1.2 Phase margin	50
				3.8.1.3 Output resistance and power	50
				dissipation	
				3.8.1.4 Common-mode rejection ratio	53
			3.8.2	Unity-gain configuration	54
				3.8.2.1 Input-offset voltage	54
				3.8.2.2 Input common-mode range	56
				3.8.2.3 Power-supply rejection ratio	57
				3.8.2.4 Slew rate	59
				3.8.2.5 Settling time	61
		3.9	Summ	ary	62
СНАРТ	TER 4	RESU	LTS A	ND DISCUSSION	63
		4.1	Comp	ensation capacitor and bias current	63
			value		
		4.2	Two-s	tage CNFET op-amp optimization	68
			4.2.1	Number of CNTs	68
			4.2.2	CNT diameter	72
			4.2.3	CNT pitch	75
			4.2.4	Optimum CNFET structural	78
				parameters	
		4.3	Perfor	mances of the optimized two-stage	79
			CNFE	T op-amp	
			4.3.1	Open-loop gain and unity-gain	79
				bandwidth	
			4.3.2	Phase margin	80
			4.3.3	Output resistance and power	82
				dissipation	
			4.3.4	Common-mode rejection ratio	84
			4.3.5	Input common-mode range	86
			4.3.6	Power-supply rejection ratio	86

		4.3.7 Slew rate	88
		4.3.8 Settling time	91
		4.3.9 Performance result summary	93
	4.4	Impact of technology node on the relation	93
		between CNFET drain current and CNT pitch	
	4.5	Summary	95
CHAPTER 5	CON	CLUSION	96
	5.1	Conclusion	96
	5.2	Recommendation	98
	REFF	RENCES	99
	APPE	NDICES	109

LIST OF TABLES

2.1	Summary of CNFET design methods	28
2.2	Comparison between the g_m/I_{CNFET} and the bias	29
	point technique	
2.3	Comparison of the four different optimum design	30
	methods	
3.1	CNFET device parameter values in 32 nm and 10	38
	nm two-stage CNFET op-amp	
3.2	Source and component values utilized in the 32 nm	40
	and 10 nm two-stage CNFET op-amps	
3.3	HSPICE netlist command description	41
3.4	Description of each HSPICE netlist command in	45
	Figure 3.11 and Figure 3.12	
4.1	Open-loop gain of the 32 nm two-stage CNFET op-	67
	amp at different bias currents	
4.2	Open-loop gain of the 10 nm two-stage CNFET op-	68
	amp at different bias currents	
4.3	The selected optimum values of the structural	79
	parameters	
4.4	Performance comparison between the optimized 32	93
	nm and 10 nm two-stage CNFET op-amps	

LIST OF FIGURES

2.1	Taxonomy of options for emerging logic devices	8
	[16]	
2.2	Typical types of CNT structure (a) SWCNT (b)	9
	MWCNT [42]	
2.3	Three different forms of SWCNTs [46]	10
2.4	Schematic representation of the chiral angle and	10
	lattice vector [24]	
2.5	The structural model of a MWCNT (a) Russian Doll	11
	model (b) Parchment model [49]	
2.6	3D structure of a typical CNFET [51]	12
2.7	Types of n-channel CNFET (a) C-CNFET or	12
	MOSFET-like CNFET (b) SB-CNFET (c) T-	
	CNFET [51]	
2.8	CNFET structure (a) cross-sectional view (b) top	14
	view [60]	
2.9	Block diagram of a classical two-stage op-amp	16
2.10	Circuit structure of (a) OTA (b) op-amp	18
2.11	CNFET-based single-stage differential amplifier	21
2.12	Flowchart of the method proposed by Possani and	21
	Girardi [67]	
2.13	General structure of CCII±	25
3.1	Flowchart of the circuit design	33
3.2	Block diagram of an unbuffered, two-stage CNFET	34
	op-amp	
3.3	Architecture of the two-stage CNFET op-amp	35
3.4	A symbolic representation of the circuit	36
3.5	Synopsys HSPICE User Interface (HSPUI)	37

3.6	Codes for improving the convergence and runtimes	40
3.7	CNFET device parameters defined for the 32 nm	41
	technology node	
3.8	CNFET device parameters defined for the 10 nm	42
	technology node	
3.9	Connection nodes and values of the sources and	42
	components	
3.10	Two-stage CNFET op-amp description	43
3.11	Code lines utilized for analysis and output in the	44
	open-loop configuration	
3.12	Code lines utilized for analysis and output in the	44
	unity-gain configuration	
3.13	Flowchart of the circuit optimization	46
3.14	Example of using .alter command to iteratively	47
	run the simulation for a different value of N	
3.15	Frequency response of two-stage op-amp (a)	49
	magnitude response (b) phase response	
3.16	Code line used for obtaining the open-loop gain,	50
	UGB, and phase margin	
3.17	(a) Configuration for measuring output resistance	51
	(b) The expected result of output resistance	
	measurement [76]	
3.18	Example for determining the output resistance and	52
	power dissipation from HSPICE output file	
3.19	Code line used for obtaining the output resistance	52
	and power dissipation	
3.20	Configuration for obtaining the common-mode gain	53
3.21	Code line used for obtaining the common-mode	54
	gain	
3.22	Two-stage CNFET op-amp in the unity-gain	54
	configuration	
3.23	Configuration for measuring input-offset voltage	55
3.24	Code line used for obtaining the output voltage	55

xiii

3.25	(a) Configuration for measuring the ICMR (b) The	56
	expected result of the ICMR measurement	
3.26	Code line used for obtaining the ICMR	57
3.27	Configuration for measuring the PSRR ⁺	58
3.28	Configuration for measuring the PSRR ⁻	58
3.29	Standard PSRR frequency response of a two-stage	58
	op-amp	
3.30	Code line used for measuring the PSRR ⁺	59
3.31	Code line used for measuring the PSRR ⁻	59
3.32	(a) Configuration for measuring the slew rate (b)	60
	Standard slew rate of a two-stage op-amp	
3.33	Code line used for measuring the slew rate	60
3.34	Typical output signal with settling time	61
3.35	Code line used for measuring the settling time	61
4.1	Phase response of the 32 nm two-stage CNFET op-	64
	amp at different compensation capacitances	
4.2	Phase response of the 10 nm two-stage CNFET op-	65
	amp at different compensation capacitances	
4.3	Phase response of the 32 nm and 10 nm two-stage	65
	CNFET op-amps at 8 fF.	
4.4	Magnitude response of the 32 nm two-stage CNFET	66
	op-amp at different bias currents	
4.5	Magnitude response of the 10 nm two-stage CNFET	67
	op-amp at different bias currents	
4.6	Variation of open-loop gain with number of CNTs	69
4.7	Variation of UGB with number of CNTs	70
4.8	Variation of power dissipation with number of	71
	CNTs	
4.9	Variation of output resistance with number of CNTs	72
4.10	Variation of open-loop gain with CNT diameter	73
4.11	Variation of UGB with CNT diameter	73
4.12	Variation of power dissipation with CNT diameter	74
4.13	Variation of output resistance with CNT diameter	75

4.14	Variation of open-loop gain with CNT pitch	76
4.15	Variation of UGB with CNT pitch	76
4.16	Variation of power dissipation with CNT pitch	77
4.17	Variation of output resistance with CNT pitch	77
4.18	Magnitude response of the optimized 32 nm and 10	80
	nm two-stage CNFET op-amps	
4.19	Phase response of the optimized 32 nm and 10 nm	81
	two-stage CNFET op-amps	
4.20	Output resistance and power dissipation of the	83
	optimized 32 nm two-stage CNFET op-amps	
4.21	Output resistance and power dissipation of the	84
	optimized 10 nm two-stage CNFET op-amps	
4.22	Common-mode gain of the optimized 32 nm and 10	85
	nm two-stage CNFET op-amps	
4.23	ICMR of the optimized 32 nm and 10 nm two-stage	86
	CNFET op-amps	
4.24	PSRR ⁺ frequency response of the optimized 32 nm	87
	and 10 nm two-stage CNFET op-amps	
4.25	PSRR ⁻ frequency response of the optimized 32 nm	88
	and 10 nm two-stage CNFET op-amps	
4.26	Transient response of the optimized 32 nm and 10	89
	nm two-stage CNFET op-amps	
4.27	Positive slew rate of the optimized 32 nm and 10 nm	90
	two-stage CNFET op-amps	
4.28	Negative slew rate of the optimized 32 nm and 10	90
	nm two-stage CNFET op-amps	
4.29	Transient response of the optimized 32 nm and 10	92
	nm two-stage CNFET op-amps	
4.30	Settling time of the optimized 32 nm and 10 nm two-	92
	stage CNFET op-amps	
4.31	Variation of CNFET drain current with CNT pitch	94
	at 32 nm technology node	

4.32	Variation of CNFET drain current with CNT pitch	94
	at 10 nm technology node	

LIST OF SYMBOLS AND ABBREVIATIONS

а	_	Lattice Constant of Graphene Sheet
Av	_	Open-loop Gain
C_{C}	_	Compensation Capacitance
$C_{ extsf{g}}$	_	Gate Capacitance
$C_{ m h}$	_	Length of Chiral Vector
\mathbf{C}_{h}	_	Chiral Vector of SWCNT
$C_{\rm L}$	_	Load Capacitance
$D_{\rm CNT}$	_	CNT Diameter
е	_	Unit Electron Charge
$E_{ m g}$	-	Energy Bandgap
<i>f</i> 3dB	-	3 dB Bandwidth
f_{T}	-	Unity Gain Frequency
fugb	-	Unity-gain Bandwidth
g CNT	-	Transconductance per CNT
g _m	<u>5</u> \ P	Transconductance
$g_{ m mN}$	_	Transconductance of N th CNFET
$I_{\rm B}$	_	Bias Current
ICNFET	_	CNFET Drain Current
Ids	_	Drain-source Current
Io	_	Current Source
Itube	_	Current per Tube
L_{ch}	_	Channel Length
Ls	_	Source Length of the Doped CNT Region
N	_	Number of Carbon Nanotube
(n, m)	_	Chiral Index
$R_{ m L}$	_	Load Resistance
roN	_	Output Resistance of N th CNFET

Rout	_	Output Resistance
R _X	_	Port Resistance X
$R_{ m Y}$	_	Port Resistance Y
Rz	_	Port Resistance Z
S	_	CNT Pitch
SR	_	Slew Rate
SR-	_	Negative Slew Rate
SR+	_	Positive Slew Rate
Vcm	_	Common-mode Voltage Source
$V_{\rm DD}$	_	Drain Voltage
$V_{\rm dd}$	_	Drain AC Ripple
$V_{\rm DS}$	_	Drain-source Voltage
Vdsat	_	Minimum Saturation Voltage
$V_{\rm GS}$	_	Gate-source Voltage
$V_{ m GS,min}$	_	Minimum Gate-source Voltage
V_{I}	_	Differential Input Voltage
$V_{ m in-}$	-	Input Voltage Applied to the Inverting
		Terminal
$V_{ m in+}$	-	Input Voltage Applied to the Non-inverting
		Terminal
V _{in, max}	<u>5-</u> 7 P	Maximum Input Voltage Range
Vin, min	_	Minimum Input Voltage Range
Vos	_	Input-offset Voltage
Vol	_	Output Voltage at a Particular Value of $V_{\rm I}$
		without <i>R</i> _L
V _{o2}	_	Output Voltage at a Particular Value of $V_{\rm I}$
		with $R_{\rm L}$
Vout	—	Output Voltage from the High Gain Stage
Vout'	_	Output Voltage from the Buffer Stage
$V_{\rm SS}$	_	Source Voltage
$V_{ m ss}$	_	Source AC Ripple
$V_{ m th}$	_	Threshold Voltage
V_{π}	_	Carbon π to π Bond Energy

Weff	_	Effective Channel Width
$W_{ m g}$	_	CNFET Gate Width
α	-	Current Gain Value, Screening Effect
		Coefficient
β	_	Voltage Gain Value
θ	_	Chiral Angle
μ	_	Carrier Mobility
$\mu_{ m n}$	_	Surface Mobility of N-channel CNFET
$\mu_{ m p}$	_	Surface Mobility of P-channel CNFET
$ ho_{ m s}$	_	Source Resistance per Unit Length of the
		Doped CNT
$\phi_{ m m}$	_	Phase Margin
1D	_	One-dimensional
3D	_	Three-dimensional
ADC	_	Analog-to-digital Converter
BJT	_	Bipolar Junction Transistor
BTB	-	Band-to-band
CCI	-	First-generation Current Conveyor
CCII	-	Second-generation Current Conveyor
CCII±	-	Dual-output Second-generation Current
		Conveyor
CCIII	_	Third-generation Current Conveyor
C-CNFET	_	Conventional CNFET
CMOS	_	Complementary Metal Oxide
		Semiconductor
CMRR	_	Common-mode Rejection Ratio
CNFET	_	Carbon Nanotube Field-effect Transistor
CNFET-	_	CNFET-based Folded Cascode Op-amp
FCOA		
CNT	_	Carbon Nanotube
CVD	_	Chemical Vapour Deposition
FET	_	Field-effect Transistor
FinFET	_	Fin Field-effect Transistor

GAAFET	-	Gate-all-around Field-effect Transistor
GBP	_	Gain-bandwidth Product
HSPUI	_	HSPICE User Interface
IC	_	Integrated Circuit
ICMR	_	Input Common-mode Range
IGFET	_	Insulated-gate Field-effect Transistor
IRDS	-	International Roadmap for Devices and
		Systems
ITRS	_	International Technology Roadmap for
		Semiconductors
MOSFET	_	Metal Oxide Semiconductor Field-effect
		Transistor
Mott FET	_	Mott Field-effect Transistor
MuGFET	-	Multi-gate MOSFET
MWCNT	_	Multi-wall Carbon Nanotube
NCNFET	_	N-channel CNFET
NEMS	-	Nanoelectromechanical Switches
NWFET	-	Nanowire Field-effect Transistor
op-amp	-	Operational Amplifier
ΟΤΑ	-	Operational Transconductance Amplifier
PCNFET	5 <u>-</u> 7 P	P-channel CNFET
PSRR	-	Power-supply Rejection Ratio
PSRR ⁻	_	Negative PSRR
\mathbf{PSRR}^+	_	Positive PSRR
QCA	_	Quantum-Dot Cellular Automata
SB-	_	Schottky Barrier CNFET
CNFET		
SET	_	Single-electron Transistors
SPICE	_	Simulation Program with Integrated Circuit
		Emphasis
SWCNT	_	Single-wall Carbon Nanotube
T-CNFET	_	Tunnelling CNFET
TFET	-	Tunnelling Field-effect Transistor

UGB – Unity-gain Bandwidth

LIST OF APPENDICES

APPENDIX TITLE PAGE

А	Netlist of 32 nm Two-stage CNFET Op-	109
	amp in Open-loop Configuration	
В	Netlist of 32 nm Two-stage CNFET Op-	111
	amp in Unity-gain Configuration	
С	Netlist of 10 nm Two-stage CNFET Op-	113
	amp in Open-loop Configuration	
D	Netlist of 10 nm Two-stage CNFET Op-	115 A
	amp in Unity-gain Configuration	
Е	List of Publications	117
F	Vita	118

xxii

CHAPTER 1

INTRODUCTION

1.1 Background of study

In the early 20th century, an idea of controlling the flow of the electric current was proposed by a physicist and electrical engineer, Julius Edgar Lilienfeld [1]. He described the concepts of a new electronic device as well as owned the first patents on the proposed device in 1926 [2]. The device is known as the field-effect transistor (FET), which is widely used in integrated circuits (ICs) nowadays. After twenty-four years from the patent application, the bipolar junction transistor (BJT) proposed by William Shockley was first created [3]. The invention of BJTs initiated a new era in electronic, the transistor era. Meanwhile, the first type of transistor, the point-contact transistor developed by John Bardeen and Walter Brattain in 1947 was quickly replaced by the BJTs [3].

Due to the surface problems that existed in the bulk of the BJTs, M. M. Atalla et al., proposed a solution by introducing a new semiconductor device called the metal oxide semiconductor field-effect transistor (MOSFET) [4] and filed the patent in the following year [5], [6]. By comparing to the BJT, the MOSFET has the capability to be scaled down without dropping the performance. Scaling down MOSFET offers the improvement in speed and power dissipation. Concurrently, high performance computer can be achieved when more MOSFETs were scaled down and utilized. Hence, the existence of MOSFET triggered the rapid development of technology.

As the MOSFET has continuously been scaled, more transistors and devices can be packed and placed on a chip for a given area; thus, the chip with the smaller area has the same or more functionality. Besides, the scaling down of the MOSFET also contributed to the chip cost reduction. In the past decades, the shrinking trend of transistors beyond the sub-10 nm technology node has become more and more significant. In 1975, Gordon Moore observed that the number of transistors per chip doubles in about every two years, known as Moore's Law [7]. The tendency of MOSFET scaling is due to the huge demand for decreasing the chip area as well as improving the performances of the transistors in terms of speed and power dissipation [8].

The MOSFET is the fundamental building block of the complementary metal oxide semiconductor (CMOS). CMOS is a technology that drives the advancement of today's electronic devices, from a simple calculator to the advanced supercomputer. For improving the performances of the CMOS, the scaling down is carried out year by year. However, the CMOS scaling has recently reached its limits because leakage drain current and short channel effect become more significant [8]. For this reason, several technologies and device structure variations have been proposed in the previous works such as the fin field-effect transistor (FinFET) [9], utilization of carbon nanotube (CNT) to form a structure called carbon nanotube field-effect transistor (SET) [10], quantum-dot cellular automata (QCA) [11], and single-electron transistor (SET) [12]. Among these devices, CNFET is the most promising candidate to replace the conventional MOSFET because of the similarities between the MOSFET and CNFET in terms of electrical properties as well as the fabrication process [13], [14].

1.2 Problem statement

MOSFETs dimension is continuously scaled down. The purpose of shrinking the dimensions of MOSFET devices is to reduce the area and power consumption while improving the operating speed and MOSFET density on the IC. Although the speed and density are increased, the downscaling limitations in MOSFET are becoming more significant when the dimension is scaled beyond 10 nm. The issues such as the short-channel effect, source to drain tunnelling, and the high electric field will cause the deterioration of device performances [15]. Hence, a CMOS extension device, CNFETs is seen to be a potential candidate for replacing the MOSFET as it has similar electrical properties and fabrication processes as MOSFET devices, but can be scaled beyond 10 nm without CMOS deficiencies [16]. Beside scalability, the CNFET has advantages in terms of ballistics transport, gain, gate-all-around, and ultra-thin body [17].

Recently, there are numerous published studies that describe the circuit designs using CNFET at 32 nm technology node [18]–[22]. A recent study by Waykole and Bendre provides the performance analysis of a two-stage operational amplifier (opamp), designed by using the CMOS and CNFET at 32 nm technology [21]. The design parameters, number of carbon nanotubes (N), CNT diameter (D_{CNT}), and inter-CNT spacing, also called CNT pitch (S) were considered in the CNFET circuit design. The optimum values of CNFET design parameters were determined for obtaining the optimum circuit performances. The analysis and discussion were carried out by comparing the performances of CMOS and CNFET circuits.

From [21], two interesting questions can be asked as follows: (1) What are the optimum values of structural parameters for the two-stage op-amp design if we migrate from 32 nm to 10 nm technology node? and (2) Are the optimum parameter values for the 10 nm and 32 nm circuits the same? Therefore, the investigation of the optimum values of the structural parameters is essential to provide a reference about the influence of the structural parameters on the circuit performance when migrating to a smaller technology node. In this study, a two-stage op-amp with Miller compensation is selected as the circuit topology to be designed as the circuit has advantages in the performance parameters such as gain, output swing, noise, and bandwidth [23]. The two-stage op-amp with Miller compensation is one of the applications in high performance analog circuit. Furthermore, the investigation of the CNFET drain current (I_{CNFET}) is also conducted in this research because there is a relationship between ICNFET and technology node, and ICNFET is a major factor in CNFET circuit performance. Despite an approximated I_{CNFET} equation at 32 nm technology node was defined in the thesis from Jie Deng [24], the impact of S on I_{CNFET} at the 10 nm technology has yet to be studied. Several studies also provide no evidence for the inclusion of S in estimating ICNFET in CNFET [13], [20], [25]. Thus, a deep exploration is indispensable to observe the effect of *S* on *I*_{CNFET} in 10 nm technology.

REFERENCES

- U. Leipzig, G. Fig, and J. E. Lilienfeld, "Julius Edgar Lilienfeld: Life and Profession," *Prog. Surf. Sci.*, vol. 57, no. 4, 1998.
- [2] J. E. Lilienfeld, "Method and Apparatus for Controlling Electric Currents," US Patent 1745175, 1930.
- [3] M. Riordan, L. Hoddeson, and C. Herring, "The Invention of the Transistor," *Rev. Mod. Phys.*, vol. 71, no. 2, pp. S336–S345, Mar. 1999, doi: 10.1103/RevModPhys.71.S336.
- [4] R. G. Arns, "The Other Transistor: Early History of the Metal-oxide Semiconductor Field-effect Transistor," *Eng. Sci. Educ. J.*, vol. 7, no. 5, pp. 233–240, Oct. 1998, doi: 10.1049/esej:19980509.
- [5] D. Kahng, "Electric Field Controlled Semiconductor Device," US Patent 3102230, 1963.
- [6] M. M. Atalla, "Semiconductor Device Having Dielectric Coatings," US Patent 3206670, 1965.
- [7] M. T. Bohr and I. A. Young, "CMOS Scaling Trends and Beyond," *IEEE Micro*, vol. 37, no. 6, pp. 20–29, Nov. 2017, doi: 10.1109/MM.2017.4241347.
- [8] A. Islam, "Technology Scaling and Its Side Effects," in 2015 19th International Symposium on VLSI Design and Test, Jun. 2015, pp. 1–1, doi: 10.1109/ISVDAT.2015.7208164.
- [9] J.-J. Kim and K. Roy, "Double Gate-MOSFET Subthreshold Circuit for Ultralow Power Applications," *IEEE Trans. Electron Devices*, vol. 51, no. 9, pp. 1468–1474, Sep. 2004, doi: 10.1109/TED.2004.833965.
- [10] S. Ruhil, J. S. Sehgal, and K. Rohilla, "Carbon Nanotubes Field Effect Transistor: A Review," in *International Journal of Science and Research* (*IJSR*), 2015, pp. 2183–2185.
- [11] M. A. Tehrani, F. Safaei, M. H. Moaiyeri, and K. Navi, "Design and Implementation of Multistage Interconnection Networks Using Quantum-dot

Cellular Automata," *Microelectronics J.*, vol. 42, no. 6, pp. 913–922, Jun. 2011, doi: 10.1016/j.mejo.2011.03.004.

- Y. Takahashi, Y. Ono, A. Fujiwara, K. Nishiguchi, and H. Inokawa, "Silicon Nano-devices and Single-electron Devices," in *International Semiconductor Device Research Symposium*, 2003, 2003, pp. 448–449, doi: 10.1109/ISDRS.2003.1272179.
- [13] M. Nizamuddin, S. A. Loan, A. R. Alamoud, and S. A. Abbassi, "Design, Simulation and Comparative Analysis of CNT Based Cascode Operational Transconductance Amplifiers," *Nanotechnology*, vol. 26, no. 39, p. 395201, Oct. 2015, doi: 10.1088/0957-4484/26/39/395201.
- [14] A. Bhargav, A. Srinivasulu, and D. Pal, "An Operational Transconductance Amplifiers Based Sinusoidal Oscillator Using CNTFETs," in 2018 International Conference on Applied Electronics (AE), Sep. 2018, pp. 1–6, doi: 10.23919/AE.2018.8501428.
- [15] S. Chopra and S. Subramaniam, "A Review on Challenges for MOSFET Scaling," in *International Journal of Innovative Science, Engineering & Technology*, 2015, vol. 2, no. 4, pp. 1055–1057, [Online]. Available: www.ijiset.com.
- [16] IRDS, "International Roadmap for Devices and Systems: Beyond CMOS," 2018.
- [17] ITRS, "International Technology Roadmap for Semiconductors 2.0: Beyond CMOS," 2015, pp. 1–87.
- [18] M. Yasir and N. Alam, "Systematic Design of CNTFET Based OTA and Op Amp Using gm/ID Technique," *Analog Integr. Circuits Signal Process.*, vol. 102, no. 2, pp. 293–307, Feb. 2020, doi: 10.1007/s10470-019-01492-0.
- [19] B. Krishan, S. K. Agarwal, and S. Kumar, "AC and Transient Analysis of N Type Carbon Nanotube Based cum CMOS based Folded Cascode Operational Amplifier," 2016, vol. 5, no. 1, pp. 55–58, [Online]. Available: https://www.erpublication.org/page/view_issue/volume5-issue1.
- [20] V. S. Bendre, A. K. Kureshi, and S. Waykole, "Design of Analog Signal Processing Applications Using Carbon Nanotube Field Effect Transistor-Based Low-Power Folded Cascode Operational Amplifier," *J. Nanotechnol.*, vol. 2018, no. 2, pp. 1–15, Dec. 2018, doi: 10.1155/2018/2301421.
- [21] S. Waykole and V. S. Bendre, "Performance Analysis of Classical Two Stage

Opamp Using CMOS and CNFET at 32nm Technology," in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Aug. 2018, pp. 1–6, doi: 10.1109/ICCUBEA.2018.8697461.

- [22] A. Bhargav and J. K. Saini, "A Novel Simple Differentiator Circuit Based on Carbon Nano Tube Field Effect Transistors Voltage Difference Transconductance Amplifier," *Micro Nanosyst.*, vol. 11, no. 2, pp. 133–141, Aug. 2019, doi: 10.2174/1876402911666190527085225.
- [23] T. Priyanka, H. S. Aravind, and Y. Hg, "Design and Implementation of Two Stage Operational Amplifier," *Int. Res. J. Eng. Technol.*, vol. 4, no. 6, pp. 3306– 3310, 2017, [Online]. Available: https://irjet.net/archives/V4/i6/IRJET-V4I6469.pdf.
- [24] J. Deng, "Device Modeling and Circuit Performance Evaluation for Nanoscale Devices: Silicon Technology Beyond 45 nm Node and Carbon Nanotube Field Effect Transistors," Stanford University, Stanford, 2007.
- [25] F. Ali Usmani and M. Hasan, "Carbon Nanotube Field Effect Transistors for High Performance Analog Applications: An Optimum Design Approach," *Microelectronics J.*, vol. 41, no. 7, pp. 395–402, 2010, doi: 10.1016/j.mejo.2010.04.011.
- [26] J. Deng and H.-S. P. Wong, "A Compact SPICE Model for Carbon-Nanotube Field-effect Transistors Including Nonidealities and Its Application - Part II: Full Device Model and Circuit Performance Benchmarking," *IEEE Trans. Electron Devices*, vol. 54, no. 12, pp. 3186–3194, 2007, doi: 10.1109/TED.2007.909030.
- [27] S. W. Bedell, A. Khakifirooz, and D. K. Sadana, "Strain Scaling for CMOS," *MRS Bull.*, vol. 39, no. 2, pp. 131–137, Feb. 2014, doi: 10.1557/mrs.2014.5.
- [28] TSMC, "TSMC and OIP Ecosystem Partners Deliver Industry's First Complete Design Infrastructure for 5nm Process Technology," 2019. [Online]. Available: https://www.tsmc.com/tsmcdotcom/PRListingNewsAction.do?action=detail&l anguage=E&newsid=THPGWQTHTH.
- [29] J. Knoch and J. Appenzeller, "A Novel Concept for Field-effect Transistors -The Tunneling Carbon Nanotube FET," in 63rd Device Research Conference Digest, 2005. DRC '05., 2005, pp. 153–156, doi: 10.1109/DRC.2005.1553099.
- [30] J. H. Kim, H. W. Kim, G. Kim, S. Kim, and B.-G. Park, "Demonstration of Fin-

tunnel Field-effect Transistor with Elevated Drain," *Micromachines*, vol. 10, no. 1, p. 30, Jan. 2019, doi: 10.3390/mi10010030.

- [31] R. Nakane, S. Sato, and M. Tanaka, "Si-based Spin Metal-oxide-semiconductor Field-effect Transistors with an Inversion Channel," in ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC), Sep. 2019, pp. 142–145, doi: 10.1109/ESSDERC.2019.8901832.
- [32] O. Y. Loh and H. D. Espinosa, "Nanoelectromechanical Contact Switches," *Nat. Nanotechnol.*, vol. 7, no. 5, pp. 283–295, May 2012, doi: 10.1038/nnano.2012.40.
- [33] H. Yamamoto, "Switched-on to Enhanced Organic Transistors," in Science Impact Ltd, 2019, vol. 5, pp. 15–17.
- [34] A. Winoto, J. Qiu, D. Wu, and M. Feng, "Optical NOR Gate Transistor Laser Integrated Circuit," in *Conference on Lasers and Electro-Optics*, 2019, p. JTh2A.62, doi: 10.1364/CLEO_AT.2019.JTh2A.62.
- [35] T. R. B. S. Soares, J. G. Nizer Rahmeier, V. C. de Lima, L. Lascasas, L. G. Costa Melo, and O. P. Vilela Neto, "NMLSim: A Nanomagnetic Logic (NML) Circuit Designer and Simulation Tool," *J. Comput. Electron.*, vol. 17, no. 3, pp. 1370–1381, Sep. 2018, doi: 10.1007/s10825-018-1215-8.
- [36] E. Egel, C. Meier, G. Csaba, and S. Breitkreutz-von Gamm, "Design of a CMOS Integrated On-chip Oscilloscope for Spin Wave Characterization," *AIP Adv.*, vol. 7, no. 5, p. 056016, May 2017, doi: 10.1063/1.4975367.
- [37] S. Iijima, "Helical Microtubes of Graphitic Carbon," *Nature*, vol. 354, no. 6348, pp. 56–58, Nov. 1991, doi: 10.1038/354056a0.
- [38] M. Kumar and Y. Ando, "Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production," J. Nanosci. Nanotechnol., vol. 10, no. 6, pp. 3739–3758, Jun. 2010, doi: 10.1166/jnn.2010.2939.
- [39] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic Growth of Single-walled Nanotubes by Laser Vaporization," *Chem. Phys. Lett.*, vol. 243, no. 1–2, pp. 49–54, Sep. 1995, doi: 10.1016/0009-2614(95)00825-O.
- [40] T. W. Ebbesen and P. M. Ajayan, "Large-scale Synthesis of Carbon Nanotubes," *Nature*, vol. 358, no. 6383, pp. 220–222, Jul. 1992, doi: 10.1038/358220a0.
- [41] K. S. Kim, G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard, and G.

Soucy, "Large-scale Production of Single-walled Carbon Nanotubes by Induction Thermal Plasma," *J. Phys. D. Appl. Phys.*, vol. 40, no. 8, pp. 2375– 2387, Apr. 2007, doi: 10.1088/0022-3727/40/8/S17.

- [42] A. Rostami and S. Masoumi, "A Review of the Carbon Nanotube Field Effect Transistors," in *Specialty Journal of Electronic and Computer Sciences*, 2019, vol. 5, no. 2, pp. 53–57, doi: 10.35745/icice2018v2.036.
- [43] P. Avouris, "Carbon Nanotube Electronics," *Chem. Phys.*, vol. 281, no. 2–3, pp. 429–445, Aug. 2002, doi: 10.1016/S0301-0104(02)00376-2.
- [44] A. Eatemadi *et al.*, "Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications," *Nanoscale Res. Lett.*, vol. 9, no. 1, p. 393, 2014, doi: 10.1186/1556-276X-9-393.
- [45] M. Zhang and J. Li, "Carbon Nanotube in Different Shapes," *Mater. Today*, vol. 12, no. 6, pp. 12–18, Jun. 2009, doi: 10.1016/S1369-7021(09)70176-2.
- [46] A. R. Saifuddin and N. Juniazah, "Carbon Nanotube: A Review on Structure and Their Interaction with Proteins," J. Chem., vol. 2013, pp. 1–18, 2013, doi: 10.1155/2013/676815.
- [47] M. Terrones, "Science and Technology of the Twenty-first Century: Synthesis, Properties, and Applications of Carbon Nanotubes," *Annu. Rev. Mater. Res.*, vol. 33, no. 1, pp. 419–501, Aug. 2003, doi: 10.1146/annurev.matsci.33.012802.100255.
- [48] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, "Unusual Properties and Structure of Carbon Nanotubes," *Annu. Rev. Mater. Res.*, vol. 34, no. 1, pp. 247–278, Aug. 2004, doi: 10.1146/annurev.matsci.34.040203.114607.
- [49] N. Gupta, S. M. Gupta, and S. K. Sharma, "Carbon Nanotubes: Synthesis, Properties and Engineering Applications," *Carbon Lett.*, vol. 29, no. 5, pp. 419– 447, Oct. 2019, doi: 10.1007/s42823-019-00068-2.
- [50] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, "Single- and Multi-wall Carbon Nanotube Field-effect Transistors," *Appl. Phys. Lett.*, vol. 73, no. 17, pp. 2447–2449, Oct. 1998, doi: 10.1063/1.122477.
- [51] M. H. Moaiyeri, R. F. Mirzaee, K. Navi, and O. Hashemipour, "Efficient CNTFET-based Ternary Full Adder Cells for Nanoelectronics," *Nano-Micro Lett.*, vol. 3, no. 1, pp. 43–50, Mar. 2011, doi: 10.5101/nml.v3i1.p43-50.
- [52] J. Svensson and E. E. B. Campbell, "Schottky Barriers in Carbon Nanotubemetal Contacts," J. Appl. Phys., vol. 110, no. 11, p. 111101, Dec. 2011, doi:

10.1063/1.3664139.

- [53] G.-C. Yang, S.-I. Ao, X. Huang, and O. Castillo, "Transactions on Engineering Technologies: International MultiConference of Engineers and Computer Scientists 2014," in *Springer*, 2015, pp. 231–242.
- [54] J. Appenzeller, Y.-M. Lin, J. Knoch, Z. Chen, and P. Avouris, "Comparing Carbon Nanotube Transistors - The Ideal Choice: A Novel Tunneling Device Design," *IEEE Trans. Electron Devices*, vol. 52, no. 12, pp. 2568–2576, Dec. 2005, doi: 10.1109/TED.2005.859654.
- [55] J. Knoch, S. Mantl, and J. Appenzeller, "Comparison of Transport Properties in Carbon Nanotube Field-effect Transistors with Schottky Contacts and Doped Source/Drain Contacts," *Solid. State. Electron.*, vol. 49, no. 1, pp. 73–76, Jan. 2005, doi: 10.1016/j.sse.2004.07.002.
- [56] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris,
 "Carbon Nanotubes as Schottky Barrier Transistors," *Phys. Rev. Lett.*, vol. 89, no. 10, p. 106801, Aug. 2002, doi: 10.1103/PhysRevLett.89.106801.
- [57] M. H. Moaiyeri, A. Rahi, F. Sharifi, and K. Navi, "Design and Evaluation of Energy-efficient Carbon Nanotube FET-based Quaternary Minimum and Maximum Circuits," *J. Appl. Res. Technol.*, vol. 15, no. 3, pp. 233–241, Jun. 2017, doi: 10.1016/j.jart.2016.12.006.
- [58] S. Kumar Sinha and S. Chaudhury, "Analysis of Different Parameters of Channel Material and Temperature on Threshold Voltage of CNTFET," *Mater. Sci. Semicond. Process.*, vol. 31, pp. 431–438, Mar. 2015, doi: 10.1016/j.mssp.2014.12.013.
- [59] D. Zhong, C. Zhao, L. Liu, Z. Zhang, and L.-M. Peng, "Continuous Adjustment of Threshold Voltage in Carbon Nanotube Field-effect Transistors Through Gate Engineering," *Appl. Phys. Lett.*, vol. 112, no. 15, p. 153109, Apr. 2018, doi: 10.1063/1.5021274.
- [60] M. Shahangian, S. A. Hosseini, and S. H. Pishgar Komleh, "Design of a Multidigit Binary-to-ternary Converter Based on CNTFETs," *Circuits, Syst. Signal Process.*, vol. 38, no. 6, pp. 2544–2563, Jun. 2019, doi: 10.1007/s00034-018-0977-3.
- [61] K. Hayat, H. M. Cheema, and A. Shamim, "Potential of Carbon Nanotube Field Effect Transistors for Analogue Circuits," *J. Eng.*, vol. 2013, no. 11, pp. 70–76, Nov. 2013, doi: 10.1049/joe.2013.0067.

- [62] A. Singh, M. Khosla, and B. Raj, "Comparative Analysis of Carbon Nanotube Field Effect Transistor and Nanowire Transistor for Low Power Circuit Design," *J. Nanoelectron. Optoelectron.*, vol. 11, no. 3, pp. 388–393, Jun. 2016, doi: 10.1166/jno.2016.1913.
- M. Sokol, P. Galajda, M. Pecovsky, and S. Slovak, "Two-stages Differential [63] Amplifier for UWB Applications with Modified Cherry-Hooper Structure," in 2018 28th International Conference Radioelektronika (RADIOELEKTRONIKA), 2018, 1, 1-5,doi: Apr. no. pp. 10.1109/RADIOELEK.2018.8376364.
- [64] K. N. Abhilash, S. Bose, and A. Gupta, "A High Gain, High CMRR Two-Stage Fully Differential Amplifier Using gm/Id technique for Bio-medical Applications," in 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Dec. 2013, vol. 2, no. 1, pp. 40–45, doi: 10.1109/PrimeAsia.2013.6731175.
- [65] S. C. Pandey, P. Mishra, R. Roy, and A. K. Pandit, "Design of Two-Stage CMOS Operational Amplifier for Sigma-Delta ADC," in 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN), Dec. 2016, pp. 566–569, doi: 10.1109/CICN.2016.116.
- [66] M. P. Sarma, N. Kalita, and N. E. Mastorakis, "Design of an Low Power Miller Compensated Two Stage OP-AMP Using 45 nm Technology for High Data Rate Communication," in 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN), Feb. 2017, pp. 463–467, doi: 10.1109/SPIN.2017.8049994.
- [67] T. Possani and A. Girardi, "Design Methodology of Analog Integrated Circuits Using Carbon Nanotube Transistors," in *11th Microelectronics Student Forum*, 2011, pp. 1–4.
- [68] F. A. Usmani, N. Alam, and M. Hasan, "Design and Parametric Analysis of 32nm OPAMP in CMOS and CNFET Technology for Optimum Performance," in *National Aerospace and Electronics Conference, Proceedings of the IEEE*, 2009, pp. 126–130, doi: 10.1109/NAECON.2009.5426639.
- [69] A. Imran, M. Hasan, A. Islam, and S. A. Abbasi, "Optimized Design of a 32nm CNFET-based Low-power Ultrawideband CCII," *IEEE Trans. Nanotechnol.*, vol. 11, no. 6, pp. 1100–1109, Nov. 2012, doi: 10.1109/TNANO.2012.2212248.

- [70] M. Cen, S. Song, and C. Cai, "A High Performance CNFET-based Operational Transconductance Amplifier and Its Applications," *Analog Integr. Circuits Signal Process.*, vol. 91, no. 3, pp. 463–472, Jun. 2017, doi: 10.1007/s10470-017-0951-1.
- S. I. Sayed, M. M. Abutaleb, and Z. B. Nossair, "Optimization of CNFET Parameters for High Performance Digital Circuits," *Adv. Mater. Sci. Eng.*, vol. 2016, pp. 1–9, 2016, doi: 10.1155/2016/6303725.
- [72] P. A. Gowri Sankar and K. Udhaya kumar, "Design and Analysis of Two Stage Operational Amplifier Based on Emerging Sub-32nm Technology," in *International Conference on Advanced Nanomaterials & Emerging Engineering Technologies*, Jul. 2013, vol. 2, pp. 587–591, doi: 10.1109/ICANMEET.2013.6609382.
- [73] D. Sethi, M. Kaur, and G. Singh, "Design and Performance Analysis of a CNFET-based TCAM Cell with Dual-chirality Selection," J. Comput. Electron., vol. 16, no. 1, pp. 106–114, Mar. 2017, doi: 10.1007/s10825-017-0952-4.
- [74] P. A. G. Sankar and K. Udhayakumar, "A Novel Carbon Nanotube Field Effect Transistor Based Arithmetic Computing Circuit for Low-power Analog Signal Processing Application," *Procedia Technol.*, vol. 12, pp. 154–162, 2014, doi: 10.1016/j.protcy.2013.12.469.
- [75] H. Zumbahlen and A. D. Inc., *Linear Circuit Design Handbook*. USA: Newnes, 2008.
- [76] P. E. Allen and D. R. Holberg, "CMOS Analog Circuit Design," 3rd ed., Oxford University Press, USA, 2011, pp. 194–195.
- [77] A. Gupta and S. Kumar, "A High Gain OTA with Slew Rate Enhancement Technique in 45nm FinFET," *Int. J. Adv. Res. Electr. Electron. Instrum. Eng.*, vol. 6, no. 11, pp. 8057–8063, 2017, doi: 10.15662/IJAREEIE.2017.0611024.
- [78] F. A. Salem, "Precise Performance Measures for Mechatronics Systems, Verified and Supported by New MATLAB Built-in Function," *Int. J. Curr. Eng. Technol.*, vol. 3, no. 2, pp. 264–280, 2013.
- [79] S. A. Loan, M. Nizamuddin, A. R. Alamoud, and S. A. Abbasi, "Design and Comparative Analysis of High Performance Carbon Nanotube-based Operational Transconductance Amplifiers," *Nano*, vol. 10, no. 03, p. 1550039, Apr. 2015, doi: 10.1142/S1793292015500393.

- [80] A. Sharma;, U. Dutta;, S. Arora;, and V. K. Sharma;, "Design & Optimization of CNTFET-based Domino 1-bit ALU," in *International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE)*, 2016, vol. 5, no. 5, pp. 125–131, doi: 10.17148/IJARCCE.2016.5531.
- [81] M. Ali, "Efficient Methods for Robust Circuit Design and Performance Optimization for Carbon Nanotube Field Effect Transistors," Portland State University, Portland, 2019.
- [82] S. A. Loan *et al.*, "Carbon Nanotube Based Operational Transconductance Amplifier: A Simulation Study," in *Transactions on Engineering Technologies*, Dordrecht: Springer Netherlands, 2015, pp. 231–242.
- [83] M. Oljaca and H. Surtihadi, "Operational Amplifier Gain Stability, Part 3 : AC Gain-error Analysis," Analog Applications Journal (Texas Instruments Inc.).
 pp. 23–27, 2010, [Online]. Available: http://www.ti.com/lit/an/slyt383/slyt383.pdf.
- [84] A. A. Moya, "Connecting Time and Frequency in the RC Circuit," *Phys. Teach.*, vol. 55, no. 4, pp. 228–230, Apr. 2017, doi: 10.1119/1.4978721.
- [85] B. Carter and R. Mancini, "Active Filter Design Techniques," in Op Amps for Everyone, Elsevier, 2018, pp. 199–258.
- [86] V. Prasad and D. Das, "A Review on MOSFET-like CNTFETs," in Science & Technology Journal, 2016, vol. 4, no. 2, pp. 124–129, doi: 10.22232/stj.2016.04.02.06.
- [87] M. A. Kabir, T. Nandy, M. Aminul Haque, A. Dutta, and Z. H. Mahmood, "Performance Analysis of CNTFET and MOSFET Focusing Channel Length, Carrier Mobility and Ballistic Conduction in High Speed Switching," *Int. J. Adv. Mater. Sci. Eng.*, vol. 3, no. 4, pp. 1–11, Oct. 2014, doi: 10.14810/ijamse.2014.3401.
- [88] M. H. Yang *et al.*, "Advantages of Top-gate, High-k Dielectric Carbon Nanotube Field-effect Transistors," *Appl. Phys. Lett.*, vol. 88, no. 11, p. 113507, Mar. 2006, doi: 10.1063/1.2186100.
- [89] J. K. Saha, N. Chakma, and M. Hasan, "Impact of Scaling Channel Length on the Performances of Nanoscale FETs," in 2016 9th International Conference on Electrical and Computer Engineering (ICECE), Dec. 2016, pp. 123–126, doi: 10.1109/ICECE.2016.7853871.
- [90] A. Karimi and A. Rezai, "A Design Methodology to Optimize the Device

Performance in CNTFET," *ECS J. Solid State Sci. Technol.*, vol. 6, no. 8, pp. M97–M102, Jul. 2017, doi: 10.1149/2.0181708jss.

- [91] M. A. H. Shanto, N. R. Niloy, R. Islam, M. I. Chowdhury, M. M. Abrar, and S.-A. Imam, "Effect of Channel Length and Dielectric Constant on Carbon Nanotube FET to Evaluate the Device Performance," in 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), Oct. 2020, no. 4, pp. 1–4, doi: 10.1109/IEMENTech51367.2020.9270118.
- [92] S. Gandhi, "Out-of-Loop Compensation Method for Op-Amps Driving Heavy Capacitive Loads," California Polytechnic State University, San Luis Obispo, 2016.
- [93] R. Gomez, "Design of Two-Stage Operational Amplifier using Indirect Feedback Frequency Compensation," University of Arkansas, Fayetteville, 2019.

APPENDIX E

LIST OF PUBLICATIONS

- W. H. Chua, C. Uttraphan, and B. C. Kok, "An Optimum Design of the Carbon Nanotube Field Effect Transistor for Analog Applications in 10 nm Technology," in 2020 IEEE Student Conference on Research and Development (SCOReD), 2020, pp. 222–227, doi: 10.1109/scored50371.2020.9250982.
- W. H. Chua, C. Uttraphan, "An Optimum Design of the Carbon Nanotube Fieldeffect Transistor for Analog Applications in 32 nm and 10 nm Technology", Accepted for publication to *Annals of Emerging Technologies in Computing* (*AETiC*). (Scopus)
- W. H. Chua, C. Uttraphan, B. C Kok, N. Ahmad, "Performance evaluation of the two-stage CNFET operational amplifier at 32 nm and 10 nm technology nodes", Accepted for publication in: *Journal of Physics: Conference Series (JPCS)*, Online ISSN: 1742-6596 and Print ISSN: 1742-6588. (Scopus & WoS)

APPENDIX F

VITA

The author was born in March 20, 1995, in Johor, Malaysia. He went to SMK Taman Mutiara Rini, Johor Bahru, Johor, Malaysia for his secondary school. He pursued his degree at the Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia, and graduated with the B.Eng. (Hons) in Electronic and Electrical Engineering in 2019. Upon graduation, he is currently pursuing his master's degree in Electronic and Electrical Engineering at UTHM.

