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ABSTRACT 

The shrinking of the metal oxide semiconductor field-effect transistor (MOSFET) 

technology nodes to the deep-nanometre size leads to serious short-channel effects. 

Among the various technologies and device structures that have been proposed, the 

carbon nanotube field-effect transistor (CNFET) is the most promising candidate to 

replace the MOSFET. The effect of the structural parameters of CNFET on the two-

stage operational amplifier (op-amp) performance is one of the active research areas 

in studying the CNFET when scaling down the CNFET based circuit from a larger 

technology node to a smaller technology node. This research investigates the CNFET 

structural parameters which are the number of tubes (N), the carbon nanotube (CNT) 

diameter (DCNT), and the CNT pitch (S) to optimize the design of 32 nm and 10 nm 

two-stage CNFET op-amps. The op-amp circuits are optimized by balancing the open-

loop gain, unity-gain bandwidth (UGB), power dissipation, and output resistance to 

obtain the optimum structural parameters. The optimized 10 nm two-stage op-amp is 

then compared with 32 nm to evaluate the optimum structural parameters and circuit 

performances. The evaluated circuit performances consist of open-loop gain, UGB, 

power dissipation, output resistance, input common-mode range (ICMR), common-

mode rejection ratio (CMRR), power-supply rejection ratio (PSRR), slew rate, and 

settling time. Furthermore, this research also investigates the effect of S on the CNFET 

drain current (ICNFET) when migrating from 32 nm to 10 nm technology node. 

Simulation results show that the optimum design of the 10 nm two-stage op-amp has 

successfully improved the performance of the 32 nm circuit by more than 33% for all 

the performance metrics. The performance metric that improved the most is UGB, 

which increased by 109.99%. The investigation of the impact of S on the ICNFET when 

the size of the CNFET is reduced to 10 nm technology node suggests that the S 

parameter should be taken into account in the 32 nm ICNFET equation for accurate drain 

current estimation. On the other hand, for simplicity, S can be neglected in the 10 nm 

ICNFET equation without sacrificing accuracy. 
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ABSTRAK 

Pengecilan nod teknologi transistor kesan medan separuh pengalir oksida logam 

(MOSFET) ke ukuran sub-nanometer menyebabkan kesan saluran pendek yang serius. 

Antara pelbagai teknologi dan struktur peranti yang telah dicadangkan, transistor 

kesan medan karbon nanotiub (CNFET) dikatakan calon yang paling sesuai untuk 

menggantikan MOSFET. Kesan parameter struktur terhadap prestasi litar penguat 

kendalian dua-peringkat adalah salah satu bidang penyelidikan yang aktif dalam 

mengkaji CNFET ketika pengecilan saiz daripada nod teknologi yang lebih besar ke 

nod teknologi yang lebih kecil. Penyelidikan ini mengkaji parameter struktur CNFET  

iaitu bilangan tiub (N), garis pusat karbon nanotiub (CNT) (DCNT), dan jarak antara 

CNT (S) yang mengoptimumkan rekabentuk litar penguat kendalian dua-peringkat nod 

teknologi 32 nm dan 10 nm. Litar penguat kendalian ini dioptimumkan dengan 

penyimbangan gandaan gelung-buka, lebar jalur gandaan satu (UGB), pelesapan 

kuasa, dan rintangan keluaran untuk mendapatkan parameter struktur yang optimum. 

Litar penguat kendalian dua-peringkat optimum 10 nm kemudian dibandingkan 

dengan 32 nm untuk menilai parameter struktur optimum dan prestasi litar. Prestasi 

litar yang dinilai terdiri daripada gandaan gelung-buka, UGB, pelesapan kuasa, 

rintangan keluaran, julat ragam sepunya masukan (ICMR), nisbah penolakan ragam 

sepunya (CMRR), nisbah penolakan bekalan kuasa (PSRR), kadar slu, dan masa 

pengenapan. Selanjutnya, penyelidikan ini juga mengkaji kesan S terhadap arus saliran 

(ICNFET) ketika beralih dari nod teknologi 32 nm ke 10 nm. Hasil simulasi menunjukkan 

bahawa reka bentuk litar 10 nm yang optimum telah berjaya meningkatkan prestasi 

litar lebih daripada 33% untuk semua metrik prestasi. Metrik prestasi yang paling 

banyak meningkat ialah UGB, peningkatannya sebanyak 109.99%. Siasatan terhadap 

kesan S kepada ICNFET apabila saiz CNFET dikurangkan kepada nod teknologi 10 nm 

mencadangkan bahawa parameter S harus diambil kira dalam persamaan ICNFET 32 nm 

untuk anggaran arus saliran yang tepat. Sebaliknya, untuk memudahkan pengiraan, S 

boleh diabaikan dalam persamaan ICNFET 10 nm.
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INTRODUCTION 

1.1 Background of study 

In the early 20th century, an idea of controlling the flow of the electric current was 

proposed by a physicist and electrical engineer, Julius Edgar Lilienfeld [1]. He 

described the concepts of a new electronic device as well as owned the first patents on 

the proposed device in 1926 [2]. The device is known as the field-effect transistor 

(FET), which is widely used in integrated circuits (ICs) nowadays. After twenty-four 

years from the patent application, the bipolar junction transistor (BJT) proposed by 

William Shockley was first created [3]. The invention of BJTs initiated a new era in 

electronic, the transistor era. Meanwhile, the first type of transistor, the point-contact 

transistor developed by John Bardeen and Walter Brattain in 1947 was quickly 

replaced by the BJTs [3]. 

Due to the surface problems that existed in the bulk of the BJTs, M. M. Atalla 

et al., proposed a solution by introducing a new semiconductor device called the metal 

oxide semiconductor field-effect transistor (MOSFET) [4] and filed the patent in the 

following year [5], [6]. By comparing to the BJT, the MOSFET has the capability to 

be scaled down without dropping the performance. Scaling down MOSFET offers the 

improvement in speed and power dissipation. Concurrently, high performance 

computer can be achieved when more MOSFETs were scaled down and utilized. 

Hence, the existence of MOSFET triggered the rapid development of technology.  

As the MOSFET has continuously been scaled, more transistors and devices 

can be packed and placed on a chip for a given area; thus, the chip with the smaller 

area has the same or more functionality. Besides, the scaling down of the MOSFET 

also contributed to the chip cost reduction. In the past decades, the shrinking trend of 
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transistors beyond the sub-10 nm technology node has become more and more 

significant. In 1975, Gordon Moore observed that the number of transistors per chip 

doubles in about every two years, known as Moore’s Law [7]. The tendency of 

MOSFET scaling is due to the huge demand for decreasing the chip area as well as 

improving the performances of the transistors in terms of speed and power dissipation 

[8]. 

The MOSFET is the fundamental building block of the complementary metal 

oxide semiconductor (CMOS). CMOS is a technology that drives the advancement of 

today’s electronic devices, from a simple calculator to the advanced supercomputer. 

For improving the performances of the CMOS, the scaling down is carried out year by 

year. However, the CMOS scaling has recently reached its limits because leakage drain 

current and short channel effect become more significant [8]. For this reason, several 

technologies and device structure variations have been proposed in the previous works 

such as the fin field-effect transistor (FinFET) [9], utilization of carbon nanotube (CNT) 

to form a structure called carbon nanotube field-effect transistor (CNFET) [10], 

quantum-dot cellular automata (QCA) [11], and single-electron transistor (SET) [12]. 

Among these devices, CNFET is the most promising candidate to replace the 

conventional MOSFET because of the similarities between the MOSFET and CNFET 

in terms of electrical properties as well as the fabrication process [13], [14]. 

1.2 Problem statement 

MOSFETs dimension is continuously scaled down. The purpose of shrinking the 

dimensions of MOSFET devices is to reduce the area and power consumption while 

improving the operating speed and MOSFET density on the IC. Although the speed 

and density are increased, the downscaling limitations in MOSFET are becoming more 

significant when the dimension is scaled beyond 10 nm. The issues such as the short-

channel effect, source to drain tunnelling, and the high electric field will cause the 

deterioration of device performances [15]. Hence, a CMOS extension device, CNFETs 

is seen to be a potential candidate for replacing the MOSFET as it has similar electrical 

properties and fabrication processes as MOSFET devices, but can be scaled beyond 10 

nm without CMOS deficiencies [16]. Beside scalability, the CNFET has advantages 

in terms of ballistics transport, gain, gate-all-around, and ultra-thin body [17]. 
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 Recently, there are numerous published studies that describe the circuit designs 

using CNFET at 32 nm technology node [18]–[22]. A recent study by Waykole and 

Bendre provides the performance analysis of a two-stage operational amplifier (op-

amp), designed by using the CMOS and CNFET at 32 nm technology [21]. The design 

parameters, number of carbon nanotubes (N), CNT diameter (DCNT), and inter-CNT 

spacing, also called CNT pitch (S) were considered in the CNFET circuit design. The 

optimum values of CNFET design parameters were determined for obtaining the 

optimum circuit performances. The analysis and discussion were carried out by 

comparing the performances of CMOS and CNFET circuits. 

 From [21], two interesting questions can be asked as follows: (1) What are the 

optimum values of structural parameters for the two-stage op-amp design if we migrate 

from 32 nm to 10 nm technology node? and (2) Are the optimum parameter values for 

the 10 nm and 32 nm circuits the same? Therefore, the investigation of the optimum 

values of the structural parameters is essential to provide a reference about the 

influence of the structural parameters on the circuit performance when migrating to a 

smaller technology node. In this study, a two-stage op-amp with Miller compensation 

is selected as the circuit topology to be designed as the circuit has advantages in the 

performance parameters such as gain, output swing, noise, and bandwidth [23]. The 

two-stage op-amp with Miller compensation is one of the applications in high 

performance analog circuit. Furthermore, the investigation of the CNFET drain current 

(ICNFET) is also conducted in this research because there is a relationship between 

ICNFET and technology node, and ICNFET is a major factor in CNFET circuit 

performance. Despite an approximated ICNFET equation at 32 nm technology node was 

defined in the thesis from Jie Deng [24], the impact of S on ICNFET at the 10 nm 

technology has yet to be studied. Several studies also provide no evidence for the 

inclusion of S in estimating ICNFET in CNFET [13], [20], [25]. Thus, a deep exploration 

is indispensable to observe the effect of S on ICNFET in 10 nm technology. 
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