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ABSTRACT 

The Grey Wolf Optimization (GWO) is a nature-inspired, meta-heuristic search 

optimization algorithm. It follows the social hierarchical structure of a wolf pack and 

their ability to hunt in packs. Since its inception in 2014, GWO is able to successfully 

solve several optimization problems and has shown better convergence than the 

Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), 

Differential Evolution (DE), and Evolutionary Programming (EP). Despite providing 

successful solutions to optimization problems, GWO has an inherent problem of poor 

exploration capability. The position-update equation in GWO mostly relies on the 

information provided by the previous solutions to generate new candidate solutions 

which result in poor exploration activity. Therefore, to overcome the problem of poor 

exploration in the GWO the exploration part of the Whale optimization algorithm 

(WOA) is integrated in it. The resultant Grey Wolf Whale Optimization Algorithm 

(GWWOA) offers better exploration ability and is able to solve the optimization 

problems to find the most optimal solution in search space. The performance of the 

proposed algorithm is tested and evaluated on five benchmarked unimodal and five 

multimodal functions. The simulation results show that the proposed GWWOA is able 

to find a fine balance between exploration and exploitation capabilities during 

convergence to global minima as compared to the standard GWO and WOA 

algorithms.  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



 vi 

ABSTRAK 

The Gray Wolf Optimization (GWO) adalah algoritma pengoptimuman carian meta-

heuristik yang diilhamkan oleh alam. Ia mengikuti struktur hierarki sosial dari serigala 

dan kemampuan mereka untuk memburu bungkus. Sejak ditubuhkan pada tahun 2014, 

GWO berjaya menyelesaikan beberapa masalah pengoptimuman dan telah 

menunjukkan penumpuan yang lebih baik daripada Particle Swarm Optimization 

(PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), dan 

Evolutionary Programming (EP). Walaupun memberikan penyelesaian yang berjaya 

untuk masalah pengoptimuman, GWO mempunyai masalah kemampuan penjelajahan 

yang lemah. Persamaan kemas kini kedudukan di GWO kebanyakannya bergantung 

pada maklumat yang diberikan oleh penyelesaian sebelumnya untuk menghasilkan 

penyelesaian calon baru yang mengakibatkan aktiviti penerokaan yang buruk. Oleh 

itu, untuk mengatasi masalah penerokaan yang lemah di GWO, bahagian eksplorasi 

algoritma Paus mengoptimumkan (WOA) digabungkan di dalamnya. Algoritma 

Pengoptimuman Paus Gray Wolf yang dihasilkan (GWWOA) menawarkan 

kemampuan penerokaan yang lebih baik dan mampu menyelesaikan masalah 

pengoptimuman untuk mencari penyelesaian yang paling optimum di ruang carian. 

Prestasi algoritma yang dicadangkan diuji dan dinilai pada lima fungsi unimodal dan 

lima fungsi multimodal bertanda aras. Hasil simulasi menunjukkan bahawa GWWOA 

yang dicadangkan dapat menemui keseimbangan antara kemampuan eksplorasi dan 

eksploitasi semasa penumpuan ke minima global berbanding dengan algoritma GWO 

dan WOA standard. 
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1CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Presently, capitalist societies require maximum benefit from a product with minimum 

cost for manufacture. Optimization provides with the most optimal cost of a particular 

problem in a search space (Yıldız et al., 2008). The optimized process makes the most 

effective use to various specified set of parameters without violating any important 

contents. Optimization techniques play important role in engineering design, 

information science, economics management, operational research, and related areas 

(Seif & Ahmadi, 2015;  Koupaei et al., 2016).  

In computer science and mathematics, a problem is said to be an optimization 

problem; if, it has many viable solutions and the optimal solution is required to be 

found among all the feasible solutions by applying the least possible cost (Olivella-

Rosell et al., 2018). For defining the optimization problem, two types of variables 

namely dependent variable and independent variable are used. The dependent variable 

shows the value representing the solution of the problem, whereas the independent 

variable is used for defining variable solution represented by the dependent variable 

(Aguirre-Cipe et al., 2019). Depending on the nature of the independent variable used, 

the optimization problem is divided into two categories namely discrete optimization 

problem and continuous optimization problem (Nesterov et al., 2018).  

In the discrete optimization problem, an objective is represented by an integer 

value, graphical value or permutation value taken from a finite set of values (or 

sometimes from an infinite set of values). In the continuous optimization problem, the 

solution is found based on some constraints of the independent variable. In modern 

times, optimization search algorithms have been categorized into three types 
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depending on the natural traits they follow to solve a problem. Evolutionary based, 

Physical based, and Swarm based algorithms. Evolutionary based algorithms are 

inspired by the laws of nature. Mostly, Evolutionary based algorithms start with the 

randomly generated populations and then following certain criterion of crossover, and 

mutation are able to find the fit solutions in the search space. Some of the examples of 

evolutionary based algorithms are Genetic Algorithm (GA) (Elsayed, et al., 2014; Kuo 

and Lin et al., 2013), Evolution strategy (ES) (Vicente et al., 2015), Biography-Based 

Optimization (BBO) (Xiangtao et al., 2011), and Differential Evolution (DE) (Wang 

et al., 2011;  Zhou et al., 2016). The second kind of metaheuristics are physical 

algorithms that follow the basic principles of the physical based rule in the universe. 

Simulated Annealing (SA) (Selim & Alsultan, 1991), Central Force Optimization 

(CFO) (Formato & Engineers, 2014) and Black Hole (BH) (Hatamlou et al., 2013). 

Gravitation Search Algorithm (GSA) (Yadav et al., 2016), and Chemical Reaction 

Optimization (CRO) (Z. Li et al., 2014), are some of the physical based algorithms. 

The third kind of metaheuristics are swarm-based nature inspired algorithms that 

mimic the swarming behavior of animals. Here are some latest popularly used swarm 

algorithms i.e. Particle swarm Optimization (PSO) (Tang et al., 2015); (Jensi & Jiji, 

2016); Zhan et al., 2011), Artificial Bee Colony (ABC) (Zhong, Li, & Zhong 2017; 

Yurtkuran & Emel, 2015), Cuckoo Search Algorithm (CSA) (Rakhshani & Rahati, 

2017); Mlakar, Fister, & Fister, 2016), Whale Optimization Algorithm (WOA) 

(Mirjalili & Lewis, 2016), Firefly Algorithm (FA) (Gandomi et al., 2013), Ant Colony 

Optimization (ACO) (Chen, Zhou, & Luo, 2017), Bat Algorithm (BA) (Chakri et al., 

2016), and Flower Pollination Algorithm (FPA) (Nabilet et al., 2016) etc. 

 The drawback of the standard GWO operation is its poor exploration capability 

at small randomization (Dhargupta et al., 2020). The poor exploration may lead to skip 

the most optimal solution and even the present solution (Dhargupta et al., 2020). The 

standard GWO is also poor in convergence rate and ultimately degrades the global 

solution quality (Long et al., 2018). In order to overcome this problem, WOA is 

incorporated with GWO that improve the exploration capability, which in turn 

improves the global convergence results and ensures better quality solution. 

This research study focuses on the nature inspired Grey Wolf Optimization 

(GWO) algorithm (Seyedali Mirjalili, et al., 2014) GWO is a swarm intelligent 

algorithm that follows the basic principles of leadership hierarchy and hunting 

behavior of grey wolves in nature. Due to its simplicity, GWO has been widely utilized 
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 3 

to solve many practical optimization problems (Gölcük & Ozsoydan, 2020). GWO 

faces many challenging problems, it can easily get trapped in local optima because of 

imbalanced relationship between exploitation and exploration. Also, the position-

update equation in GWO mostly relies on the information provided by the previous 

solutions to generate new candidate solutions which result in poor exploration activity 

(Heidari & Pahlavani, 2017a). Therefore, to overcome the problem of poor exploration 

in the GWO the exploration part of the Whale optimization algorithm (WOA) is 

integrated in it (Mirjalili & Lewis, 2016b). The resultant Grey Wolf Whale 

Optimization Algorithm (GWWOA) offers better exploration ability and is able to 

solve the optimization problems to find the most optimal solution in search space. The 

performance of the proposed algorithm is tested and evaluated on five benchmarked 

unimodal and five multimodal functions against GWO and WOA algorithms.   

1.2 Problem Statement 

Grey wolf optimization (GWO) is a metaheuristics algorithm follows the predatory 

behavior of wolves to search for optimal food source in packs and capture anything 

while keeping other wolves in their line of sight. In GWO, the alpha parameter or the 

alpha wolf leads the pack while other wolves are divided into beta and delta wings for 

finding optimal neighborhood positions. Despite providing optimal solutions better 

than GA and PSO, GWO unfortunately is not able to maintain the quality of the 

solution. This is due to its inability to ensure a fine balance between the exploration 

(finding new search space) and exploitation (finding solution in local search space) of 

the solution search space during grey wolf position update stage (Long et al., 2018) 

(Heidari & Pahlavani, 2017a). This inherent imbalance in GWO’s behavior not only 

fails to ensure proper exploration and exploitation of the search space; but it also leads 

the algorithm to converge to less optimal or sometimes unreliable solutions (Teng, Lv, 

& Guo, 2019). Therefore, to overcome the problem of poor exploration in Grey Wolf 

Optimization (GWO), the initial population for the GWO is initialized using the 

searching-prey mechanism of the Whale Optimization Algorithm (WOA). This 

ensures a well-balanced relationship between exploration and exploitation phase in the 

proposed Grey Wolf Whale Optimization Algorithm (GWWO) algorithm.  
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 4 

In the initial stage of the standard GWO it has the low convergence rate in the 

search space (Teng, Lv, & Guo, 2019). The position update equation perform well in 

exploitation and is not able to perform well during exploration (Long et al., 2018). In 

the grey wolf position change stage, the solution set generates the position based on 

the previous best position of alpha (α), beta (β), and delta (δ) wolves (Majeed & Patri, 

2018). At this stage, the ratio of exploitation and exploration randomly chose 

individuals from the population by a component called randomization factor that plays 

the most important role in changing the Grey wolf position it is used in turn to control 

the solution search of the optimization problem to be solved. The major role of this 

factor is to check the availability of the most optimal solution in vicinities of the current 

solution (exploitation). Also it has to explore the solution search space to find new 

solution (exploration) is search of the most optimal solution (Heidari & Pahlavani, 

2017a).  

1.3 Research Objectives 

Based on the problem identified in the previous section, following three objectives are 

proposed. 

(i) Improve GWO with WOA in terms of exploration of the standard GWWOA 

optimization algorithm. 

(ii) Balance the exploration and exploitation of the GWWOA algorithm. 

(iii) Evaluate performance of the improving algorithm. 

1.4 Research Scope 

For resolving the problem associated with standard GWO, the proposed algorithm 

solves the optimization problem.  

(i) Evaluation of the performance of the proposed GWWOA algorithm on 

standard benchmark optimization function. 

(ii) The criterion for performance evaluation on standard benchmark function has 

the best-case optimal solution, average case solution, worst case solution and 

standard deviation. 
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(iii) The whole experimentation is performed on MATLAB running over windows 

10 operating system installed on core i7 CPU with 16GB RAM. 

1.5 Significance of the Research 

This research has introduced significant contribution in swarm intelligence by 

targeting one of its recently evolved techniques namely GWO. The proposed 

methodology and results associated with the proposed approach will be highly helpful 

for the academicians, professionals, industrialists, and the computer scientists by 

applying proposed GWWO algorithm for solving various types of the optimization 

problems where other optimization algorithm find difficulty in getting the desired 

solution. 

In the proposed Grey Wolf Whale Optimization Algorithm (GWWO), A Grey 

Wolf Optimization (GWO) is integrated with the standard Whale Optimization 

Algorithm (WOA) algorithm to improve its convergence to global minima. The initial 

population for the GWO is initialized using the searching prey mechanism of WOA. 

This ensures a well-balanced relationship between exploration and exploitation phase 

in the proposed GWWO algorithm.   

1.6 Outlines of the Thesis    

Chapter 1 gives a brief background of the optimization process. The problem 

statement, objective, scope and significance of this research activity. The remaining 

chapters are as follows: 

Chapter 2 explores the basic conceptual terminologies and the operational 

procedures of different swarm intelligence algorithms used for solving various types 

of optimization problems. This chapter also gives a comprehensive literature review 

of different improved and hybrid versions of GWO algorithm.  

Chapter 3 presents the research framework. This chapter shows the whole 

research activity that has been conducted. The proposed research framework 

comprises of three phases. Framework data selection, development of the proposed 

model, and data analysis. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



 6 

Chapter 4 presents the result of the proposed model and evaluate the 

performance of the proposed model. The result of the proposed model is presented and 

brings into discussion n in this chapter. 

Chapter 5 presents the conclusion of the whole thesis and discuss about the 

proposed GWWO model and the future directions of this research work. 
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2CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter begins with explaining the optimization problems and its need in 

improving the search direction. Then swarm intelligent optimization algorithms like 

Grey Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA) are 

discussed in detail. Then further down in the sections, different models of the GWO 

like standard GWO, improved GWO and hybrid GWO are discussed in detail. During 

the discussion, qualities, and shortcomings of recently introduced GWO and WOA are 

also taken into account. The discussion focuses on how to solve the different 

optimization problems using GWO. Finally, the chapter is concluded with details on 

the current and the possible new GWO variants emerging from the merger of current 

metaheuristics available. 

2.2 Background of Metaheuristics Optimization Algorithm  

More recently, artificial intelligent metaheuristics algorithms have been used to solve 

many optimization problems. There are three types of metaheuristics algorithms, i.e. 

Evolutionary based, Physical based, and Swarm based algorithms. Evolutionary based 

algorithms are inspired by the laws of nature. Mostly, evolutionary based algorithms 

start with the randomly generated populations and then following certain criterion of 

crossover, and mutation are able to find the fit solutions in the search space. Some of 

the examples of evolutionary based algorithms are Genetic Algorithm (GA) (Elsayed, 

et al., 2014; Kuo & Lin, 2013), Evolution strategy (ES) (Vicente, 2015), Biography-
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Based Optimization (BBO) (Xiangtao et al., 2011), and Differential Evolution (DE) 

(Wang et al., 2011;  Zhou et al., 2016). The second kind of metaheuristics are physical 

algorithms that follow the basic principles of the physical based rule in the universe. 

Simulated Annealing (SA) (Selim & Alsultan, 1991), Central Force Optimization 

(CFO) (Formato & Engineers, 2014) and Black Hole (BH) (Hatamlou 2013). 

Gravitation Search Algorithm (GSA) (Yadav et al., 2016), and Chemical Reaction 

Optimization (CRO) (Z. Li et al., 2014), are some of the physical based algorithms. 

The third kind of metaheuristics are swarm-based nature inspired algorithms that 

mimic the swarming behavior of animals. Here are some latest popularly used swarm 

algorithms i.e. Particle swarm Optimization (PSO) (Tang et al., 2015); (Jensi & Jiji, 

2016); Zhan et al., 2011), Artificial Bee Colony (ABC) (Zhong, Li, & Zhong, 2017; 

Yurtkuran & Emel, 2015), Cuckoo Search Algorithm (CSA) (Rakhshani & Rahati, 

2017; Mlakar, Fister, & Fister, 2016), Whale Optimization Algorithm (WOA) 

(Mirjalili & Lewis, 2016), Firefly Algorithm (FA) (Gandomi et al., 2013), Ant Colony 

Optimization (ACO) (Chen, Zhou, & Luo, 2017), Bat Algorithm (BA) (Chakri et al., 

2016), and Flower Pollination Algorithm (FPA) (Nabil et al., 2016).  

2.3 Grey Wolf Optimization (GWO) 

Grey Wolf Optimization (GWO) is a swarm-based optimization algorithm developed 

by Seyed Ali in 2014 (Mirjalili, Mohammad, & Lewis, 2014). This algorithm is based 

on the leadership hierarchy and hunting mechanism of Grey wolves in nature. Grey 

wolves belong to the Canidae family. Grey wolf considers the top of the food chain 

and live-in packs. The pack is divided into different parts like alpha, beta, omega, and 

delta. The grey wolves pack follows leadership rule and hunt using social hierarchy of 

GWO. The social hierarchy of power and domination are related in each pack of grey 

wolves. The group leader is alpha who is the most dominant wolf and leads the whole 

pack in hunting, movement and feeding. If, the alpha dies or gets old than the second 

powerful or beta wolf becomes alpha to lead the pack. The GWO hunting behavior 

and the exploration and exploitation is discussed in the subsections.  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



 9 

2.3.1 Hunt Behaviour of the Wolves 

A wolf can move to any place around the prey with alpha leading the pack. However, 

this social intelligence is not enough for grey wolves. During hunting the group 

hierarchy plays an important part during the hunting and the stability of a pack. To 

reproduce, social ranking, the three finest solutions are alpha, beta, and delta. 

2.3.2 Encircling the Prey 

Mathematical step of Grey wolf optimization has two points in a dimensional space 

and update the new position based on others. Equation (2.1) is used for update new 

position:  

𝑿 (𝑡 +  1)  = 𝑿 (𝑡) –  𝐵. 𝐷                                           (2.1) 

where 𝑿 (𝑡 + 1) is the new position of the wolf, 𝑋 (𝑡) is is the current position, B is 

a coefficient matrix and D is a vector that depends on the location of the prey (𝑿𝑝).D 

is calculated as follows: 

𝑫 = | 𝑪.  𝑿(𝑡)–  𝑿 (𝑡)|                                                (2.2) 

where,  

𝑴 = 2. 𝒓2                                                                                               (2.3) 

𝑟2 is a casually created vector from the interval [0, 1]. With these two equations, a 

solution can relocate around another solution. Since the equations uses vector, hence 

this can be applied to any number of dimensions. 

The casual components in the beyond equation simulates various step sizes and 

movement speeds of grey wolves. The equation to define their values are as follows:  

𝑩 = 2𝑎. 𝑟1 –  𝒂                                                               (2.4) 

𝑎 Vector where its value is linearly reduced from 2 to 0 during the run. 𝑟1 is a randomly 

produced vector from the interval [0, 1]. The equation to update the parameter is as 

follow: 

                                                a=2-t (
2

T
)                                                                       (2.5) 

where, t is the current iteration and T is the maximum number of epochs. 
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2.3.3 GWO Technique 

The GWO architecture is one of the swarm intelligence algorithms, the optimization 

procedure with the solution of a random set, in every problem maintains with the help 

of vector and values of parameters. Every iteration gets the objective values of each 

solution to calculate the first step. Therefore, all the time one variable is saved in 

objective. When solving the problem in GWO the vector and variable are mentioned 

and key data is saved in memory, three vector and three variables. These vector and 

variable store the location and principal values, the previous value of Alpha, Beta and 

Delta wolves in the memory. These variables are updated when updating the previous 

position.  

The GWO architecture update the solution using Equation (2.6) and (2.7). Now 

to compute these equations, the space b/w the resent clarification and alpha, beta and 

delta would calculate initial values using Equation 2.7. The involvement of alpha, beta, 

and delta to improve the position of the solution is then calculated by applying 

Equation (2.7). The objective value of the solution and their position, the main 

supervisory parameter of Grey Wolf Optimization (B, M and a) is updated earlier for 

position improvement.  

𝒁1 = 𝑿𝛼  (𝑡) –𝑩1. 𝑫𝛼  

𝒁2 = 𝑿𝛽 (𝑡) –𝑩2.  𝑫𝛽                                                  (2.6) 

𝒁3 = 𝑿𝛿  (𝑡) – 𝑩3. 𝑫𝛿  

Dα, Dβ and Dδ are calculating applying Equation (2.7). 

𝑫𝛼  =  | 𝑴1. 𝑿𝛼  –  𝒁 | 

𝑫𝛽  =  | 𝑴2.  𝑿𝛽 –  𝒁 |                                                    (2.7) 

𝑫𝛿  =  | 𝑴3. 𝑿𝛿  – 𝒁| 

𝐃(t + 𝟏) = (𝒅1 + 𝒅2 + 𝒅𝟑)/3                                           

2.3.4 Exploitation and Exploration in GWO 

Exploitation and exploration are two basic phases of problem solving through 

metaheuristics search (Črepinšek et al., 2013). Exploitation and exploration are used 

to find new regions from previous positions to find out the solution in the search space. 
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The global convergence performance of any swarm-based algorithm is guaranteed 

through a fine balance between exploitation and exploration phases.  

GWO belongs to the class of swarm-based algorithms and the key control 

exploitation parameter in GWO is 𝑀. The  𝑀 is the random value in the [-α, α] where  

𝑎 value gradually decreases from 2 to 0 thus switching from exploration to exploitation 

(Azlan et al., 2019). In addition, the adjusting parameter for exploration is 𝐵 in GWO. 

This parameter value also depends on a. The random value of the parameter 𝐵 is in the 

range of [-2, 2]. Exploration is done after B> 1 or B < -1, while there is emphasis on 

exploitation when -1 < B < 1. As mentioned above better balance between exploitation 

and exploration is required to find out the exact search in global and local optimum 

using the algorithm. The standard GWO flow diagram and its algorithm are given in 

the Figures 2.1 and 2.2 respectively. 

Start

Initialize GWO

Initialize a, A, & C

Calculate Fitness

Find Dα ,Dβ ,Dδ 

While iter<iterMAX No
Display Dα and Objective 

Function value

End

Yes

Update the position of the search 

agent 

Update a, A, & C

Calculate Objective fitness 

Update Dα ,Dβ ,Dδ Iter = iter+1 

 

Figure 2.1: Standard GWO Flow Diagram 
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Figure 2.2: The Grey Wolf Optimization Algorithm (Seyedali Mirjalili, Mohammad, 

& Lewis, 2014) 

2.3.5 The Standard Grey Wolf Optimization Algorithm 

The standard GWO algorithm is applied to different optimization problems and is able 

to produce good results. GWO also uses search patterns to solve the optimization 

problem like a smart grid power system (Mahdad & Srairi, 2015). The efficiency of 

the GWO is also validated by performing strong tests on three combined heat and 

power dispatch (CHPD) problems; i.e. static economic dispatch, environmental 

economic dispatch, and dynamic economic dispatch. (Jayakumar et al., 2016). 

Similarly, GWO is utilized for enhanced clustering mechanism in Vehicular ad hoc 

networks (VANET) and to overcome frequent topological chances due to moving 

nodes (Fahad et al., 2018). Seeing its low computational cost, GWO was used to 

reduce the parameter sensitivity in fuzzy control systems (CSs) (Precup et al., 2017). 
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