PREDICTION OF AN ELECTRICALLY TURBOCHARGED ENGINE AND PERFORMANCE PREDICTION IN AN ACTUAL DRIVE CYCLE

KAMALLESWARAN SUBRAMANIAM

A thesis submitted in fulfilment of the requirement for the award of the Degree of Master in Mechanical Engineering

> Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

> > AUGUST 2022

ACKNOWLEDGEMENT

My heartfelt gratitude to my supervisor Assoc. Prof. Dr. Wan Saiful-Islam Wan Salim of the Faculty of Mechanical and Manufacturing Engineering at Universiti Tun Hussein Onn Malaysia. The door to Prof. Wan's office was always open whenever I ran into any problem or had my doubts about my research findings. He has always ensured that this research is of my own effort and has guided me through whenever necessary. His tremendous moral support spurred me on when I was going through a rough patch.

Lastly, I must express my very profound gratitude to my parents and my friends for providing me with unconditional support and continuous encouragement throughout my process of researching and writing this thesis. This accomplishment would not have been realized without them. Thank you.

ABSTRACT

The study involves the evaluation of the energy recovery potential of turboshaft separated (decoupled) electric turbocharger and its boosting capability in a sparkignition engine through simulation-based work and comparing it to a conventional turbocharged engine over an actual drive cycle. The main objective of this study is to develop a 1-D numerical model and evaluate the amount of energy that can be recovered over a steady state full-load operating conditions, part-load conditions, and actual, transient drive cycle conditions besides investigating the capabilities of an electric turbocharger. The electric turbocharged system includes two motors and a battery pack to store the recovered electrical energy. GT-Power engine simulation software was used to model both engines and utilizes each of the components described earlier. The conventional turbocharged engine model is first simulated to obtain its performance characteristics. An electric turbocharger is then modelled by separating the turbine from the compressor. The turbine is connected to an electric generator and battery, whereas the compressor is connected to a separate motor. This electrically turbocharged engine was modelled at full load and controlled to produce the same brake power and brake torque characteristics as the similarly sized conventional turbocharged engine. The evaluation of energy recovered from the electrically turbocharged engine from the analysis can assessed in full-load steady state conditions that can be useful for research in part-load and transient studies involving the decoupled electrical turbocharger. At 2500 and 3000 rpm, the energy recovery was 0.57 kW and 0.5 kW respectively at steady state. The maximum electrical energy that was recovered was 5.25 kW at 6500 rpm. Both engines had the same fuel consumption over a drive cycle while no energy recovered for the entire duration of the drive cycle simulation.

ABSTRAK

Kajian ini melibatkan penilaian potensi pemulihan tenaga oleh pengecas turbo elektrik yang dipisahkan acinya dan keupayaan galakan (boost) dalam enjin pencucuh spark melalui kaedah berasaskan simulasi dan membandingkannya dengan enjin turbo konvensional di dalam kitaran pemanduan sebenar. Objektif utama kajian ini adalah untuk membangunkan model 1-D dan menilai jumlah tenaga yang boleh dipulihkan dalam keadaan stabil operasi beban penuh, keadaan beban separa, dan di dalam keadaan kitaran pemanduan sebenar selain menyiasat keupayaan turbo elektrik. Sistem turbo elektrik merangkumi dua motor dan pek bateri untuk menyimpan tenaga elektrik yang dipulihkan. Perisian simulasi enjin GT-Power digunakan untuk memodelkan kedua-dua enjin dan menggunakan setiap komponen yang terlibat. Model enjin turbo konvensional disimulasi terlebih dahulu untuk mendapatkan ciri-ciri prestasinya. Turbo elektrik kemudiannya dimodelkan dengan memisahkan turbin dari pemampat. Turbin disambungkan ke penjana elektrik dan bateri, manakala pemampat disambungkan ke motor yang berasingan. Enjin turbo elektrik ini disimulasi pada beban penuh dan dihad untuk menghasilkan kuasa dan tork yang sama seperti enjin turbo konvensional bersaiz sama. Penilaian tenaga yang dipulih dari enjin turbo elektrik berdasarkan analisis pada keadaan mantap semasa beban penuh digunakan untuk penyelidikan dalam kajian sebahagian beban dan kitaran pemanduan yang melibatkan engin turbo elektrik yang berasingan aci. Pada 2500 dan 3000 rpm, pemulihan tenaga adalah 0.57 kW dan 0.5 kW masing-masing pada keadaan mantap. Tenaga elektrik yang paling banyak dipulih ialah 5.25 kW pada 6500 rpm. Kedua-dua enjin mempunyai penggunaan bahan api yang sama sepanjang kitaran pemanduan manakala tiada tenaga dapat dipulih untuk keseluruhan tempoh simulasi kitaran pemanduan.

CONTENTS

	TITLE	Ξ	i	
	DECL	ARATION	ii	
	ACKN	OWLEDGEMENT	iii	
	ABST	RACT	iv	
	ABST	RAK	v	
	CONT	TENTS	vi	
	LIST (OF TABLES	ix	
	LIST (OF FIGURES	X	
	LIST (OF SYMBOLS AND ABBREVIATIONS	xiv	
	LIST (OF APPENDICES	xvi	
	LIST OF PUBLICATIONS		xvii	
CHAPTER 1	INTRO	ODUCTION	1	
	1.1	Background of study	1	
	1.1.1	Engine downsizing	2	
	1.2	Problems statement	3	
	1.3	Research objectives	4	

	1.4	Scopes of study	4
	1.5	Significance of study	5
	1.6	Outline of thesis	6
CHAPTER 2	LITER	ATURE REVIEW	8
	2.1	Introduction	8
	2.2	Electric turbocharging	9
	2.2.1	Types of electric turbochargers	11
	2.2.2	Exergy energy availability	15
	2.2.3	Removal of wastegate	16
	2.2.4	Boosting effect on engine performance	18
	2.3	Electric motor	18
	2.3.1	Electric motor control	22
	2.4	Transient conditions study	28
	2.5	Summary	32
CHAPTER 3	METHO	DOLOGY	34
	3.1	Introduction	34
	3.2	Flowchart	36
	3.3	Base engine model	37
	3.4	Conversion into electrical turbocharged	10
	3/11	engine Electric motor	40
	J. 4 .1		42

vii

3.4.2	Wastegate	44
3.4.3	Turboshaft	47
3.4.4	Battery pack	48
3.4.5	Compressor power demand	49
3.5	Engine verification	51
3.6	Steady state simulation	53
3.7	Part-load simulations	56
3.8	Drive cycle simulation	57
3.9	Preliminary simulation and results	59
3.10	Summary	61
RESUL	TS AND DISCUSSION	64 NAH
4.1	Introduction	64
4.2	Steady state simulation results	65
4.2.1	Engine performance	65

viii

CHAPTER 4 RESUL

	4.1	Introduction	64
	4.2	Steady state simulation results	65
	4.2.1	Engine performance	65
	4.2.2	Electrical energy recovery	81
	4.3	Part-load simulation results	8/
	4.3.1	Compressor power demand	84
	4.3.2	Net energy recovery	96
	4.4	Drive cycle simulation results	00
	4.4.1	Engine performance	8/
	4.4.2	Electrical energy recovery	87
			99
	4.5	Summary	101

CHAPTER 5	CONC RECO	103	
	5.1	Conclusion	103
	5.1.1	Recommendations	104
REFERENCE			106
APPENDIX			110

VITA

142

LIST OF TABLES

1.1	Outlines of thesis	6
2.1	Motor specification used in the study	19
2.2	Operating strategies for the hybrid engine	24
2.3	Fuel saving values with the use of turbocompound	
	hybrid system	26
2.4	Electric machine parameter	31
2.5	Fuel consumption over various drive cycles	32
3.1	Engine specification of 1.6L CamPro CFE engine	37
3.2	Turbocharger specification of e-turbo engine	40
3.3	Battery specification of 1.6L electrical turbocharged	
	CamPro CFE engine	48
3.4	Motor power demand for each of the 12 cases of	
	engine speeds	55
4.1	Electrical power map of motor at part-load	
	simulation	85
4.2	Compressor power demand at different engine speeds	
	and loads	85
4.3	Net energy recovery at different engine speeds and	
	loads	86

LIST OF FIGURES

1.1	CO ₂ emissions per transported passengers for the	
	European Union member nations for the year 2019	1
2.1	Setups for both electric turbo-compounding models	10
2.2	The setups of the different electric turbo-	
	compounding systems	12
2.3	The turbocompounding configurations that was	
	studied	14
2.4	Exergy losses between ORC and ETC	16
2.5	Regions where suitable sized turbines can be	
	implemented	17
2.6	The BSFC of the engine at different motor power	
	levels	19
2.7	Booster control strategy	20
2.8	Fuel consumption comparison between 12V and 48V	
	system over various drive cycles	21
2.9	Block diagram of low-level controller	23
2.10	Fuel consumption comparison between the hybrid	
	system and the conventional engine over various	
	drive cycles	24
2.11	Schematic diagram of hybrid power unit used	
	together with the turbocompound	25
2.12	The VFD power for a constant turbine speed	27
2.13	Electric power generation of electric turbocharger	
	over the drive cycle	28
2.14	Torque output between standard engine and electric	
	turbocharged engine	29

2.15	Acceleration of truck between standard engine and	
	electric turbocharged engine	29
2.16	Energy distribution comparison between	
	conventional turbocharger and hybrid turbocharger	
	under NEDC	30
2.17	Energy saving of different driving cycles	31
3.1	Work flowchart	36
3.2	Comparison between simulated data and published	
	test data	38
3.3	Turbine map data	41
3.4	The two-motor setup of the 1.6L CamPro CFE	
	electrical turbocharger system	42
3.5	The response curve of the turbine speed	46
3.6	Electrical power from motor to the compressor	51
3.7	Maximum Brake Torque Comparison between base	
	engine and e-turbo engine	53
3.8	Predicted 1.6L CamPro CFE e-turbo engine power	
	and torque performance	56
3.9	Part-load brake torque points at various engine	
	speeds	57
3.10	Engine speed-torque points of actual drive cycle	58
3.11	BSFC data comparison between the 2.0 L	
	turbocharged template engine and 2.0 L e-turbo	
	engine	60
3.12	Power recovered at low engine speed simulation	60
4.1	Brake Power comparison between base engine and e-	
	turbo	66
4.2	BMEP comparison between base engine and e-turbo	66
4.3	BSFC comparison between base engine and e-turbo	67
4.4	Exhaust pressure comparison between base engine	
	and e-turbo	68
4.5	Turbine speed comparison between base engine and	
	e-turbo	69

4.6	Turbine efficiency comparison between base engine	
	and e-turbo	70
4.7	Operating points in a turbine map	72
4.8	Compressor speed comparison between base engine	73
	and e-turbo	
4.9	Compressor efficiency comparison between base	74
	engine and e-turbo	
4.10	Compressor power comparison between base engine	75
	and e-turbo	
4.11	Boost pressure comparison between base engine and	76
	e-turbo	
4.12	Wastegate diameter comparison between base engine	77
	and e-turbo	
4.13	Turbine and compressor mass flow comparison	79
	between base engine and e-turbo	
4.14	Turbine mass flow comparison between base engine	80
	and e-turbo	
4.15	Power comparison between generator and motor	82
4.16	Net energy recovery at different engine speeds	83
4.17	Net energy recovered at different engine loads	86
4.18	Brake Torque comparison between base engine and	89
	e-turbo in drive cycle	
4.19	Speed-load points of drive cycle on a full throttle	89
	torque output curve of e-turbo engine	
4.20	Fuel mass flow rate comparison between base engine	91
	and e-turbo in drive cycle with torque demand	
	profile	
4.21	Cumulative fuel consumption comparison for CFE	93
	and e-turbo engine	
4.22	Exhaust comparison for CFE and e-turbo engine in a	95
	drive cycle	
4.23	Turbine efficiency and mass flow rate comparison	96
	for CFE and e-turbo engine in a drive cycle	

4.24	Compressor mass flow rate comparison for CFE and	97
	e-turbo engine in a drive cycle	
4.25	Full-load and drive cycle operating points on e-turbo	98
	compressor map	
4.26	Net electrical energy recovery of e-turbo in drive	100
	cycle with torque demand profile	
4.27	Electrical power points throughout the transient	
	simulation and steady state power demand of the	
	motor	100

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols		Definitions
(ΔX)	-	Actuator input
ન	-	Total fuel consumed
η	-	Compressor efficiency
Pem	-	Electric machine power
p_{exh}	-	Exhaust pressure
τ	-	Time constant
ω	-	Angular velocity
1-D	-	One dimensional
BMEP	-	Brake mean effective pressure
BSFC	_	Brake-specific fuel consumption
BSG	Z	Belt-driven starter generator
CamPro	-	Cam profiling
CDA	-	Cylinder deactivation
CFE	-	Charged fuel efficiency
CO	-	Carbon monoxide
CO ₂	-	Carbon dioxide
DC	-	Direct current
EAT	-	Electrically assisted turbocharger
eC	-	Electric supercharger
EGR	-	Exhaust Gas Recirculation
EST	-	Electrically split turbocharger
ETA	-	Electrical turbocharged assistance
ETC	-	Electric turbo-compounding
e-turbo	-	Electric turbocharger

hp	-	horsepower
ICE	-	Internal combustion engine
IMEP	-	Indicated Mean Effective Pressure
Κ	-	Output ratio
kW	-	Kilowatt
kWh	-	Kilowatt per hour
NEDC	-	New european driving cycle
Nm	-	Torque
NOx	-	Nitrogen oxide
ODE	-	Ordinary differential equation
ORC	-	Organic rankine cycle
Р	-	Motor power
PID	-	Proportional integral derivative
rpm	-	Revolutions per minute
SI	-	Spark-ignition
Т	-	Torque
TEG	-	Thermoelectric generator
VFD	-	Variable-frequency drive
VVT	-	Variable Valve Timing
W	7	Power
WITC	-	Worldwide harmonized light vehicles test
WLIC		cycle
Y	-	System response
Yinitial	-	Initial response

xvi

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Complete Drive Cycle Data	109
В	Publications	124

LIST OF PUBLICATIONS

- I. K. Subramaniam., W. S-I. Wan Salim., (2021) Part-Load Simulation and Energy Recovery Evaluation of An Electrically Turbocharged Engine Low Engine Speeds, Journal of The Society of Automotive Engineers Malaysia, SOCIETY OF AUTOMOTIVE ENGINEERS MALAYSIA
- II. K. Subramaniam., W. S-I. Wan Salim., (2021) Modelling an Electrically Turbocharged Engine and Predicting the Performance Under Steady-State Engine, International Journal of Automotive and Mechanical Engineering, Universiti Malaysia Pahang Publisher

CHAPTER 1

INTRODUCTION

1.1 Background study

The automotive industry has been identified as a key source of greenhouse gases which causes climate change around the world. This has led to major legislations put upon the automotive industry to reduce and eventually negate the negative impact to the environment. Carbon monoxide (CO) and nitrogen oxide (NOx) emissions are limited to 1g/km and 0.08 g/km respectively under Euro 6 requirements while carbon dioxide (CO₂) emissions are limited to 98 g/km [1]. Figure 1.1 shows the CO₂ emissions per transported passengers for the European Union member nations for the year 2019 [2].

The figure reflects the urgent need to reduce emissions further to safeguard the environment and also making the automotive industry more sustainable. Major automotive manufacturers have had to heed to calls by the regulators around the globe in reducing carbon emissions. This has led to more efficient engines being produced for the commercial and passenger car market. The efficiency of an engine is translated upon by the amount of fuel consumed which is indicated by the CO_2 emissions produced by the engine. Hybrid plug ins and boosting have been viable routes taken by manufactures to improve upon the emissions levels of the vehicles they produce. Boosting can be implemented on an internal combustion engine via the process of downsizing which requires forced induction process.

1.1.1 Engine downsizing

One of the technologies that has gain traction due to this is downsizing via turbochargers. Downsizing reduces the friction and throttling losses due to the decrease in the size of the engine. This is achieved by improving the combustion process in the combustion chambers by forced- induction using turbochargers. Turbochargers act as a waste heat recovery system in recuperating the otherwise lost exhaust gases through a turbine which turns the compressor connected by a turboshaft. The compressor facilitates in increasing the intake pressure to improve the efficiency of the engine.

The use of an electric turbocharger eliminates the delay in transient response and enables the possibility of recovering the exhaust gasses lost through the wastegate. Electric turbocharger is a forced-induction system where an electrical machine commonly a motor generator is mated to the shaft between the turbine and the compressor whereby it assists the compressor when power is needed during a drive cycle and recovers energy from the turbine and stores in a storage component, usually a battery when otherwise. The assisting of the compressor by an electrically motor essentially eliminates the transient delay as power is instantly provided by the battery pack where electrical energy is stored. The electrical turbocharger can also be used as replacement for the wastegate therefore enabling all the exhaust gasses to pass through the turbocharger. The electrical turbocharger can also make sure the compressor always operates at high efficiency points over the whole drive cycle by providing enough energy from the motor generator. This will further increase the intake pressure causing more efficient combustion to take place in the combustion chamber, improving the performance of the engine.

Further studies need to be done to make electrical turbocharger system more feasible in the automotive industry by researching more on the issues concerning it. One of the main issues are that of fuel economy and energy recovery capabilities of the system at low engine speeds. The system needs to be investigated on an actual urban drive cycle as the engine speed range of urban drive cycles are usually of low engine speeds and most common among passenger vehicles in Malaysia nowadays. Another area of interest should be on the different configuration of the electrical turbocharger. Studies need to be made of the performance of the engine in correlation to the different arrangement of the electrical turbocharger system.

1.2 Problem statement

A waste heat recovery system enhances the efficiency of an engine by way of recuperating waste heat energy from the exhaust system and mechanical energy from the vehicle braking system. In high performance and motor-sport applications, full-load engine operations are ever-present. As opposed to this, engines on normal passenger vehicles operate mostly at low loads and speeds. Therefore, the amount of energy that can be recuperated during operation can be a lot less compared to their

motorsport counterpart. It is therefore very crucial to characterize and estimate the amount of energy available for extraction from the combustion engine over normal driving conditions if such a system is to be introduced in normal road vehicles such as passenger cars.

On top of this, another aspect that need to be investigated is what effect does the electrical turbocharger have to the boosting process at the intake manifold and performance of the engine in a driving cycle. This is necessary as the separation of the turboshaft from the turbine and compressor would provide the flexibility to control the energy recovery process at the turbine and the boosting process at the compressor.

1.3 Research objectives

This study aims at achieving the following objectives:

- i. To develop a numerical model of electric turbocharging system for both energy recovery and boosting system.
- ii. To compare the performance of the electrical turbocharger to the conventional turbocharger over a drive cycle.
- iii. To estimate amount of energy that can be recovered by the electrical turbocharger over steady-state, part- load and drive cycle.

1.4 Scope of study

The focus of this study is to model and simulate an engine model to determine the energy recovery of the electrical turbocharger over a real drive cycle and comparing its performance to a conventional turbocharger of similar engine displacement. A 1-D engine simulation software is used to model the engines and obtaining the performance data of the engines. The base engine used is a 1.6 litre turbocharged engine. The modelling process, comparison of the performance and estimation of energy recovered over a drive cycle are studied for the electrical turbocharger engine.

i. Modelling and simulation is done involving both conventional turbocharger engine and electrical turbocharger engine. The components involved are an Internal Combustion Engine, turbocharger for waste heat recovery, motor generator and a battery for the electrical turbocharger. A turbocharged engine comprising of components such as throttle, cylinder and exhaust runner is used as the primary engine model. This turbocharged engine is then connected with a motor generator to act as the power source supplied from the battery which is recharged when power demand is less. Selection of the electrical machines would be based on existing technologies. This includes the use of existing motor generator units and battery.

- ii. The performance of the conventional turbocharged engine and electrical turbocharged engine over a drive cycle is compared in terms of engines parameters such as Brake Power, Brake Torque, BSFC and Cumulative fuel consumption. The drive cycle used is based on an actual road test done on specific routes around Kuala Lumpur. This drive cycle is an urban drive cycle which mainly consist of traffic congestion and short sprints.
- iii. The estimation of energy recovered is done by obtaining the net energy produced by the system. This is done by subtracting the amount of electrical energy produced by the generator at the turbine with the amount supplied at the compressor. The energy recovered is represented in kW as the component used for recovery is an electrical component.

1.5 Significance of study

It is hoped that all the research questions can be answered after thorough investigation regarding the theories and hypothesis of this project. In general, the use of the 1-D software would classify the mechanics of the internal combustion engine. It would not only be useful in modelling of the real conditions of the engine but would be crucial in determining the performance of the engines. The results would be available at the end of the simulation in post processing.

By carrying out the simulation, we would be able to predict the amount of energy that would be generated or recovered from an electrical turbocharged engine. This would eventually enable us to compare with other kinds of engines or different setups of the system in terms of performance and fuel economy.

This project would propose an electrical turbocharger consisting of a separate turbo shaft between the turbine and the compressor. The outcome of this project would enable us to determine whether electrical turbocharger is efficient and viable in incorporating with the internal combustion engine of a passenger vehicle at real driving conditions.

The other ideal outcome that is expected from this study is the effect a compressor operating at optimum levels at all times would have on the boosting process of the engine and engine BSFC.

1.6 Outline of thesis

The overall outline of the thesis is elaborated and summarized in Table 1.1 with each part of the thesis discussed with detail.

Chapter	Title	Description	
Chapter 1	Introduction	Includes Background of study, Problem statement,	
		Research objectives, Scopes of study, Significance of	
		the study and outline of the thesis.	
Chapter 2	Literature Review	Contents of this chapter will be about the previous	
		studies concerning conventional turbocharging and	
	TAKA	electric turbocharging. The mode of simulation and	
	5121	type of components will be recognised, analysed, and	
PEK		correlated with other studies done previously.	
Chapter 3	Methodology	For this study, the simulation procedure was divided	
		into three parts. The first part was the steady-state full	
		load simulation where both the base engine model and	
		the electrical turbocharged engine was run at full	
		throttle to determine the maximum Brake Torque (Nm)	
		and Brake Power (hp). Next, part-load simulation was	
		carried out on the electrical turbocharged engine where the engine model was simulated to run at a steady	
		engine speed but varying engine torque loads. The	
		simulation was repeated by increasing the engine	
		speed. Lastly, both the base engine and the electrical	
		turbocharged engine were run on a transient simulation	
		based on an actual drive cycle.	

Table 1.1: Outlines of thesis.

Chapter 4	Result and Discussion		
		In this chapter, the findings of the engine simulations	
		of both engines were discussed extensively. To ensure	
		clear presentation of the findings, the data was	
		illustrated in figures, graphs and tables and discussed	
		with numerical data and statistics supported by	
		previous studies by other researchers. The steady state	
		and transient analysis were discussed for both base	
		CFE engine and the e-turbo CFE engine model while	
		part-load was described for the e-turbo CFE model.	
		The steady state and transient analysis were divided	
		into two section, engine performance data and energy	
		recovery data. Each section relates to the objectives of	
		this research. The part-load analysis was done using	
		compressor power demand and net electrical energy	
		recovery.	
Chapter 5	Conclusions and	This chapter explains the summary of the study	
	recommendations	accordance with the objectives of study and detail	
		recommendations for future work.	
	References	A list of references citing other researchers of their	
		work.	
	Appendices	A collection of relevant documents and raw data from	
	6051	the simulation. Copies of the papers published from	
PER		this study was also included.	

Table 1.1: Outlines of thesis. (continued)

REFERENCES

- European Parliament and Council of the European Union. Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and mai. *Off. J. Eur. Union.* pp. 1–16; 2007.
- Sechel, I. C. and Mariasiu, F. Efficiency of Governmental Policy and Programs to Stimulate the Use of Low-Emission and Electric Vehicles : The Case of Romania. *Sustainability*. 2022. 14(1): 1-20.
- Salim, W. S. I. W. Mahdi, A. A. M. Ismail, M. I. Abas, M. A. Martinez-Botas, R. F. and Rajoo, S. Benefits of spark-ignition engine fuel-saving technologies under transient part load operations. *J. Mech. Eng. Sci. ISSN*. 2017. 11(4): 3027–3037.
- Alias, M. N. Rosnizam C. P, and Rajoo, S. Waste Heat Recovery Technologies In Turbocharged Automotive Engine – A Review. J. Mod. Sci. Technol. 2014. 2(1): 108–119.
- Winterbone, D. E. Benson, R. S. Mortimer, A. G. Kenyon, P. and Stotter, A. Transient response of turbocharged diesel engines. *SAE Technical Papers*. 1977: 465-490.
- Grujic, I. and Nikolic, N. Analysis of Hybrid Turbocharger in Motor Vehicle Ic Engine. *7th Int. Congress Motor Vehicles & Motors 2018.* 4-5 October 2018. Kragujevac, Serbia: University of Kragujevac. 2018. pp. 219-226.
- Khripach, N. A. Lezhnev, L. Y. Tatarnikov, A. P. Stukolkin, R. V. and Skvortsov, A. A. Turbo-generators in Energy Recovery Systems. *Int. J. Mech. Eng & Tech.* 2018. 9(6): 1009–1018.
- Wei, W. Zhuge, W. Zhang, Y. and He, Y. Comparative study on electric turbo-compounding systems for gasoline engine exhaust energy recovery. *Proc. ASME Turbo Expo.* 14-18 June 2010. New York, US: ASME. 2010. pp.

531–539.

- Lee, W. Schubert, E. Li, Y. Li, S. Bobba, D. and Sarlioglu, B. Electrification of turbocharger and supercharger for downsized internal combustion engines and hybrid electric vehicles-benefits and challenges. 2016 IEEE Transp. Electrif. Conf. Expo, ITEC 2016. 27-29 June 2016. New Jersey, US: IEEE. 2016. pp. 883-889.
- 10. Pinto, D. V. Altafini, C. R. Gonçalves, D. A. and Telli, G. D. Comparative analysis of vehicle turbochargers in energy microgeneration for different compoundings. *J. Brazilian Soc. Mech. Sci. Eng.* 2021. 43(1): 1-16.
- 11. Alshammari, M. Alshammari, F. and Pesyridis, A. Electric boosting and energy recovery systems for engine downsizing. *Energies*. 2019. 12(24): 1-33.
- Muhammad, M. H. M. Mamat, A. M. I. and Salim, W. S. I. W. Exergy Analysis of Organic Rankine Cycle and Electric Turbo Compounding for Waste Heat Recovery. *Int. J. Eng. Technol.* 2018. 7(3.11): 152-156.
- Imran, M. S. and Kurji, H. J. Waste heat conversion in compression ignition engine to the electric power by using exhaust heat recovery system contained TEG. J. Mech. Eng. Res. Dev. 2019. 42(5): 101–105.
- 14. Dimitriou, P. Burke, R. Zhang, Q. Copeland, C. and Stoffels, H. Electric turbocharging for energy regeneration and increased efficiency at real driving conditions. *Appl. Sci.* 2017. 7(4): 350-375.
- Liu, X. Srna, A. Chan, Q. N. and Kook, S. Effect of Exhaust Gas Recirculation and Intake Air E-Boosting on Gasoline Compression Ignition Combustion. SAE Int. J. Engines. 2020. 13(3): 377–390.
- Gilson, A. Sindjui, R. Chareyron, B. and Milosavljevic, M. No-load loss separation of high-speed electric motors for electrically-assisted turbochargers. *Int. Conf. Electr. Mach. ICEM* 2020. 23-26 August 2020. New Jersey, US: IEEE. 2020. pp. 2439–2444.
- El-Shahat, A. Hunter, A. Rahman, M. and Wu, Y. Ultra-high speed switched reluctance motor-generator for turbocharger applications. *Energy Procedia*. 2019. 162: 359–368.
- 18. Alshammari, M. Xypolitas, N. and Pesyridis, A. Modelling of electricallyassisted turbocharger compressor performance. *Energies*. 2019. 12(6): 1-25.
- 19. Gou, B. Yang, Y. and Guo, H. Design on electric supercharger controller based on Brushless DC motor. 2015 Int. Power, Electronics & Materials Eng.

Conf. 16-17 May 2015. Dordrecht, Netherlands: Atlantis Press. 2015. pp. 764–767.

- Novák, L. Novák, J. and Novák, M. Electrically-driven compressors on turbocharged engines with high-speed synchronous motors. 2009 8th Int. Symp. Adv. Electromechanical Motion Syst. Electr. Drives Jt. Symp. ELECTROMOTION 2009, 1-3 July 2009. New Jersey, US: IEEE. 2009. pp. 1-6.
- Hall, J. Borman, S. Hibberd, B. Bassett, M. Reader, S. and Berger, M. 48 v High-power Battery Pack for Mild-Hybrid Electric Powertrains. *SAE Tech. Pap.* 2020. 2(4): 1893–1904.
- Zanelli, A. Millo, F. and Barbolini, M. Driving cycle and elasticity manoeuvres simulation of a small SUV featuring an electrically boosted 1.0 L gasoline engine. SAE Tech. Pap. 2020. 2(2): 551–566.
- Zhao, D. Winward, E. Yang, Z. Stobart, R. and Steffen, T. Characterisation, control, and energy management of electrified turbocharged diesel engines. *Energy Convers. Manag.* 2017. 135: 416–433.
- Xia, F. Griefnow, P. Tidau, F. Jakoby, M. Klein, S. and Andert, J. Electric torque assist and supercharging of a downsized gasoline engine in a 48V mild hybrid powertrain. *Proc. Inst. Mech. Eng. Part D J. Automob. Eng.* 2021. 235(5): 1245–1255.
- 25. Repetto, M. Passalacqua, M. Vaccaro, L. Marchesoni, M. and Prato, A. P. Turbocompound power unit modelling for a supercapacitor-based series hybrid vehicle application. *Energies.* 2020. 13(2): 1-20.
- Balerna, C. Lanzetti, N. Salazar, M. Cerofolini, A. and Onder, C. Optimal low-level control strategies for a high-performance hybrid electric power unit. *Appl. Energy.* 2020. 276: 1-17.
- Bozza, F. De Bellis, V. Malfi, E. Teodosio, L. and Tufano, D. Optimal calibration strategy of a hybrid electric vehicle equipped with an ultra-lean pre-chamber SI engine for the minimization of CO₂ and pollutant emissions. *Energies.* 2020. 13(15): 1-25.
- Carpenter, A. L. Beechner, T. L. Tews, B. E. and Yelvington, P. E. Hybridelectric turbocharger and high-speed SiC variable-frequency drive using sensorless control algorithm. *J. Eng. Gas Turbines Power*. 2018. 140(12): 1–8.
- 29. Ekberg, K. and Eriksson, L. Improving Fuel Economy and Acceleration by

Electric Turbocharger Control for Heavy Duty Long Haulage. *IFAC-PapersOnLine*. 2017. 50(1): 11052–11057.

- 30. Dong, H. Zhao, Z. Fu, J. Liu, J. Li, J. Liang, K. and Zhou, Q. Experiment and simulation investigation on energy management of a gasoline vehicle and hybrid turbocharger optimization based on equivalent consumption minimization strategy. *Energy Convers. Manag.* 2020. 226: 1-19.
- Pasini, G. Lutzemberger, Frigo, S. Marelli, S. Ceraolo, M. Gentili, R. Capobianco M. Evaluation of an electric turbo compound system for SI engines: A numerical approach. *Appl. Energy*. 2016. 162: 527–540.
- Ismail, I. Costall, A. Ricardo, M.-B. and Rajoo, S. Turbocharger Matching Method for Reducing Residual Concentration in a Turbocharged Gasoline Engine. SAE Tech. Pap. 2015. Apr. 2015.
- 33. Petr, P. Tegethoff, W. and Köhler, J. Method for designing waste heat recovery systems (WHRS) in vehicles considering optimal control. 4th Int. Seminar on ORC Power Systems. 13-15 September 2017. Amsterdam, Netherlands. Elsevier. 2017. pp. 232–239.
- Subramaniam, K. and Salim, W. S. I. W. Modelling an Electrically Turbocharged Engine and Predicting the Performance Under Steady-State Engine. *Int. J. Automot. Mech. Eng.* 2021. 18(4): 9244–9252.
- 35. Rajoo, S. Abas, M. A. Salim, O. and Martinez-Botas, R. Efforts to Establish Malaysian Urban Drive-Cycle for Fuel Economy Analysis. *SAE 2014 World Congress & Exhibition*. 2014.