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ABSTRACT 

 

 

 

Electrospinning technology has been widely used in producing porous scaffolds 

consisting of nano- to microfibers. These porous electrospun scaffolds are useful in 

various applications including medical and filtration applications. The microstructure 

architecture such as pore size and fiber diameter is able to affect their function and 

efficiency. In medical applications, the control of pore sizes affects the environment 

to promote cellular activities. For filtration applications, the pore size can control 

filtration efficiency. The control of microstructure architecture, however, is a 

difficult task due to the microstructure of the electrospun being highly sensitive to 

the electrospinning parameters. One way to manipulate the microstructure 

architecture is by governing the process parameter and the knowledge in developing 

electrospinning machines brings the potential to develop novel electrospun scaffolds. 

This thesis focuses on the design and fabrication of the electrospinning machine. The 

machine was used to produce gelatin nanofibers with tailored microstructures and 

functionally graded multilayers. First, an electrospinning machine consists a high 

voltage supply, a syringe pump and a collector was built to produce homogeneous 

electrospun scaffolds. Gelatin and Polycaprolactone were spun into porous fibrous 

networks. The relationship between process parameters and microstructures was 

studied. These process parameters and microstructure dataset were used to produce 

the functionally graded multilayer electrospun gelatin scaffolds. A controllable 

moving stage was developed to precisely control the tip-collector distance and 

microstructure gradient over scaffold thickness. Microstructure images of 

functionally graded multilayers electrospun scaffold show the gradual changes of 

fiber diameters in nano-sized over the scaffold thickness. This study proposes a novel 

technique for designing the graded electrospun scaffolds which more closely mimic 

the native tissues. 
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ABSTRAK 

 

 

Teknologi electrospinning telah digunakan secara meluas dalam menghasilkan 

perancah yang terdiri daripada gentian yang bersaiz nanometer hingga mikrometer. 

Perancah yang terhasil ini boleh digunakan dalam pelbagai aplikasi termasuk aplikasi 

perubatan dan penapisan. Seni bina struktur perancah seperti saiz liang antara gentian 

dan saiz diameter gentian mampu mempengaruhi fungsi dan kecekapannya bagi satu 

aplikasi. Dalam aplikasi perubatan, kawalan saiz liang antara gentian boleh  

mempengaruhi prestasi kegiatan aktiviti selular bagi sel. Untuk aplikasi penapisan, 

saiz liang antara gentian boleh mempengaruhi prestasi penapisan. 

Walaubagaimanapun, kawalan struktur untuk menghasilkan perancah adalah satu 

tugas yang sukar disebabkan struktur perancah amat sensitive dengan electrospinning 

parameter. Antara satu kaedah yang mampu memanipulasikan struktur perancah 

adalah mengawal proses parameter dan pengalaman untuk membina mesin 

electrospinning membawa potensi untuk menghasilkan perancah yang baru. Objektif 

utama tesis ini adalah mereka bentuk dan membina satu mesin electrospinning. 

Mesin tersebut digunakan untuk menghasilkan perancah gelatin dan perancah 

berlapisan yang mempunyai struktur yang berlainan bagi setiap lapisan. Pada 

permulaannya, mesin electrospinning yang terdiri daripada bekalan voltan tinggi, 

pam picagari dan papan pengumpul gentian disediakan untuk menghasilkan perancah. 

Gelatin dan Polycaprolactone digunakan sebagai bahan untuk menyediakan larutan 

dan digunakan untuk menghasilkan perancah. Hubungan antara proses parameter 

dengan struktur dikajikan dan data dicatatkan. Kemudian, data-data yang dicatat 

digunakan untuk meghasilkan perancah berlapisan. Satu pentas yang bergerak direka 

dan digunakan untuk mengawal jarak antara papan pengumpul dan hujung picagari 

dengan jitu. Imej struktur bagi perancah berlapisan menunjukkan perubahan diameter 

gentian secara beransuran bagi setiap lapisan. Kajian tersebut mencadang satu 

kaedah baharu untuk menghasilkan perancah berperingkat yang sesuai digunakan 

untuk menyimulasi tisu asli yang didapati dalam badan manusia.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of Study 

 

 

Fibers made of polymers have been employed in a variety of sectors, 

including biomedical field (Yang et al., 2018), filtration applications (Sikorska et. al. 

2018) and electronic applications (Luzio et al., 2014). Polymer fibers are widely 

employed in medical applications such as drug delivery and tissue engineering. For 

example, in tissue engineering, polymeric electrospun scaffolds are used to develop 

three-dimensional functional structures similar to native tissue structures such as the 

extracellular matrix (ECM) to provide temporary support to cells during native ECM 

formation (Nemati et al., 2019). Filtration applications can be divided into liquid 

filtration and air filtration. The polymeric nanofibers membranes have been used for 

the removal of micron-sized particles from the water. Besides, it is also applied as 

high-efficiency particulate air (HEPA) filters have removal efficiency of 99.97% of 

particles bigger or equal to 0.3 micrometers (Shabafrooz et al., 2014). 

There are several techniques to fabricate the polymeric fibers, such as self-

assembly, phase separation and electrospinning technique (Nemati et al., 2019). Self-

assembly used in polymeric materials typically involves the intermolecular 

association of peptides that immediately assemble into organized and stable 

structures by electrostatic force. The self-assembly fibers were much thinner  

compared to scaffold produced by electrospinning technique. Another technique used 

to produce polymeric fibers scaffold is phase separation. This technique involves 
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three main steps, which are dissolution, gelation, and extracting. First, the polymer is 

dissolved in a solvent, and then the solution goes through a gelation process. During 

the gelation process, the polymer fibers formed within the solvent. After that, the 

solvent is extracted from the gel with water. This technique is simple but involves a 

long processing time. At the same time, the porosity and the structure of the fibers 

are difficult to control. The electrospinning technique uses electrostatic force to 

generate polymeric fibers, and this technique can create continuous polymeric fibers 

with diameters ranging from micrometers to nanometers. (Wang & Ryan, 2011). 

Besides this, the diameter of fibers, porosity and structure of the electrospun scaffold 

that is produced by electrospinning are able to control by varying the electrospinning 

parameters (Nemati et al., 2019). Electrospinning systems can produce various types 

of polymers, ceramics and composites into microfibers with controlled diameter and 

surface morphology (Rasel, 2015). Furthermore, through the electrospinning 

technique and improved collector setups, structures with different compositions, 

hollow interiors, and functional properties of electrospun fibers have been fabricated. 

The electrospinning technique is a simple and versatile method for preparing 

nanofibers. Electrospinning technology enables nanofibers to be manufactured in 

small quantities for laboratory research and large-scale production for industrial use. 

In recent years, electrospinning technology has been widely used in academia and 

industry due to its unique ability to fabricate fibers from different materials in 

various assemblies. For example, Elmorco company used the electrospinning 

technique in air filtration for gas turbine and HVAC industries. 

Figure 1.1 shows the growth of published papers and patents containing the 

electrospinning technology. The result shows the increase in the number of scientists 

interested in fabricating scaffolds by using electrospinning technology. Figure 1.2 

shows the schematic diagram for electrospinning. 
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Figure 1.1: Number of published papers and patents containing the concept of 

electrospinning technology between 2010 and June 2021 (Fatirah et al., 2021). 

 

 

Figure 1.2: The schematic diagram for electrospinning setup. 

 

The electrospinning system is easy to set up and can be modified to meet 

specific requirements. The typical unit consists of three main components, which are 

a high power supply, a syringe pump and a metal collector. A syringe filled with 
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polymer solution is mounted on a syringe pump, which pumps the polymer solution 

at a constant flow rate. A high voltage supply generates an electrostatic force to 

propel the droplets from the syringe tip, then spinning the droplets into fibers, which 

are then deposited on a metal collector. 

Although the electrospinning system is simple and easy to set up, but this 

technique is a sensitive process. The electrospinning technique has many operating 

parameters, including process parameters and solution parameters, that able to affect 

the structure of electrospun scaffolds. Besides this, it is also sensitive to the 

environment, such as surrounding temperature and relative humidity (Topuz et al., 

2021). It is then important to understand the influences of electrospinning parameters 

in order to fabricate high quality nanofibers. Such understanding of the relative effect 

of parameters will be useful for the process control during the electrospinning 

process. 

 Nowadays, the electrospinning technique is able to produce various types of 

scaffolds, which are random and aligned electrospun scaffolds. Each type of 

electrospun scaffolds presented different microstructures and properties and played 

different roles in tissue engineering. For example, an aligned electrospun scaffold is 

able to mimic the aligned structure of native extracellular matrix (ECM) tissue such 

as tendon and cardiac (Jin et al., 2018) while a multilayer electrospun scaffolds able 

to mimic tendon-to-bone insertion area and the structure of articular cartilage (Girão 

et al., 2018) and corneal (Arabpour et al., 2019). 

 

 

1.2 Problem Statement 

 

 

Nowadays, the electrospinning technique is widely used in various fields. However, 

many technical issues still exist and a number of fundamental questions need to be 

resolved. The existence of beads is a problem faced by tissue-engineered scaffolds 

because the bead affects the mechanical performance of the electrospun scaffold 

(Huang et al., 2004) and hinders cell proliferation (Chen et al., 2007). Besides, the 

structure of electrospun scaffolds is highly sensitive to the electrospinning parameter 

like process parameters, solution parameters and relative humidity (Khoo and Koh, 

2016). Any slight variation of electrospinning parameters such as applied voltage, 
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nozzle-collector distance, solution flow rate, ambient humidity, polymer 

concentration and solvent volatility not only cause the formation of beads but also 

influence the structure of electrospun scaffold such as fiber diameter, porosity and 

pore size of the electrospun membrane. Therefore, producing high quality and beads 

defects free electrospun scaffolds becomes difficult. 

 Inhomogeneous structures are presented in native tissues such as articular 

cartilage. The tissue consists of multiple zones, which are superficial, transitional, 

deep and calcified zones (Mow et al., 1992). These zones have differences in 

morphology structure (Hwang et al., 1992). Therefore, inhomogeneous properties are 

crucial in tissue-engineered scaffolds to mimic the structures of biological material. 

Using an inhomogeneous scaffold to mimic the microstructure of native tissue in the 

human body is a strategy to improve native tissue regeneration. There is a potential 

in improving cell response when better mimicking the inhomogeneous structure (Di 

Luca et al., 2016). However, it is still a great challenge in the conventional 

electrospinning techniques to produce electrospun scaffolds with inhomogeneous 

properties. 

 

 

1.3 Objectives of Study 

 

 

The objectives of this study are listed below:  

1. To design and develop an electrospinning machine that consisted of a high 

voltage power supply, a syringe pump, a controllable moving stage and a 

collector. 

2. To fabricate homogenous electrospun gelatin and Polycaprolactone (PCL) 

scaffolds with different electrospinning parameters and characterize their 

microstructure morphology. 

3. To produce functionally graded multilayer electrospun gelatin scaffold and 

characterize their microstructure morphology. 
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1.4 Scope of Study 

 

 

1. The electrospinning machine consisted of a high power supply, syringe pump, 

collector and controllable moving stage.  

2. There are two types of casing for electrospinning machines which are acrylic 

and stainless steel casing. 

3. A moving stage was included in controlling the tip-collector distance in the 

electrospinning system. 

4. Polycaprolactone (PCL) was used in preparing a homogeneous electrospun 

scaffold. 

5. Fish gelatin was used in preparing homogeneous and multilayer electrospun 

scaffolds. 

6. Electrospinning parameters studied in this work were solution parameters, 

process parameters and relative humidity.  

7. In preparing the homogeneous electrospun PCL scaffolds, solution 

concentration, process parameters and relative humidity were varied in this 

work. 

8. In preparing the homogeneous and multilayer electrospun gelatin scaffolds, 

process parameters were varied in this work. 

9. The surface morphology of the electrospun scaffold was characterized by 

using scanning electron microscopy (SEM). 

10. ImageJ was used to measure the fiber diameter of electrospun scaffolds. 

 

 

1.5 Significance of study 

 

 

An electrospinning machine has been successfully designed and fabricated to 

produce polymeric nanofiber. The electrospinning machine is able to produce 

homogeneous and functionally graded multilayer electrospun scaffolds. The 

electrospun scaffolds can be produced from different polymer solutions at various 

electrospinning parameters. Visualization under SEM revealed that scaffolds with 

different microstructure morphologies, i.e., beads and fiber size were obtained. 
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Through this work, a fundamental understanding of how electrospinning parameters 

affect the morphology structure of electrospun scaffolds can provide some idea to 

researchers to produce electrospun scaffolds with desired microstructural 

morphologies. 

 In addition, the significance of this study is adopting a new method to 

produce functionally graded multilayer electrospinning scaffolds to better mimic the 

inhomogeneous structure of native tissues. A moving stage was designed and 

fabricated to ensure precise control of the tip-collector distance and duration during 

the electrospinning process. A patent with the title System and Method for Producing 

Multilayer and Functional Graded Fibrous Material was file. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 History of Electrospinning 

 

 

Lord Rayleigh gave the first idea of using electrostatic force to induce droplet 

formation in 1882 (Rayleigh, 1882). He found that charged droplets are in an 

unstable equilibrium, forming cones that break apart into smaller droplets when 

passing through a voltage gradient. With this fact, Rayleigh theorized that the droplet 

surface tension breakdown was caused by forces created by Coulombic repulsion. 

After the initial research, several research groups were interested in this technique. 

They did further research by using aqueous solution, experimented with 

electrosprays of dilute polymer solution (Dole et al., 1968). In 1955, Drozin found 

droplets that electrospray out resemble a highly dispersed aerosol (Drozin, 1954). 

 As part of his first patent, Formhals came up with the "Process and Apparatus 

for Making Artificial Thread" in 1934. (Formhals, 1934). Process and apparatus for 

making artificial filament utilizing electrical charges are the subject of this invention.  

A moveable thread collector is used in the spinning process to gather stretched 

threads. Using acetone or alcohol as the solvent, Formhals is successful in spinning 

cellulose acetate fibers. In this invention, Formfals has mentioned that this 

electrospinning method still existed with some shortcomings. Owing to the short 

distance between the spinneret and collector device, the solvent could not completely 

evaporate and dry the fibers before the fiber jet was deposited on the collector. This 

shortage causes the fibers to stick on the collector and causes removal problems  
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due to incomplete solvent evaporation. 

When Formfals discovered the short distance between the needle tip and the 

collector was the main issue with the first invention in 1934, they reworked the 

second patent in order to overcome the aforementioned shortcoming (Formfals, 

1939). The distance between the nozzle and the collector is increased during 

electrospinning process to allow more time to evaporate the solvent and dry the 

fibers before depositing them on the collector. Using multiple nozzles and a single 

polymer solution, the current invention aims to simultaneously spin multiple fibers 

toward a collector. Subsequently, in 1940, updated method to fabricate the composite 

fibers webs by using multiple polymer solution direct electrospun onto a moving 

collector was then patented (Of & Sm, 1940). 

 Taylor published his work entitled Electrically Driven Jets in 1969 (Taylor, 

1969). This published work is related to the shape of the polymer droplets that appear 

at the needle tip when an electric field is applied. In this study, Taylor found that 

when electrostatic forces balance the surface tension, the droplet at the tip needle 

becomes a cone shape, and the fiber jet emerges from the cone’s vertices. Other 

researchers have named this conical shape of the jet as "Taylor cone". A 49.3-degree 

angle relative to the axis of the cone is required to balance surface tension and 

electrostatic forces, according to Taylor's research. 

 In 1971, Baumgarten began to examine the structural qualities of electrospun 

fibers by altering the process parameters and solution parameters, such as solution 

concentration, applied voltage, solution flow rate, etc. (Baumgarten, 1971). For the 

associated work, Baumgarten employed PAN/PDF as the solvent and observed that 

solution viscosity directly affected the diameter of polymer fibers. With a higher 

viscosity, the diameter of the fibers will increase.  At the same time, he 

sdemonstrated that the fiber diameter decreased initially with increasing applied 

electric field until it reached a minimum value. Then the fiber diameter increases as 

the applied field are increased further. Baumgarten successfully produced 

electrospun acrylic fibers with diameters between 500 and 1100 nm by varying the 

solution and processing parameters. 

 Research into electrospinning of polymer melts began following 

Baumgarten's initial breakthrough.  Electrospinning polyethylene and polypropylene 

melt fibers by Larrondo and Mandley has proven a success (Larrondo & Manley, 

1981a; Larrondo & Manley, 1981b). Fibers electrospun from the melt had bigger 
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diameters than fibers electrospun from the solution, according to the researchers who 

conducted the study. At the same time, they have demonstrated that the diameter of 

the fibers decreases with increasing melt temperature. During the same period, 

several researchers began to investigate the potential applications of electrospun fiber 

mats, especially in tissue engineering. In 1978, Annis and Bornat published their 

work examining electrospun polyurethane mats for us as vascular prostheses (Annis 

and Bornat, 1978). In 1985, Fisher and Annis investigated electrospun arterial 

prostheses' long-term in vivo performance (Fisher et al., 1985). Various applications, 

such as medication delivery, tissue engineering, filtration, and textiles, have drawn 

attention to electrospinning technology since the 1980s. 

 

 

2.2 Electrospinning Setup and Process 

 

 

A typical electrospinning system consists of three major components, which are  a 

high voltage power supply, a syringe pump with a syringe mounted with a metal 

needle and a metal collector. All the components were fixed into a casing to set up an 

electrospinning system.  Figure 2.1 shows a schematic diagram of the electrospinning 

system setup. 

 

 

Figure 2.1: Schematic diagram of the basic setup for electrospinning 
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