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ABSTRACT 

The Autonomous Underwater Vehicle (AUV) demonstrates highly nonlinear and 

complexity in dynamic model coupled with unstructured ocean environment. With 

limitation of actuator constraints, the only solution for AUV to overcome this 

challenge is by manipulating the control algorithms. Naturally, Discrete-Time Sliding 

Mode Control (DSMC) is an appropriate controller for nonlinear systems due to its 

insensitivity to perturbations. However, the implementation of DSMC on AUV system 

contribute to chattering effect, which leads to low control accuracy and decreased 

lifetime of the actuator. For this reason, the reaching law scheme is employed to 

DSMC law. As a result, the reaching time of state trajectory to sliding surface is 

prolonged, hence, the robustness of the controller against perturbations is debilitated. 

Therefore, the Discrete-Time Fast Terminal Sliding Mode Control (DFTSMC) with 

reaching law schemes is proposed to overcome this issue. DFTSMC is a hybrid form 

of Discrete-Time Terminal Sliding Mode Control (DTSMC) and DSMC. The 

combination of nonlinear component from DTSMC and liner component by DSMC 

guarantee fast and finite error state convergence. While the chattering effect 

significantly reduced by nonlinear component from DTSMC. A comprehensive 

simulation showed that DFTSMC is capable of shortening the error state convergence 

of 65%, the reaching time by 32%, and reducing the chattering effect by 68%, in 

comparison with DSMC. In other words, DFTSMC offers fast and finite transient 

response, alleviates chattering effect, and guarantees strong robustness against 

perturbations in comparison with DTSMC and DSMC. Furthermore, DFTSMC also 

provides better system response when compared with discrete Proportional Integral 

Derivative (PID) and Model Predictive Controller (MPC). This indicates that 

DFTSMC is capable of providing better performance, compared with DTSMC, 

DSMC, discrete PID and MPC. Therefore, DFTSMC may emerge as one of the 

preferable controller methods towards improving real AUV system performance. 
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ABSTRAK 

Kenderaan berautonomi bawah air (AUV) menunjukkan ketidaklurusan yang tinggi 

dan kerumitan model dinamiknya berserta dengan persekitaran bawah air yang tidak 

terkawal. Disebabkan keterbatasan system penggerak, pilihan yang di miliki olah AUV 

dalam mengatasi rintangan adalah dengan menggunakan strategi algoritma kawalan. 

Kawalan Ragam Lincir Diskrit (DSMC) adalah pendekatan yang bersesuaian untuk 

mengawal ketidakpastian sistem yang tidak lurus di sebabkan oleh ketidakpekaan 

terhadap perubahan parameter dan gangguan luaran. Walaubagaimanapun, 

perlaksanaan DSMC keatas sistem AUV menghasilkan masalah penggelatukkan yang 

menurunkan prestasi kawalan and memendekkan jangka hayat penggerak. Oleh itu, 

hukum jangkauan baharu di formulasi dengan DSMC. Akibatnya, kesan 

penggelatukkan berkurang tetapi masa jangkauan di panjangkan lalu menurunkan 

tahap ketahanan terhadap perubahan parameter dan gangguan luaran. Oleh itu, 

Landasan Pantas Kawalan Ragam Lincir Diskrit (DFTSMC) bersama dengan hukum 

jangkauan baharu di gunakan untuk mengatasi masalah ini. DFTSMC adalah 

gabungan antara DTSMC dan DSMC. Gabungan komponen bukan linear dari DTSMC 

dan komponen linear oleh DSMC memendekkan masa penumpuan ralat dan masa 

capaian. Kesan penggelatukkan pula dapat di kurangkan dengan ketara oleh komponen 

tidak linear dari DTSMC. Hasil simulasi menunjukkan DFTSMC memendekkan masa 

penumpuan ralat sebanyak 65%, memendekkan masa capaian sebanyak 32%, dan 

mengurangkan penggelatukkan sebanyak 68% di bandingkan dengan DSMC. Ini 

bermaksud DFTSMC mempercepatkan masa penumpuan ralat dan capaian, 

mengurangkan penggelatukkan pada kawalan masuk dan menjamin ketahanan yang 

kuat terhadap gangguan. Malahan, DFTSMC juga memberikan tindak balas sistem 

yang lebih baik berbanding dengan DSMC, DTSMC, diskrit Proporsional Integral 

Derivative (PID) dan Kawalan Ramalan Model (MPC). Ini menunjukkan bahawa 

DFTSMC mampu memberikan prestasi yang baik, di bandingkan dengan DTSMC, 

DSMC, diskrit PID dan MPC. Oleh itu, DFTSMC boleh dijadikan pengawal yang 

lebih baik untuk meningkatkan prestasi sistem AUV sebenar.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Most of the earth's surface is covered with water in the form of oceans, rivers, and 

lakes, and many of which remain unexplored. Other than their traditional significance 

of being the sources of precious minerals, food, biodiversity, and being directly or 

indirectly beneficial to mankind, the ecological, economic, and social importance of 

water bodies are now better understood. The increasing investigation on ocean 

exploration requires Unmanned Underwater Vehicle (UUV) has reached an impressive 

technological momentum over the past decades by merging areas such as electrical, 

mechanical and system engineering. The UUV can be classified into two categories, 

namely, Autonomous Underwater Vehicles (AUV) and Remotely Operated 

Underwater Vehicles (ROV). The AUV is further divided into underwater glider, 

propelled AUV and Biomimetic AUV. The classification of UUV is summarized in 

Figure 1.1. 

 

 
Figure 1.1: The classification of UUV [1] 
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 Over the years, the increasing demand of deep water exploration with higher 

safety risk have steadily increased from ROV to AUV [2]. Transitioning from ROV to 

AUV pushed new developments in localization, autonomy, and communications. 

AUV navigates autonomously relaying on its navigation algorithm and surrounding 

information. AUV have predefined plan of operations in its system allowing AUV to 

perform autonomously. Due to versatility, compact size, independence, and 

covertness, AUV are highly valuable asset in various industries especially in 

commercial sectors.  A chart showing the AUV global demand on commercial sectors 

starting from 2013 and forecasted for 2022 is presented in Figure 1.2. The pipeline 

inspection and life of field inspection are expected to witness a higher growth demand 

over the forecast.  

 

 
Figure 1.2: Global AUV demand by commercial sector from 2013 and forecasted to 

2022 [3] 
The past decade has witnessed sustained research activities in achieving high 

degree of autonomous decision making. However, demanding ocean environments 

bring many challenges to its autonomy, energy consumption, sensors, and 

communication. Regardless of the types of control scenarios such as set point 

regulation, trajectory tracking and path following, the main challenges are highly 

nonlinear dynamics accompanied with parametric uncertainties [4,5]. Furthermore, 

with limited state variables and actuator, the only option for AUV to overcome these 

challenges is by manipulating the control algorithms [6,7]. In this research, robust and 
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