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ABSTRACT 

In Malaysia, various types of batteries have evolved, as the energy revolution from 

internal combustion engines to electric motors continues to progress due to increased 

environmental awareness. The lead-acid battery is one of the preferred choices to run 

the electric motor for industrial applications, such as electric forklifts and golf carts. 

However, the problem with lead-acid batteries is that their performance degrades over 

time, as the internal resistance of the battery increases due to the presence of lead 

sulphates (PbSO4) . Low-capacity batteries are recycled through the pyrometallurgical 

method contributing to carbon emissions (kgCO2e). As an alternative, regeneration 

technology has been introduced to revive low-capacity batteries using high-current 

pulses of up to 450 A to dissolve lead sulphates on the plates. The results from the 

experimental work that has been conducted, this technology can enhance battery 

capacity up to 96% and can also improve battery longevity. Using the life-cycle 

assessment (LCA) method, this study evaluated the carbon footprints (kgCO2e) of 

recycling and reviving lead-acid batteries. The carbon footprints (kgCO2e) were 

evaluated gate-to-gate with a functional unit of 1,315 kg lead-acid batteries. The 

findings from SimaPro simulator software show that recycling a lead-acid battery 

generated 131% more carbon footprints (kgCO2e) than from reviving it. Besides that, 

the process and environmental costs of both methods were compared using the 

environmental life-cycle costing (E-LCC) approach. The comparative results from the 

SimaPro simulator software show that reviving lead-acid batteries was 79% more 

economical than recycling them. Lastly, in response to environmental awareness, this 

study proposed a policy framework for lead-acid battery distribution and waste 

management to assist in handling the batteries.  
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ABSTRAK 

Di Malaysia, pelbagai jenis bateri telah berkembang, kerana revolusi tenaga daripada 

enjin pembakaran dalaman kepada motor elektrik terus berkembang berikutan 

peningkatan kesedaran alam sekitar. Bateri asid plumbum ialah salah satu pilihan 

untuk menjalankan motor elektrik untuk aplikasi industri, seperti forklif elektrik dan 

kereta golf. Walau bagaimanapun, masalah dengan bateri asid plumbum ialah 

prestasinya merosot dari semasa ke semasa, kerana rintangan dalaman bateri 

meningkat disebabkan oleh kehadiran sulfat plumbum (PbSO4) . Bateri berkapasiti 

rendah dikitar semula melalui kaedah pyrometallurgical yang menyumbang kepada 

pelepasan karbon (kgCO2e). Sebagai alternatif, teknologi penjanaan semula telah 

diperkenalkan untuk menghidupkan semula bateri berkapasiti rendah menggunakan 

denyutan arus tinggi sehingga 450 A untuk melarutkan sulfat plumbum pada plat. 

Hasil daripada kerja-kerja eksperimen yang telah dijalankan, teknologi ini dapat 

meningkatkan kapasiti bateri sehingga 96% dan juga dapat meningkatkan jangka hayat 

bateri. Menggunakan kaedah penilaian kitaran hayat (LCA), kajian ini menilai jejak 

karbon (kgCO2e) kitar semula dan menghidupkan semula bateri asid plumbum. Jejak 

kaki karbon (kgCO2e) dinilai dari pintu ke pintu dengan unit berfungsi 1,315 kg bateri 

asid plumbum. Penemuan daripada perisian simulator SimaPro menunjukkan bahawa 

mengitar semula bateri asid plumbum menjana 131% lebih banyak jejak karbon 

(kgCO2e) berbanding daripada menghidupkannya semula. Selain itu, proses dan kos 

persekitaran kedua-dua kaedah telah dibandingkan menggunakan pendekatan 

pengekosan kitaran hayat alam sekitar (E-LCC). Hasil perbandingan daripada perisian 

simulator SimaPro menunjukkan bahawa menghidupkan semula bateri asid plumbum 

adalah 79% lebih menjimatkan daripada mengitar semulanya. Akhir sekali, sebagai 

tindak balas kepada kesedaran alam sekitar, kajian ini mencadangkan rangka kerja 

dasar untuk pengedaran bateri asid plumbum dan pengurusan sisa untuk membantu 

dalam mengendalikan bateri asid plumbum.
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1 CHAPTER 1 

INTRODUCTION 

1.1 Background of study  

The global community has recently become concerned about an increase in carbon 

dioxide (CO2) and other greenhouse effects on the climate. Human-caused greenhouse 

gas emissions, primarily from the combustion of fossil fuels for electricity generation, 

have increased the greenhouse effect and contributed to global warming [1]. Six 

greenhouse gases (GHGs) are involved in heat traps in the atmosphere, according to 

the Kyoto Protocol, which are carbon dioxide (CO2), methane (CH4), nitrous oxide 

(N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur 

hexafluoride (SF6) [2]. Carbon footprints (kgCO2e) is calculated by taking into account 

all GHG emissions throughout a product’s life cycle and is expressed in CO2 

equivalent. The report from the International Energy Agency (2019) stated that the 

Association of South-East Asian Nations (ASEAN) contributed 5% of the total global 

carbon emissions (kgCO2e), with Malaysia ranking fourth (236.6 MtCO2e) in the 

ASEAN region, as shown in Figure 1.1. 
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Figure 1.1: Total carbon footprints (kgCO2e) of ASEAN countries [3] 

  

The worldwide demand for energy storage devices is growing with various 

types of rechargeable batteries appearing in the market. The important characteristics 

of a rechargeable battery are that its charging and discharging, transform electric 

energy into chemical energy and back again into electric energy. The lead-acid battery 

is one of the first rechargeable batteries built for various applications in different 

industrial and non-industrial areas [4][5]. Generally, the lead-acid battery is composed 

of lead metal (Pb) as the negative plate and lead oxide (PbO2) as the positive plate, 

both of which are immersed in an electrolyte of sulphuric acid (H2SO4) and water 

(H2O) solution [6]. The primary raw materials in these batteries are lead metal, 

polypropylene polymer and sulphuric acid. Lead accounts for 60% of the total mass of 

a battery. Lead-acid batteries are widely used as a chemical power source around the 

world because of their stable voltage, safety, reliability, low cost, broad application 

range and high recycling rate [7].  

           However, the global expansion of the lead-acid battery industry has been linked 

to environmental and public health issues, particularly the emission of lead, which is 

classified as one of the top-heavy metal pollutants [7]. One of the major disadvantages 

of lead-acid batteries is the gradual loss of capacity caused by the build-up of lead 

sulphates on the plates, which increases the internal resistance of the battery [8][9]. 

When the batteries lose their effectiveness, they are classified as used lead-acid 
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batteries, also known as hazardous waste [10]. Some of the materials in the used lead-

acid batteries, are either being recycled to make a new battery or will be disposed. If 

lead-acid batteries are not disposed of properly, they will cause severe environmental 

pollution [11][12]. The greenhouse gases emitted during the recycling process 

contribute to global warming. 

 Numerous studies have been conducted over the years to improve the 

performance of lead-acid batteries, with the goal of increasing their life cycle and 

decreasing the number of batteries recycled. One alternative is the regeneration 

technology of applying high-current pulses with constant voltage to restore the 

capacity of lead-acid batteries [13]. The high-current pulses generate instantaneous 

heat to force electrons to move and a chemical reaction to occur. As a result, the lead 

sulphate attached to the plates break down and revert to the active electrolyte. The 

result is the plates' area being free of lead sulphates, and the battery capacity is restored 

and becomes sustainable.  

 The life-cycle assessment (LCA) approach is a benchmarking tool for assessing 

the environmental impact of products, processes, and services throughout their life 

cycle, from raw material collection to manufacturing, transportation, use, and disposal 

(cradle-to-grave) [14]. LCA is used to determine the environmental impact of the lead-

acid battery manufacturing process over its entire life cycle, as well as the key factors 

driving the environmental impact. The application of LCA in the lead-acid battery 

industry can help to reduce pollution in the battery industry. 

This research studied the effect of internal resistance on battery performance 

by studying the charging and discharging characteristics of lead-acid batteries with 

varying internal resistance conditions. The lead-acid battery block in 

MATLAB/Simulink was used in the simulations, and the internal resistance values 

were based on actual data from the industry. This research presents the concept and 

process of regeneration technology using high-power pulses (Vconstant, Ipulse) as the 

alternative to revive lead-acid batteries. The performances of the batteries before and 

after the application of regeneration technology would be shown. Besides that, this 

study dealt with the environmental impacts of recycling and reviving lead-acid 

batteries using the pyrometallurgy and regeneration methods, respectively. LCA is 

used to identify the carbon footprints (kgCO2e) for both methods. This study also 

evaluated the process and environmental costs of reviving and recycling lead-acid 

batteries using the E-LCC method. E-LCC was developed in order to be compatible 
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with LCA and it evaluates costs incurred throughout a product’s life cycle. Finally, 

this report also proposed a policy framework for waste battery management to assist 

in handling lead-acid battery disposal. 

1.2 Problem statement 

The concerning state of fossil depletion, combined with the growing awareness of 

deteriorating climatic conditions, has recently prompted the development of 

alternative energy technologies. The lead-acid battery technology is one of the most 

widely used and cost-effective electrochemical technologies, with a much more 

comprehensive range of applications [15]. However, the primary concern of lead-acid 

batteries is the increase in internal resistance caused by lead sulphates that accumulates 

on the batteries’ plates during the discharging process, which contributes to the shorter 

lifespan of the batteries. As the charging and discharging process continues, the lead 

sulphates become thicker and cover the conductive area of the plates, resulting in 

capacity loss [9]. It is estimated that the majority of lead-acid batteries discarded each 

year suffer from lead plates clogged with lead sulphates. As millions of tonnes of spent 

batteries are discarded each year over the last two decades, battery recycling has 

become significant and imperative [16]. Recycling lead-acid batteries emits a 

significant amount of GHGs, which have impacts on both the environment and human 

health. Furthermore, low-capacity lead-acid batteries have an economic impact 

because there will be costs incurred for battery reproduction and remanufacturing. 

Therefore, the formation of lead sulphates, which increases lead-acid batteries’ 

internal resistance, was analysed in this research. The characteristics of charging and 

discharging the lead-acid batteries at various internal resistance values were 

investigated. In addition, the reviving of lead-acid batteries using high-power pulses 

(Vconstant, Ipulse) would be analysed as one of the selective methods to break lead 

sulphates on the plates, thus prolonging the lifespan of the batteries. This study also 

employed LCA to compare the environmental impact in terms of carbon footprints 

(kgCO2e) between conventional recycling and the process of reviving lead-acid 

batteries using regeneration technology. Finally, the process and environmental costs 

of recycling and reviving using regeneration technology was assessed using the E-

LCC method.  
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1.3 Hypothesis 

In this study, the recycling and reviving of lead-acid batteries were analysed and 

compared. If the application of regeneration technology with high-power pulses 

(Vconstant, Ipulse) can decrease the number of recycled lead-acid batteries, then it can 

reduce the carbon footprints (kgCO2e) that impacts the environment. 

1.4  Aim 

This study aimed to analyse the condition of lead-acid batteries after implementing the 

regeneration method using high-power pulses (Vconstant, Ipulse). Moreover, the goals of 

this study were also to evaluate the environmental and economic impacts of recycling 

and reviving 1,315 kg lead-acid batteries using LCA and E-LCC approaches. Lastly, 

a policy framework would be proposed for managing lead-acid batteries, with the aim 

of reducing the number of disposed lead-acid batteries. 

1.5 Objectives 

This research work embarked on the following objectives: 

 

I. To observe and evaluate lead-acid batteries’ condition based on significant 

parameters before and after the reviving process through regeneration 

technology.  

 

II. To assess the carbon footprints (kgCO2e) from the processes of recycling and 

reviving lead-acid batteries through pyrometallurgy and regeneration, 

respectively, using the LCA approach. 

 

III. To evaluate the process and environmental costs of recycling and reviving 

lead-acid batteries using the E-LCC method.  
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1.6 Scope of study 

The scopes of the research are as follows: 

 

I. Analysing the performance of lead-acid battery during charging and 

discharging based on the following parameters and conditions: 

i. The battery was limited to 48 V/775 Ah lead-acid battery. 

ii. Internal resistance values for the simulations were referred from 

industry data (Renewcell (M) Sdn Bhd), which were 0.0011 Ω, 0.0049 

Ω and 0.0153 Ω. 

iii. The simulations used the MATLAB/Simulink simulator software. 

iv. The charging of the lead-acid battery used the constant current – 

constant voltage (CC-CV) method. 

v. The discharging of the lead-acid battery used controlled voltage source 

as constant load. 

vi. The focus was on evaluating the values of the state of charge (SOC), 

voltage, current, charging power and power capacity of the batteries. 

 

II. Analysing the performance of lead-acid batteries before and after the reviving 

process based on the following parameters and conditions: 

i. The charging process used the RNC 48100 battery charger. 

ii. The discharging process, also known as the capacity test, used the RCL 

4830 battery discharger. 

iii. For measuring specific gravity (SG) the ISBA-5218-A battery analyser 

refractometer was used. 

iv. The regeneration process used MacBatec Midi Regenerator. 

v. The focus was on evaluating the values of voltage, capacity, discharge 

time and SG of the batteries. 
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