FABRICATION AND CHARACTERIZATION OF NANOSTRUCTURED FLUORINE DOPED TIN OXIDE THIN FILM FOR DSSC BY HYDROTHERMAL METHOD

MUHAMMAD LUQMAN BIN MOHD NAPI

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master in Electrical Engineering

> Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

> > January 2017

To my beloved parents

PERPUSTAKAAN TUNKU TUN AMINAH

ACKNOWLEDGEMENTS

iv

My most humble and sincere thanks to my supervisor Dr Mohd Khairul Ahmad, Head of Solar Cell laboratory, MiNT-SRC, University Tun Husseein Onn Malaysia for his advice and guidance me entire in this research work.

The entire team at MiNT-SRC with very special thanks especially to Pn Faezahana and Miss Esri Hetti for their efforts and energy, all my samples experiment were able to be characterized on time.

To the incredible labmates, I would like to thank Pn Sakinah, Pn Kamalia, Asyikin Syasya, Fatin Izyani, Salina Mokhtar, Liyana and Kim Seng for all their support on me. Last, I'm very gratefull to my family for their patience that always supported me to finish this research.

LIST OF PUBLICATIONS

v

- M. L. M. Napi, N. Nayan, M. K. Ahmad, F. I. M. Fazlee, N. K. A. Hamed, & N. S. Khalid, "Fabrication of Flourine Doped Tin Oxide With Different Volume Of Solvents On FTO Seed Layer by Hydrothermal Method", Sains Malaysiana, vol. 45, no. 8, pp. 1207-1211 (2016).
- F. I. M Fazli, N. Nayan, M. K. Ahmad, M. L. M. Napi, N. K. A. Hamed & N.
 S. Khalid, "Effect of Annealing Temperature on TiO₂ Thin Films prepared by Spray Pyrolysis Deposition Method", Sains Malaysiana, vol. 45, no. 8, pp.1197-1200 (2016).
- N. K. A. Hamed, N. Nayan, M. K. Ahmad, N. S. Khalid, F. I. M. Fazli, & M.
 L. M. Napi, "Influence of Hydrochloric Acid Volume on the growth of Titanium Dioxide (TiO₂) Nanostructures by Hydrothermal Method", Sains Malaysiana. (in review)
- N. S. Khalid, N. Nayan, M. K. Ahmad. C. F. Soon, M. L. M. Napi, N. K. A.
 Hamed, & F. I. M. Fazli, "Biocompatibility of TiO₂ Nanorods and Nanoparticles on HeLa cells", Sains Malaysiana. (in review)
- 5 M. K. Ahmad, M. L. M. Napi, N. F. Izyani, C. F. Soon, N. Nafarizal, A. B. Suriani, A. Mohamed, M. H. Mamat, M. F. Malek, M. Shimomura, & K. Murakami, "A Facile Method for Synthesis of Nanorice Fluorine Doped Tin Oxide for use in Dye-Sensitized Solar Cells", Materials Letters. (in review)
- M. L. M. Napi, M. F. Maarof, C. F. Soon, N. Nayan, F. I. M. Fazli, N. K. A. Hamed, S. M. Mokhtar, N, K, Seng, M. K. Ahmad, A. B. Suriani, & A. Mohamed, "Fabrication of Fluorine Doped Tin Oxide (FTO) Thin Films Using Spray Pyrolysis Deposition Method For Transparent Conducting Oxide", ARPN Journal of Engineering and Applied Sciences (JEAS), Vol. 11, no. 14, pp. 8800-8804 (2016).

- F. I. M. Fazli, A. N. Suhaimi, N. S. Khalid, N. K. A. Hamed, M. L. M. Luqman, S. M. Mokhtar, N. K. Seng, N. Zainal, N. Nayan, S. C. Fhong, A. B. Suriani & M. K. Ahamd, "The Effects Of Annealing Temperature On Properties Of Aluminium-Doped Tin Oxide (Al/SnO₂) Thin Films Deposited By Spray Pyrolysis Deposition (SPD) Method", ARPN Journal of Engineering and Applied Sciences (JEAS), vol. 11, no. 14, pp. 8840-8845 (2016).
- 8 S. M. Mokhtar, M. K. Ahmad, N. M. A. N. Ismail, M. S. Mamat, F. I. M. Fazli, N. K. A. Hamed, M. L. M. Napi, N. S. Khalid, N. K. Seng. N. Zainal, S. C. Fhong, N. Nayan, & A. B. Suriani, "Fabrication Of Co/SnO₂ On Glass Substrate Using Spray Pyrolysis Deposition Technique With Variation Of Annealing Temperature", ARPN Journal of Engineering and Applied Sciences (JEAS), vol. 11, no. 14, pp. 8873-8877 (2016).
- 9 M. L. M. Napi, N. K. Seng, & M. K. Ahmad, "Surface Morphology and Electrical Properties of FTO (Fluorine Doped Tin Oxide) with Different Precursor Solution for Transparent Conducting Oxide", Applied Mechanics and Materials, vols. 773-774, pp. 682-685, (2015).

ABSTRACT

Nanostructured Fluorine Doped Tin Oxide (FTO) thin film has been successfully synthesized on top of bare FTO layer substrates using hydrothermal method. The performance of FTO thin film including conductivity and transparency depend on the surface morphology and the properties of the material. Hydrothermal method has proven to be a very good method for the fabrication of novel metal oxides. Thus, a new nanostructured FTO thin film like nanorice has been fabricated using one step hydrothermal method. FTO nanorice thin films were obtained from the reaction of tin (iv) chloride (SnCl₄), ammonium fluoride (NH₄F), acetone, deionized water and hydrochloric acid (HCl). The compound was prepared in an autoclave at 150°C hydrothermal temperature for different reaction times of 5 hours, 10 hours, 15 hours, and 20 hours. FESEM studies on the surface morphologies of all the samples showed that nanorice structure had formed to fully cover the bare FTO substrate. Then, to further the optimization of FTO nanorice thin film, this research focused on studying the effect of hydrothermal temperature on FTO nanorice thin films. The experiments were conducted at 130°C, 140°C, 150°C, 160°C, and 170°C of hydrothermal temperature in constant reaction time of 10 hours. Basically, there were six properties studied; surface morphology, structural, element composition, thickness measurement, electrical and optical properties. At the end of this research, homogeneous FTO thin film has been successfully prepared. By controlling the reaction time and hydrothermal temperature, a transparent FTO film with beyond 85% percentage of transmittance was developed. The FTO thin film produced at 10 hour reaction time and 150°C of hydrothermal temperature time gave the low sheet resistance of 0.012 Ohm/sq with high transparency. The DSSC fabricated using the optimized FTO film gave higher efficiency of 2.77% compared to commercial FTO of 1.93%.

ABSTRAK

Nanostruktur Fluorin Dop Stanum Oksida (FTO) tipisan nipis telah berjaya disintesiskan di atas lapisan FTO substrat yang kosong menggunakan kaedah hidroterma. Bagi prestasi FTO tipisan nipis yang meliputi kekonduksian dan kelutsinaran bergantung pada morfologi permukaan dan juga sifat-sifat bahan tersebut. Kaedah hidroterma telah terbukti menjadi satu kaedah yang sesuai untuk pemfabrikasi logam oksida yang baharu. Demikian itu, satu jenis nanostruktur FTO tipisan nipis seperti nanonasi telah berjaya difabrikasi menggunakan satu peringkat kaedah hidroterma. FTO nanonasi tipisan nipis diperolehi daripada reaksi antara timah (iv) klorida, ammonium fluoride, aseton, air ternyahion, dan asid hidroklorik. Sebatian itu disediakan di dalam autoklaf di suhu hidroterma iaitu 150°C pada tempoh masa tindak balas yang berbeza beza iaitu 5 jam, 10 jam, 15 jam dan 20 jam. Penelitian FESEM menunjukkan bahawa ada perubahan atas permukaan morfologi iaitu struktur nanonasi telah menutupi FTO substrat kosong. Seterusnya, untuk mengoptimumkan lagi FTO nanonasi tipisan nipis, kajian ini telah memfokuskan kepada kesan suhu hidroterma terhadap FTO nanonasi tipisan nipis. Eksperimeneksperimen telah dijalankan pada pelbagai suhu hidroterma iaitu 130°C, 140°C, 150°C, 160°C dan 170°C pada satu tempoh masa tindak balas yang tetap iaitu 10 jam. Secara asasnya, terdapat enam ciri yang diteliti; morfologi permukaan, struktur, komposisi elemen, pengukuran ketebalan, sifat elektrik dan optik. Dipenghujung kajian ini, FTO tipisan nipis yang homogen berjaya disediakan. Dengan mengawal masa reaksi dan suhu hidroterma, FTO yang lutsinar telah dijayakan dengan melebihi 85% transmisinya. FTO tipisan nipis yang menggunakan 10 jam masa reaksi pada 150°C suhu hidroterma mempunyai rintangan keping yang rendah iaitu sebanyak 0.012 Ohm/sq dengan kelutsinaran yang tinggi. DSSC telah difabrikasi menggunakan FTO nanonasi yang optimum ini dan memberikan kecekapan yang tinggi iaitu 2.77% dibandingkan dengan komersial FTO iaitu 1.93%.

TABLE OF CONTENTS

	TIT	LE	i	
	DEC	CLARATION	ii	
	DEI	DICATION	iii	
	ACH	KNOWLEDGEMENT	iv	
	LIST	T OF PUBLICATIONS	V	
	ABS	STRACT	vii	
	ABS	STRAK	viii	viii
	TAE	BLE OF CONTENTS	ix	JAH
	LIST	T OF FIGURES	xii	
	LIS	Г OF TABLES	xv	
	LIS	T OF ABBREVIATION	xvi	
CHAPTER 1	INT	RODUCTION		
2 P	1.6	Introduction	1	
PERF	1.2	Research background	2	
	1.3	Problem statements	4	
	1.4	Objectives	5	
	1.5	Scope	6	
CHAPTER 2	LIT	ERATURE REVIEW		
	2.1	Transparent conducting oxide	7	
	2.2	Fluorine doped tin oxide	10	
		2.2.1 Precursors for FTO films preparation	14	
	2.3	Hydrothermal method	15	
	2.4	Dye-Sensitized Solar Cell	16	

			2.4.1 Titanium dioxide	17
			2.4.2 Dyes	19
			2.4.3 Electrolytes	22
			2.4.4 Counter electrode	23
		2.5	Summary of literature review	24
	CHAPTER 3	ME'	THODOLOGY	
		3.1	Introduction	25
		3.2	FTO fabrication process	27
		3.3	Preparation of DSSC	30
		3.4	Characterization of sample	32
			3.4.1 Field emission scanning electron microscopy (FESEM)	32
			3.4.2 X-ray diffractometer (XRD)	35
			3.4.3 Two point probe method	36
	21		3.4.4 Energy-dispersive spectroscopy (EDX)	37
			3.4.5 UV-VIS spectrophotometer	38
		115	3.4.6 Surface profiler	39
	PERP		3.4.7 Solar simulator	41
	CHAPTER 4	RES	SULTS AND DISCUSSION	
		4.1	Effect of reaction time to the properties of the nanostructured FTO films	42
			4.1.1 Introduction	42
			4.1.2 Surface morphology	43
			4.1.3 Structural analysis	48
			4.1.4 Element composition	49
			4.1.5 Electrical properties	50
			4.1.6 Optical properties	53
			4.1.7 Summary	56

x

7

	4.2	Effect prope	of hydrothermal temperature to the rties of the nanostructured FTO films	57
		4.2.1	Introduction	57
		4.2.2	Surface morphology	57
		4.2.3	Structural analysis	62
		4.2.4	Element composition	63
		4.2.5	Electrical properties	65
		4.2.6	Optical properties	66
		4.2.7	Summary	67
	4.3	Power	conversion efficiency measurement	68
CHAPTER 5	CON	NCLUS	ION AND FUTURE WORK	
	5.1	Concl	usion	72
	5.2	Future	work	73
REFERENCES	5		TUN	74
VITAE			TUNKU	85
PERP	US	TA	KAANIG	

R

xi

LIST OF FIGURES

2.1	The application of TCO	9
2.2	Ball and stick of the structure of SnO ₂	11
2.3	The schematic drawing of the SnO ₂ films at early stage	
	formed by the SPD process	11
2.4	FESEM image of SnO ₂ nanoflower films	13
2.5	The DSSC working components	17
2.6	The structure bonding of rutile and anatase of TiO ₂ thin	
	films	18
27	Molecular structure of various of metal-complexes dye	
	with efficiency	20
2.8	Working mechanism of metal-free organic dye. Do and	MINA
	Acc denote donor and acceptor, respectively.	21
2.9	Classification of electrolyte for DSSC	23
3.1	Flow chart of the methodology	26
3.2	Flow chart of the substrates cleaning	27
3.3	Precursor solution preparation	28
3.4	Schematic diagram of an autoclave and sample prepared	29
3.5	The autoclave containing substrates and precursor	
	solution are put in oven to conduct the hydrothermal	
	process	29
3.6	The process flow of TiO ₂ preparation on FTO nanorice	
	films. (a) Preparation of TiO_2 solution (b) The TiO_2	
	solution were sprayed on nanostructured FTO films (c)	
	The TiO ₂ fabricated on FTO nanorices are annealed at	
	450°C in 1 hour and (d) The sample allowed to cool in	
	room temperature	31
3.7	Picture of Field Emission Scanning Electron Microscope	32
3.8	Illustration of sample stage	33
3.9	(a) Specimen stage control panel, (b) Operation panel	34

3.10	Picture of X-ray diffractometer	35
3.11	Diagram of I-V measurement	36
3.12	EDX working components	37
3.13	Picture of UV-VIS spectrophotometer	38
3.14	Sample compartment of UV-Vis spectrophotometer	39
3.15	The schematic illustration of thickness measurement	
	using surface profiler (put in methodology)	40
3.16	Picture of surface profiler	40
3.17	Picture of Solar Simulator	41
4.1	FESEM images view of FTO films at x100k	
	magnification with different reaction time. (a) bare FTO	
	films, and FTO nanorice films obtained at reaction times	
	of (b) 5 hours, (c) 10 hours, (d) 15 hours and (e) 20 hours.	44
4.2	FESEM image view at x25k magnification of FTO with	
	different reaction time. (a) bare FTO substrate, and FTO	NIAH
	nanorice films obtained at reaction times of (b) 5 hours,	MIL
	(c) 10 hours, (d) 15 hours and (e) 20 hours. (f) Cross-	
	sectional view of FESEM images of FTO nanorice films	
	obtained by hydrothermal method for 10 hours reaction	
	time.	46
4.3	Variation of the thickness of FTO films (mean and SE)	
	deposited at different reaction time.	47
4.4	XRD spectrum of FTO film deposited at (a) 5 hours, (b)	
	10 hours, (c) 15 hours, (d) 20 hours of reaction time	
	respectively and (e) bare FTO substrate	48
4.5	EDX spectrum of FTO films prepared at (a) 5 hours, (b)	
	10 hours, (c)15 hours and (d) 20 hours reaction time	50
4.6	The graph of sheet resistance for experiment conducted at	
	5, 10, 15 and 20 hours of reaction time.	52
4.7	The transmittance spectra of FTO films deposited at (a) 5	
	hours, (b) 10 hours, (c) 15 hours, (d) 20 hours of reaction	
	time respectively and (e) bare FTO substrate.	54

Sh

xiii

	4.8	Schematic diagram of growth mechanism for FTO	
		nanorice films	54
	4.9	FESEM image view at x100k magnification of FTO with	
		different hydrothermal temperature at (a) 130°C, (b)	
		140°C, (c) 150°C, (d) 160°C, and (e) 170°C	59
	4.10	FESEM image view at x25k magnification of FTO with	
		different hydrothermal temperature (a) 130°C, (b) 140°C,	
		(c) 150°C, (d) 160°C, and (e) 170°C.	60
	4.11	Variation of the thickness of FTO films with standard	
		error for the films deposited at different hydrothermal	
		temperature	61
	4.12	XRD spectrum of FTO nanorice films at (a) 130°C (b)	
		140°C (c) 150°C (d) 160°C and (e) 170°C of	
		hydrothermal temperature	62
	4.13	EDX spectrum of FTO nanorice film (a) 130°C (b)	NAH
		140°C (c) 150°C (d) 160°C and (e) 170°C of	MILL
		hydrothermal temperature	64
	4.14	The graph of sheet resistance for experiment conducted at	
		130°C, 140°C, 150°C, 160°C and 170°C of hydrothermal	
		temperature.	66
	4.15	Transmittance curves of the FTO nanorice films prepared	
-)		by varying the hydrothermal temperature (a) 130°C,	
	۲	(b)140°C, (c) 150°C (d)160°C and (e) 170°C.	67
	4.16	FESEM image of TiO_2 nanoparticle (a) top view at 200k	
		magnification (b) cross section view at 5k magnification	68
	4.17	The condition of the samples of FTO nanorice/TiO $_2$	
		before and after immersion in dye for 15 hours.	69
	4.18	I-V characteristics of DSSC using TCO of FTO	
		commercial film and FTO nanorice film	71

xiv

LIST OF TABLES

2.1	History of processes for making transparent conductors	8
2.2	I-V measurement of DSSC based on various type of	
	natural dye	22
4.1	The resistivity and sheet resistance of FTO films prepared	
	on bare FTO substrate from different reaction time	52
4.2	The resistivity and sheet resistance of FTO films prepared	
	from different hydrothermal temperature	65
4.3	Comparision of open-circuit voltage (Voc), short-circuit	
	current density (\mathbf{J}_{SC}) , Fill Factor and efficiency between	
	commercial FTO films and FTO nanorice film prepared	71

LIST OF ABBREVIATION

- Α Cross sectional area _
- Efficiency η -
- Ι Current -
- k Kilo -
- L Length _
- Resistivity ρ _
- Resistance R
- Sheet resistance R_S _
- Thickness t -
- V_ Voltage
- Dye sensitized solar cells DSSC -
- Flourine doped tin oxide FTO -
- hydrochloric acid HCl -
- SnCl₄ -Tin (iv) chloride
- TUNKU TUN AMINAH Transpacerent conducting oxide TCO -
- TiO_2 Titanium dioxide _
- UTHM- R Universiti Tun Hussein Onn Malaysia
- ZnO -Zinc Oxide

CHAPTER 1

INTRODUCTION

1.1 Introduction

The electrical energy generated from fossil fuels has become the major factor in the development of civilization from day to day. The generated energy produced by every country would affect the level of industrial and agricultural growth. Thus, sustainable economy in one country depends on the energy that has been conserved constantly. The high supplied of fossil fuels would contribute to the economic wealth and the materials standards of a nation. However, the widely usage of fossil fuels also would lead to the environmental and ecology changes [1]. As the increasing energy demand, the environmental friendly alternatives, renewable and non-conventional sources are being searched by many countries [2].

One of the potential sources of renewable energy is solar energy. Solar energy is an effective energy and become an important source of energy because this is the one of the energies that could be used after depletion of another source such as fossil fuels. As solar cells have high commercialization, the variety of technologies which used solar cells have been improved in the research of solar energy.

Solar cell is a photovoltaic device which is basically used to convert solar radiation to electricity based on photosynthesis concept of sunlight. The solar cell is very useful because of its ability to generate the electricity which have been thoroughly discussed in several recent reports [3, 4]. One of the solar cell types is Dye-Sensitized Solar Cell (DSSC) which comprises of five components. They are transparent conducting oxide, semiconductor film, sensitizer adsorber onto the surface of semiconductor, electrolyte and counter electrode [5].

Basically, there are three categories of solar cell. First and foremost is the silicon based solar cell. This type of solar cell is the most popular but expensive due to the high manufacturing cost and limited availability of silicon make to find

alternative material of solar cell. The second generation of solar cell is called thin film solar cells, which is cheaper than the first generation. However the power conversion efficiency of second solar cell is still low. The DSSC is the third generation of solar technology. It provides effective charge separation that allows electricity to be generated even though in low light condition. The first DSSC was invented at 1991 based on artificial photosynthesis system to generate electricity [6]. Currently, DSSC is still in research phase to enhance its efficiency. The average efficiency of this new type of solar cell is 15% [5, 7]. Overall DSSC is considered as a low cost, simple and a promising technique to provide high performance of electrical generation. Furthermore, the cost of manufacturing of this DSSC is much lower compared to the first and second generations solar cell.

1.2 Research Background

Tin oxide (SnO₂) is a n-type semiconductor with band-gap energy of 3.6eV. A thin films of SnO₂ is transparent in the visible region and reflecting in the high infrared region [8]. The conductivity of the material is mainly attributed due to the oxygen vacancies in the lattice whose structure is tetragonal and similar to the rutile structure [9]. Conductivity of SnO_2 can further be increased by doping it with element group III, V, VI and VII of the periodic table; some of which are Ti, Sb, Te and F. Among these elements, the most widely used dopant is flourine because of the fact that the resultant flourine doped tin oxide (FTO) film is highly stable chemically and thermally [10, 11]. FTO thin film has been used mainly for electronics devices. The performance of FTO films can be increased with highly crystalline and larger surface area [5]. According to above concept, FTO film with one-dimensional nanoparticle size could give high surface areas for better electron mobility and less electron recombination. It is known in the realm of nanoscience and nanotechnology that nanorods, nanowires and nanotubes have special roles because of their dimensionality. When the diameter of the nanorods, nanowires and nanotubes become small, the physical and chemical properties of the one-dimensional nanostructure are clearly different from those of crystalline solids or even twodimensional system.

FTO thin films is widely used in various fields of device making technologies such as window layers in solar cells [12], gas sensor devices [13], substrates for electrodeposition [14] and transparent contact in optoelectronics. One of the solar cell type that used FTO thin films as TCO is the Dye-Sensitized Solar Cell (DSSC). FTO film has been used to collect electrons from the sensitized dye. Enhancement in surface area of FTO film will improve the electron collection of DSSC and the efficiency of DSSC is also improved [5].

The application of FTO in various field of the technology is due to its chemical and thermal stability along with the high optical transparency in the visible range and high electrical conductivity [5]. FTO has been prepared by various methods including chemical vapor deposition (CVD) [15], hydrothermal method [16], pulsed laser deposition [17], rf sputtering, sol-gel and spray pyrolysis deposition (SPD) [18]. Spray pyrolysis is widely used to prepare FTO films, owing to its simplicity, low cost experimental apparatus set up, ready incorporatability of various dopants, high growth rate and high mass production capability for large area coatings [19]. Spray pyrolysis is a process in which a thin film of a required material is deposited on to a hot surface by spraying a precursor solution on to it. However the hydrothermal method posseses the great advantages for nanomaterials fabricating such as the production of particles that are monodispersed that affect over their morphology and grain size in addition to their chemical homogeneity with the highest dispersibility [16]. The hydrothermal technique not only helps in processing monodispersed and highly homogeneous nanoparticles, but also act as one of the most attractive techniques for processing nano-hybrid and nanocomposite materials.

temperature as low as 150°C were grew [24, 25]. It was believed that nanostructure FTO could be grown using this method with additional processes. In this study, one step process of hydrothermal method has been applied to grow nanostructured of FTO thin film on the bare FTO substrates. In the one step process, precursors were used to provide enough energy for the nanostructured FTO thin film grow

1.3 Problem Statements

There are still a lot of efforts needed to be done in enhancing the efficiency of DSSC. Many researchers focused on the particular components of DSSC to enhance the performance of the solar cell. One of the crucial DSSC components is transparent conducting oxide (TCO) which is the first layer exposed to the sunlight. Since TCO is a current collector, the fabrication of this material requires a substrate as a base material for depositing a semiconductor and catalyst onto it.

TCO layer should be in high transparency and good conductivity to achieve high efficiency of DSSC. Thus, Flourine-doped Tin Oxide (FTO) is found as one of the attractive materials that is compatible to be applied as TCO layer which contributes in enhancing the DSSC efficiency. The performance of FTO depends on the nanostructure and properties of the material. There are a lot of type of nanostructures such as nanoparticle [26], nanorod [27], nanoflower [23], nanowire [28] and nanocactus [29]. The fabrication of those nanostructures are dependent on the precursor material and thermodynamics of synthesis method [30]. The hydrothermal method is one of the promising low cost methods to fabricate various nanostructures. This method leads to the production of highly monodispersed nanoparticles with controllable size and morphology. It also has high potential to produce a new nanostructure of thin film [16].

Recently, the fabrication of SnO_2 films was performed by Ming et al. [31] by using SnO_2 as seed layer on FTO substrate. In this report the double layer of novel nanostructures had been successfully fabricated by using hydrothermal method in which the first layer was SnO_2 nanosheet films with 1 µm of thickness and second layer was SnO_2 hierarchical microspheres attached on nanosheets. The first synthesis of double layer SnO_2 film without SnO_2 seed layer was performed by Wang et al. [23] using direct growth from FTO substrates. This work was able to produce double

layer of SnO_2 nanoflower on SnO_2 nanosheets films. This formation was synthesized by using $SnCl_2$, NaF, and water as precursor solutions which applied as TCO in solar cell. Overall of the problem related are:

- a) The low efficiency of DSSC is caused by the low performance of FTO thin films.
- b) Nanostructures commercial FTO thin films have low light scattering effect. The high scattering effect could enhance the possibility of light to interact with dye.
- c) The commercial FTO thin films have low electrical conductivity. Therefore, the effectiveness of FTO thin films can be ensured by producing good electrical conductivity with high transparency.

Thus, this work is focused on producing a new nanostructure of FTO films by using hydrothermal method without the seed layer. This fabrication leads to the performance of FTO films which comprise of two proposed nanostructures. First, the new nanostructures with high surface area and a high transparency material above 85% that allows more sunlight absorption and good in conductivity. Second, the deposited spherical nanostructures of thin films on the large surface area of nanostructures. The bilayered thin film consists of FTO films with high surface area as bottom layer is able to increase the dye loading capacity and boost the current collector [31]. Another spherical FTO nanostructure film as top layer to enhance the light scattering ability [32].

1.4 Objectives

The aim of the research is to prepare the nanostructured FTO films which have high surface area and low sheet resistance by using hydrothermal process. To achieve this goal, the following specific objectives are to be obtained

(a) To optimize the reaction times and temperatures of the hydrothermal method for the growth of FTO films.

- (b) To investigate the surface morphology, structural, optical and electrical properties of the growth of FTO films.
- (c) To apply FTO nanostructures in DSSC and measure the power conversion efficiency of DSSC using nanostructured FTO films.

1.5 Scopes

The scope of the research focuses on the preparation of nanostructured fluorine doped tin oxide thin film using hydrothermal process. The preparation of the FTO thin film is optimized by performing three-time repetitive procedures for different parameters of the deposition methods which are reaction time and hydrothermal temperature. The surface area and the electrical properties of the thin films are examined based on the morphology, structural, optical, and electrical properties. Various properties of the thin films are characterized by using Field Emission Scanning Electron Microscopy (FESEM) for studying the surface morphology, X-ray diffraction (XRD) for examing the structural analysis, Energy-Dispersive X-Ray Spectroscopy (EDX) for recording the element composition, UV-VIS Spectrophotometer for measuring the transmittance percentage of thin film, surface profiler for thickness measurement of thin film and two-point probe methods for identifying the resistance, resistivity and sheet resistance of thin films. The best fabricated FTO films using optimized parameters are assembled in DSSC compared with commercial FTO in term of efficiency. The efficiency of DSSC is examined by the solar simulator.

CHAPTER 2

LITERATURE REVIEW

2.1 Transparent Conducting Oxide

TCO is an important component in the DSSC that is exposed to the sunlight radiation for energy absorbance processes. It comprised of current collecting properties that were used to maximize the flow of current and reduced the resistivity of DSSC [33]. In DSSC, the TCO was used as the current collector component which required high transparency as more than 80% for allowing the maximum sunlight radiated on active area of the cell. The high electrical conductivity of the substrates also contributed to increase efficiency of the charge transfer and reducing energy loss [34]. Thus, the effectiveness of TCO could be ensured by producing high electrical conductivity with high transparency.

The growth of the thin film could occur via three stages which were formation of nuclei, crystal growth with preferred orientations, and further normal crystal growth to the surface of the substrate [35]. There are several processes that had been used in fabricating the transparent conducting oxide and also their disadvantages. Firstly is spray pyrolysis deposition which is the easily to handle but it is only possible to fabricate the one type of morphology which is nanoparticle [36], meanwhile RF sputtering also only can fabricated small grain size that leads to increase the resistivity [37]. Another method is chemical vapour deposition (CVD) which has low deposition rate and the sample is easy to prone to the radiation damage and vacuum chamber impurities [38, 39]. Next is sol gel method. This method is very sensitive towards solvents and need to serve carefully to avoid from sample cracking [40]. For inkjet printing, this technique is only able to produce inhomogeneous films [41]. All the deposition techniques were summarized in Table 2.1.

Materials and Process	Reference	
Ag by chemical-bath deposition	Unknown Venetian	
SnO ₂ :Sb by spray pyrolysis	J.M. Mochel, 1947	
SnO ₂ :Cl by spray pyrolysis	H.A. McMaster 1947	
SnO ₂ :F by spray pyrolysis	W.O.Lytle and A.E. Junge 1951	
In ₂ O ₃ :Sn by spray pyrolysis	J.M. Mochel, 1951	
In ₂ O ₃ :Sn by sputtering	L.Holland and G.Siddall, 1955	
SnO ₂ :Sb by CVD	H.F. Dates and J.K. Davis, 1967	
Cd ₂ SnO ₄ by sputtering	A.J. Nozik , 1974	
Cd ₂ SnO ₄ by spray pyrolysis	A.J. Nozik and g Haacke 1976	
SnO ₂ :F by CVD	R.G. Gordon, 1979	
Tin by CVD	S.R. Kurtz and R.G. Gordon, 1986	
ZnO:In by spray pyrolysis	S.Major , 1984	AH
ZnO:Al by sputtering	T.Minami, 1984	VILL.
ZnO: In by sputtering	S.N. Qui , 1987	
ZnO:B by CVD	P.S. Vijayakumar, 1988	
ZnO:Ga by sputtering	TU B.H. Choi, 1990	
ZnO:F by CVD	J.Hu and R.G. Gordon, 1991	
ZnO:Al by CVD	J.Hu and R.G. Gordon, 1992	
ZnO:Ga by CVD	J.Hu and R.G. Gordon, 1992	
ZnO:In by CVD	J.Hu and R.G. Gordon, 1993	
Zn ₂ SnO ₄ by sputtering	H.Enoki , 1992	
ZnSnO ₃ by sputtering	T.Minami, 1994	
Cd ₂ SnO ₄ by pulsed laser deposition	J.M. McGraw , 1995	

Table 2.1: History of processes for making transparent conductors [42]

Polymer and metals are two types of materials that also could be applied as TCO. The metal used for fabrication of TCO such as stainless steel, tungsten and titanium. Polymer has flexibility and low cost of fabrication [23]. But polymer and metals also have their own disadvantages on the TCO application which were the low efficiency and incompatibility of implementation respectively. The

incompatibility of using metal material includes high cost of fabrication and corrosion due to physical contact with the electrolyte [32].

Based on TCO properties, it also has potential to be applied in various application such as cold heat windows [43], antistatic coatings, polymer light emitting diodes [44], organic light emitting diode [45], electromagnetic materials in rear-view mirrors of automobile [46], solar cells [47], front electrodes in flat panel displays [48], low emissivity window [42], electromagnetic shielding [48], and invisible security circuits [42]. These applications have been summarized in Figure 2.1.

Figure 2.1: The applications of TCO

REFERENCES

- 1. Bender, M.H., *Potential conservation of biomass in the production of synthetic organics*. Resources, Conservation and Recycling, 2000. **30**(1): p. 49-58.
- 2. Solangi, K., et al., *A review on global solar energy policy*. Renewable and sustainable energy reviews, 2011. **15**(4): p. 2149-2163.
- 3. Miles, R., *Photovoltaic solar cells: Choice of materials and production methods.* Vacuum, 2006. **80**(10): p. 1090-1097.
- 4. Jäger-Waldau, A., *Photovoltaics and renewable energies in Europe*. Renewable and Sustainable Energy Reviews, 2007. **11**(7): p. 1414-1437.
- 5. Nazeeruddin, M.K., E. Baranoff, and M. Grätzel, *Dye-sensitized solar cells: a brief overview*. Solar Energy, 2011. **85**(6): p. 1172-1178.
- 6. O'regan, B. and M. Grfitzeli, *A low-cost, high-efficiency solar cell based on dye-sensitized.* Nature, 1991. **353**(6346): p. 737-740.

7.

8.

- Li, B., et al., *Review of recent progress in solid-state dye-sensitized solar cells*. Solar Energy Materials and Solar Cells, 2006. **90**(5): p. 549-573.
- Kong, J., et al., Synthesis and properties of pure and antimony-doped tin dioxide thin films fabricated by sol-gel technique on silicon wafer. Materials Chemistry and Physics, 2009. **114**(2): p. 854-859.
- 9. Moholkar, A., et al., Solvent-dependent growth of sprayed FTO thin films with mat-like morphology. Solar Energy Materials and Solar Cells, 2008. **92**(11): p. 1439-1444.
- 10. Ghafouri, V., M. Shariati, and A. Ebrahimzad, *Photoluminescence investigation of crystalline undoped ZnO nanostructures constructed by RF sputtering*. Scientia Iranica, 2012. **19**(3): p. 934-942.
- 11. Yadav, A., et al., *Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films.* Physica B: Condensed Matter, 2009. **404**(12): p. 1874-1877.
- 12. Chae, J., et al., *Photovoltaic efficiency on dye-sensitized solar cells (DSSC)* assembled using Ga-incorporated TiO₂ materials. Journal of industrial and Engineering Chemistry, 2010. **16**(6): p. 906-911.

- 13. Hossein-Babaei, F. and A. Amini, *A breakthrough in gas diagnosis with a temperature-modulated generic metal oxide gas sensor*. Sensors and Actuators B: Chemical, 2012. **166**: p. 419-425.
- Khelladi, M., et al., Early stages of cobalt electrodeposition on FTO and ntype Si substrates in sulfate medium. Materials Chemistry and Physics, 2010. 122(2): p. 449-453.
- Fang, T.-H. and W.-J. Chang, *Effect of freon flow rate on tin oxide thin films deposited by chemical vapor deposition*. Applied surface science, 2003. 220(1): p. 175-180.
- Byrappa, K. and T. Adschiri, *Hydrothermal technology for nanotechnology*. Progress in Crystal Growth and Characterization of Materials, 2007. 53(2): p. 117-166.
- Chen, Z., J. Lai, and C. Shek, Multifractal spectra of scanning electron microscope images of SnO₂ thin films prepared by pulsed laser deposition. Physics Letters A, 2005. 345(1): p. 218-223.
- Moholkar, A., et al., Effect of solvent ratio on the properties of highly oriented sprayed fluorine-doped tin oxide thin films. Materials Letters, 2007. 61(14): p. 3030-3036.
- 19. Aouaj, M.A., et al., *Comparative study of ITO and FTO thin films grown by spray pyrolysis.* Materials Research Bulletin, 2009. **44**(7): p. 1458-1461.
- 20. Purushothaman, K., M. Dhanashankar, and G. Muralidharan, *Preparation* and characterization of F doped SnO₂ films and electrochromic properties of FTO/NiO films. Current Applied Physics, 2009. **9**(1): p. 67-72.
- 21. Kaneko, S., et al., *Thermal decomposition of di- n-butyltin (IV) diacetate as a precursor for the spray pyrolysis deposition of oriented* SnO₂ thin films. Solid state ionics, 2001. **141**: p. 463-470.
- 22. Murakami, K., K. Nakajima, and S. Kaneko, *Initial growth of SnO₂ thin film on the glass substrate deposited by the spray pyrolysis technique*. Thin Solid Films, 2007. **515**(24): p. 8632-8636.
- 23. Wang, H., et al., *Hierarchical growth of* SnO₂ nanostructured films on FTO substrates: structural defects induced by Sn (II) self-doping and their effects on optical and photoelectrochemical properties. Nanoscale, 2014. **6**(11): p. 6084-6091.
- 24. Bin Ahmad, M.K. and K. Murakami, *Application of Titanium Dioxide Nanorods in DSC Using Hydrothermal Method.* Advanced Materials Research, 2011. **222**: p. 24-27.

- 25. Ahmad, M.K.B., Low temperature and normal pressure growth of rutilephased TiO₂ nanorods/nanoflowers for DSC application prepared by hydrothermal method. Journal of Advanced Research in Physics, 2012. **3**(2).
- 26. Premalal, E.V., et al., *Development of Quality FTO Films by Spray Pyrolysis* for Dye-Sensitized Solar Cell. Electrochemistry, 2012. **80**(9): p. 624-628.
- 27. Russo, B. and G. Cao, *Fabrication and characterization of fluorine-doped thin oxide thin films and nanorod arrays via spray pyrolysis*. Applied Physics A, 2008. **90**(2): p. 311-315.
- 28. Johari, A., V. Rana, and M. Chander Bhatnagar, *Synthesis, characterization and ethanol sensing properties of tin oxide nanostructures.* Nanomaterials and Nanotechnology, 2011. **1**(2): p. 49-54.
- 29. Pari, B., et al. Recent Advances in SnO₂ Based Photo anode Materials for Third Generation Photovoltaics. in Materials Science Forum. 2014. Trans Tech Publ.
- 30. Wang, J.T., et al., *Influence of preferred orientation on the electrical conductivity of fluorine-doped tin oxide films*. Scientific reports, 2014. **4**.
- 31. Liu, M., et al., *Hierarchical double-layered SnO*₂ film as a photoanode for *dye-sensitized solar cells*. New Journal of Chemistry, 2013. **37**(4): p. 1002-1008.
- 32. Wang, Y.-F., et al., *Facile fabrication of hierarchical SnO*₂ microspheres film on transparent FTO glass. Inorganic chemistry, 2010. **49**(4): p. 1679-1686.
- 33. Granqvist, C.G., *Transparent conductors as solar energy materials: A panoramic review.* Solar energy materials and solar cells, 2007. **91**(17): p. 1529-1598.
- 34. Lenzmann, F. and J. Kroon, *Recent advances in dye-sensitized solar cells*. Advances in OptoElectronics, 2007. **2007**.
- 35. Narayan, J. and B. Larson, *Domain epitaxy: A unified paradigm for thin film growth*. Journal of Applied Physics, 2003. **93**(1): p. 278-285.
- 36. Ravichandran, K. and P. Philominathan, *Fabrication of antimony doped tin oxide (ATO) films by an inexpensive, simplified spray technique using perfume atomizer.* Materials Letters, 2008. **62**(17): p. 2980-2983.
- 37. Choi, B., et al., *Optical and electrical properties of Ga*₂O₃ *doped ZnO films prepared by rf sputtering*. Thin Solid Films, 1990. **193**: p. 712-720.
- 38. Cheng, A.-J., et al., *Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication*. Applied Physics Letters, 2008. **92**(9): p. 092113.

- Smith, A., et al., Relation between solution chemistry and morphology of SnO₂ based thin films deposited by a pyrosol process. Thin Solid Films, 1995.
 266(1): p. 20-30.
- 40. Lee, S.-C., et al., *Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system.* Solar energy materials and solar cells, 2003. **75**(3): p. 481-487.
- 41. Samad, W.Z., et al., *Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique.* Sains Malaysiana, 2011. **40**(3): p. 251-257.
- 42. Gordon, R.G., *Criteria for choosing transparent conductors*. MRS bulletin, 2000. **25**(08): p. 52-57.
- 43. He, Y. and J. Kanicki, *High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates*. Applied Physics Letters, 2000. **76**(6): p. 661-663.
- 44. Emons, T.T., J. Li, and L.F. Nazar, Synthesis and characterization of mesoporous indium tin oxide possessing an electronically conductive framework. Journal of the American Chemical Society, 2002. **124**(29): p. 8516-8517.
- 45. Nakato, Y., K.i. Kai, and K. Kawabe, *Improvement of characteristics of newtype solar cells, having a "transparent conductor/thin Si0₂ layer with ultrafine metal particles as conductive channels/n-Si" junction.* Solar Energy Materials and Solar Cells, 1995. **37**(3-4): p. 323-335.
- 46. Hartnagel, H., et al., *Semiconducting transparent thin films*. 1995: Institute of Physics Pub. Bristol, UK, Philadelphia, PA.
- 47. Badeker, K., Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds. Ann. Phys.(Leipzig), 1907. 22(4): p. 749-766.
- 48. Lampert, C.M., *Heat mirror coatings for energy conserving windows*. Solar Energy Materials, 1981. **6**(1): p. 1-41.
- 49. Jarzebski, Z. and J. Marton, *Physical properties of SnO*₂ materials II. *Electrical properties.* Journal of the electrochemical Society, 1976. **123**(9): p. 299C-310C.
- 50. Dawar, A. and J. Joshi, *Semiconducting transparent thin films: their properties and applications*. Journal of Materials Science, 1984. **19**(1): p. 1-23.
- 51. Narayanan, K., et al., *Electrical characterization and type conversion in* N^+ *irradiated CdS thin films prepared by chemical bath deposition*. Materials research bulletin, 1999. **34**(10): p. 1729-1734.

- 52. Akgul, F.A., et al., *Structural and electronic properties of SnO*₂. Journal of Alloys and Compounds, 2013. **579**: p. 50-56.
- 53. Stjerna, B., et al., *Characterization of rf-sputtered* SnO_x thin films by electron microscopy, Hall-effect measurement, and Mössbauer spectrometry. Journal of applied physics, 1990. **68**(12): p. 6241-6245.
- 54. Khan, A.F., et al., *Effect of annealing on electrical resistivity of rf-magnetron sputtered nanostructured SnO₂ thin films*. Applied Surface Science, 2009. 255(20): p. 8562-8565.
- 55. Baco, S., A. Chik, and F. Md Yassin, *Study on optical properties of tin oxide thin film at different annealing temperature*. Journal of Science and Technology, 2012. **4**(1).
- 56. Murakami, K., K. Nakajima, and S. Kaneko, *Initial growth of SnO₂ thin film* on the glass substrate deposited by the spray pyrolysis technique. Thin Solid Films, 2007. **515**(24): p. 8632-8636.
- 57. Liyanage, D., et al., *Ethylene Glycol Assisted Synthesis of Fluorine Doped Tin Oxide Nanorods Using Improved Spray Pyrolysis Deposition Method.* Applied Physics Express, 2013. **6**(8): p. 085501.
- 58. Moholkar, A., et al., *Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films*. Applied Surface Science, 2009. **255**(23): p. 9358-9364.
- 59. Zhang, B., et al., *The role of oxygen vacancy in fluorine-doped SnO*₂ *films*. Physica B: Condensed Matter, 2011. **406**(9): p. 1822-1826.
- 60. Smith, A., et al., *Experimental survey of different precursor/solvent pairs for the deposition of tin dioxide by pyrosol.* Thin solid films, 1998. **315**(1): p. 17-21.
- 61. Bilgin, V., et al., *Electrical, structural and surface properties of fluorine doped tin oxide films.* Applied Surface Science, 2010. **256**(22): p. 6586-6591.
- 62. Dien, E., J. Laurent, and A. Smith, Comparison of optical and electrical characteristics of SnO_2 based thin films deposited by pyrosol from different tin precursors. Journal of the European Ceramic Society, 1999. **19**(6): p. 787-789.
- 63. Kaneko, S., et al., *Thermal decomposition of di-n-butyltin(IV) diacetate as a precursor for the spray pyrolysis deposition of oriented* SnO₂ thin films. Solid State Ionics, 2001. **141–142**(0): p. 463-470.
- 64. Zhang, J. and L. Gao, *Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles by a new hydrothermal method*. Materials chemistry and physics, 2004. **87**(1): p. 10-13.

- 65. Law, M., et al., *Nanowire dye-sensitized solar cells*. Nature materials, 2005.
 4(6): p. 455-459.
- 66. Chen, G.-Y., M.-W. Lee, and G.-J. Wang, *Fabrication of dye-sensitized solar cells with a 3D nanostructured electrode*. International Journal of Photoenergy, 2010. **2010**.
- 67. Zhang, Q. and G. Cao, *Nanostructured photoelectrodes for dye-sensitized* solar cells. Nano Today, 2011. **6**(1): p. 91-109.
- Wang, Y.-L., et al., Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO₂ nanorod arrays. CrystEngComm, 2010. 12(12): p. 4024-4027.
- 69. Laurent, J.-M., et al., Morphology and physical properties of SnO₂ based thin films deposited by the pyrosol process from dibutyltindiacetate. Thin Solid Films, 1997. **292**(1): p. 145-149.
- 70. Murakami, K., I. Yagi, and S. Kaneko, *Oriented growth of tin oxide thin films on glass substrates by spray pyrolysis of organotin compounds*. Journal of the American Ceramic Society, 1996. **79**(10): p. 2557-2562.
 71. The Mathematical Content of the American Ceramic Society, 1996. **79**(10): p. 2557-2562.
- 71. Zhao, H., et al., *Effects of water on the structure and properties of F-doped* SnO₂ films. Materials Letters, 2008. **62**(8): p. 1294-1296.
- 72. Laurent, J.-M., et al., Morphology and physical properties of SnO_2 based thin films deposited by the pyrosol process from dibutyltindiacetate. Thin Solid Films, 1997. **292**(1): p. 145-149.
- 73. Patil, P., et al., *Properties of spray deposited tin oxide thin films derived from tri-n-butyltin acetate*. Thin Solid Films, 2003. **437**(1): p. 34-44.
- 74. Fukano, T. and T. Motohiro, *Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition*. Solar energy materials and solar cells, 2004. **82**(4): p. 567-575.
- 75. Premalal, E., et al., *Preparation of high quality spray-deposited fluorinedoped tin oxide thin films using dilute di (n-butyl) tin (iv) diacetate precursor solutions*. Thin Solid Films, 2012. **520**(22): p. 6813-6817.
- 76. Moholkar, A., et al., *Effect of concentration of SnCl*₄ on sprayed fluorine doped tin oxide thin films. Journal of alloys and compounds, 2008. **455**(1): p. 440-446.
- 77. Wu, S., et al., *Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals.* Journal of colloid and interface science, 2010. **346**(1): p. 12-16.

- 78. Byrappa, K. and M. Yoshimura, *Handbook of hydrothermal technology*. 2001: William Andrew.
- 79. Morey, G.W. and P. Niggli, *The hydrothermal formation of silicates, a review.* Journal of the American Chemical Society, 1913. **35**(9): p. 1086-1130.
- 80. Lobachev, A., Crystallization processes under hydrothermal conditions. 1973.
- 81. Byrappa, K., *Hydrothermal growth of crystals*. International School on Crystal Growth of Technologically Important Electronic Materials, 2003: p. 271.
- 82. Yoshimura, M. and H. Suda, *Hydrothermal processing of hydroxyapatite: past, present, and future.* Hydroxyapatite and Related Compounds. Boca Raton (EE. UU.): CRC Press Inc, 1994: p. 45-72.
- 83. Burschka, J., et al., *Sequential deposition as a route to high-performance perovskite-sensitized solar cells.* Nature, 2013. **499**(7458): p. 316-319.
- 84. Napi, M., et al. Surface Morphology and Electrical Properties of FTO (Fluorine Doped Tin Oxide) with Different Precursor Solution for Transparent Conducting Oxide. in Applied Mechanics and Materials. 2015. Trans Tech Publ.
- 85. Thompson, T.L. and J.T. Yates, Surface science studies of the photoactivation of TiO_2 new photochemical processes. Chemical Reviews, 2006. **106**(10): p. 4428-4453.
- 86. Calogero, G., et al., *Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits*. International journal of molecular sciences, 2010. **11**(1): p. 254-267.
- 87. Chiba, Y., et al., *Dye-sensitized solar cells with conversion efficiency of* 11.1%. Japanese Journal of Applied Physics, 2006. **45**(7L): p. L638.
- 88. Andrade, L., H.A. Ribeiro, and A. Mendes, *Dye–Sensitized Solar Cells: An Overview*. Encyclopedia of Inorganic and Bioinorganic Chemistry, 2011.
- 89. Pari, B., et al. Recent Advances in SnO₂ Based Photo anode Materials for Third Generation Photovoltaics. in Materials Science Forum. 2014. Trans Tech Publ.
- Suhaimi, S., et al., Materials for Enhanced Dye-sensitized Solar Cell Performance: Electrochemical Application. Int. J. Electrochem. Sci, 2015. 10: p. 2859-2871.
- 91. O'regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. nature, 1991. **353**(6346): p. 737-740.

- 92. Gupta, S.M. and M. Tripathi, A review of TiO_2 nanoparticles. Chinese Science Bulletin, 2011. **56**(16): p. 1639-1657.
- 93. Kay, A. and M. Grätzel, *Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder*. Solar Energy Materials and Solar Cells, 1996. **44**(1): p. 99-117.
- 94. Diebold, U., *The surface science of titanium dioxide*. Surface science reports, 2003. **48**(5): p. 53-229.
- 95. Muscat, J., V. Swamy, and N.M. Harrison, *First-principles calculations of the phase stability of TiO*₂. Physical Review B, 2002. **65**(22): p. 224112.
- 96. Wunderlich, W., et al., *Electronic Properties Of Nano-Porous TiO*₂ and ZnO *Thin Films- Comparison Of Simulations And Experiments.* Journal of Ceramic Processing & Research, 2004. **5**(4): p. 343-354.
- 97. Duong, T.-T., et al., Enhancing the efficiency of dye sensitized solar cells with an SnO_2 blocking layer grown by nanocluster deposition. Journal of Alloys and Compounds, 2013. **561**: p. 206-210.
- 98. Song, M.Y., et al., *Electrospun TiO*₂ *electrodes for dye-sensitized solar cells*. Nanotechnology, 2004. **15**(12): p. 1861.
- 99. Adachi, M., et al., Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO_2 nanowires made by the "oriented attachment" mechanism. Journal of the American Chemical Society, 2004. **126**(45): p. 14943-14949.
- 100. Yang, S.-C., et al., Hollow TiO_2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells. Advanced Materials-Deerfield Beach Then Weinheim, 2008. **20**(5): p. 1059.
- Shalini, S., et al., *Review on natural dye sensitized solar cells: Operation, materials and methods.* Renewable and Sustainable Energy Reviews, 2015. 51: p. 1306-1325.
- Kalyanasundaram, K. and M. Grätzel, *Efficient dye-sensitized solar cells for direct conversion of sunlight to electricity*. Material Matters, 2009. 4(4): p. 88-90.
- 103. Mehmood, U., et al., *Recent Advances in Dye Sensitized Solar Cells*. Advances in Materials Science and Engineering, 2014. **2014**.
- 104. Grätzel, M., Conversion of sunlight to electric power by nanocrystalline dyesensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. **164**(1): p. 3-14.

- 105. Nazeeruddin, M.K., et al., *A swift dye uptake procedure for dye sensitized solar cells.* Chemical Communications, 2003(12): p. 1456-1457.
- 106. Mishra, A., M.K. Fischer, and P. Bäuerle, Metal-free organic dyes for dyesensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition, 2009. 48(14): p. 2474-2499.
- 107. Hara, K., et al., *Oligothiophene-containing coumarin dyes for efficient dye*sensitized solar cells. The Journal of Physical Chemistry B, 2005. **109**(32): p. 15476-15482.
- Hara, K., et al., Dye-sensitized nanocrystalline TiO₂ solar cells based on novel coumarin dyes. Solar Energy materials and Solar cells, 2003. 77(1): p. 89-103.
- 109. Hug, H., et al., *Biophotovoltaics: natural pigments in dye-sensitized solar cells*. Applied Energy, 2014. **115**: p. 216-225.
- 110. Narayan, M.R., *Review: dye sensitized solar cells based on natural photosensitizers.* Renewable and Sustainable Energy Reviews, 2012. **16**(1): p. 208-215.
- Nogueira, A., C. Longo, and M.-A. De Paoli, *Polymers in dye sensitized solar* cells: overview and perspectives. Coordination Chemistry Reviews, 2004. 248(13): p. 1455-1468.
- 112. Kusama, H. and H. Arakawa, *Influence of pyrazole derivatives in* Γ/I_3^- *redox electrolyte solution on Ru (II)-dye-sensitized TiO*₂ *solar cell performance.* Solar energy materials and solar cells, 2005. **85**(3): p. 333-344.
- 113. Li, P., et al., *High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells.* Solar Energy, 2009. **83**(6): p. 845-849.
- 114. Chen, J., et al., *Polyaniline nanofiber/carbon film as flexible counter electrodes in platinum-free dye-sensitized solar cells*. Electrochimica Acta, 2011. **56**(12): p. 4624-4630.
- 115. Qin, Q., J. Tao, and Y. Yang, *Preparation and characterization of polyaniline film on stainless steel by electrochemical polymerization as a counter electrode of DSSC*. Synthetic Metals, 2010. **160**(11): p. 1167-1172.
- 116. SANDBORG, A., Energy Dispersive X-Ray Spectrometry--Eds Instrumentation & Signal Detection, 2015, EDAX Training Course. sl: EDAX INTERNATIONAL, INC.
- 117. Zhang, X.-t., et al., Al₂O ₃ coated nanoporous TiO₂ electrode for solid-state dye-sensitized solar cell. Solar energy materials and solar cells, 2003. 80(3): p. 315-326.

- 118. Agashe, C. and S. Major, *Effect of heavy doping in SnO₂: F films*. Journal of materials science, 1996. **31**(11): p. 2965-2969.
- 119. Wang, H., et al., Hydrothermal synthesis of hierarchical SnO₂ microspheres for gas sensing and lithium-ion batteries applications: Fluoride-mediated formation of solid and hollow structures. Journal of Materials Chemistry, 2012. **22**(5): p. 2140-2148.
- 120. Guneri, E., et al., *Effect of deposition time on structural, electrical, and optical properties of SnS thin films deposited by chemical bath deposition.* Applied Surface Science, 2010. **257**(4): p. 1189-1195.
- Huang, X., et al., Preparation of fluorine-doped tin oxide (SnO₂: F) film on polyethylene terephthalate (PET) substrate. Materials Letters, 2010. 64(15): p. 1701-1703.
- 122. Martinez, A., et al., *Physicochemical characteristics of fluorine doped tin oxide films*. Journal of Physics D: Applied Physics, 2006. **39**(23): p. 5091.
- 123. Batzill, M. and U. Diebold, *The surface and materials science of tin oxide*. Progress in surface science, 2005. **79**(2): p. 47-154.
- 124. Xie, J., et al., Morphology control of ZnO particles via aqueous solution route at low temperature. Materials Chemistry and Physics, 2009. **114**(2): p. 943-947.
- 125. Huang, R., et al., *Effect of hydrothermal temperature on structure and photochromic properties of WO₃ powder*. Advanced Powder Technology, 2012. **23**(2): p. 211-214.
- 126. Khuc, Q.T., et al., *The influence of hydrothermal temperature on* SnO₂ *nanorod formation*. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010. **1**(2): p. 025010.
- 127. Apetz, R. and M.P. Bruggen, *Transparent Alumina: A Light-Scattering Model*. Journal of the American Ceramic Society, 2003. **86**(3): p. 480-486.
- Koo, H.J., et al., Nano-embossed Hollow Spherical TiO₂ as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells. Advanced Materials, 2008. 20(1): p. 195-199.
- 129. Zhang, Q., et al., Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells. Angewandte Chemie, 2008.
 120(13): p. 2436-2440.
- 130. Ramasamy, E., et al., *Nanocarbon counterelectrode for dye sensitized solar cells*. Applied Physics Letters, 2007. **90**(17): p. 173103.

- 131. Qian, J., et al., *TiO*₂ coated multilayered SnO2 hollow microspheres for dyesensitized solar cells. Advanced Materials, 2009. **21**(36): p. 3663-3667.
- 132. Kim, Y.J., et al., Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres. Advanced Materials, 2009. **21**(36): p. 3668-3673.
- Zhou, Y. and M. Antonietti, Synthesis of very small TiO₂ nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. Journal of the American Chemical Society, 2003. 125(49): p. 14960-14961.

PERPUSTAKAAN TUNKU TUN AMINAH