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ABSTRACT

In sports analytics, existing researches have showed that the Bayesian networks

(BN) approach has greatly contributed to predicting football match results with

considerably high accuracy as compared to other classical statistical and machine

learning approaches. However, existing prediction models rely solely on historical

team features including the match statistical data as well as team statistical data,

together with the historical features of team achievement such as ranking in FIFA,

ranking in league and total number of points gained at the end of a season. There is

no known work to date that has analysed individual player performance data as part of

the parameters used to predict football match results. To address this gap, this research

proposes a BN model for match prediction based on player performance data called

the Player Performance (PP) model. To validate the performance of the proposed

PP model, three existing prediction models were re-implemented and measured for

prediction accuracy. The existing models are the General Individual (GI) model,

Match Statistical (MS) model, and Team Statistical (TS) model. All BN models were

constructed using the Tree Augmented Naive Bayes (TAN) for structural learning. The

dataset used was data for the Arsenal Football Club in the English Premier League

(EPL) for seasons 2014-2015 and 2015-2016. Apart from the proposed individual

player performance data, the dataset includes individual player rating, absence or

presence of players in a match, match statistics, and team statistics. Then, the PP

model were re-constructed using other machine learning techniques such as k-Nearest

Neighbour (kNN) and Decision Tree (DT) in order to compare with BN for prediction

accuracy. The experimental results showed two fold; the proposed PP model using BN

achieved a higher accuracy in predicting the outcomes for football matches with an

overall average predictive accuracy of 63.76% compare to GI model, MS model and

TS model as well as higher than PP model using kNN and DT by 1.64% and 6.02%.
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ABSTRAK

Kajian terdahulu dalam analisis sukan menunjukkan bahawa pendekatan Bayesian

Networks (BN) telah banyak menyumbang kepada peramalan keputusan perlawanan

bola sepak dengan kadar ketepatan yang sangat tinggi berbanding dengan pendekatan

yang lain seperti pendekatan statistik yang klasik dan pendekatan pembelajaran

mesin. Walau bagaimanapun, kebanyakan model ramalan yang sedia ada sangat

bergantung kepada ciri-ciri sejarah pasukan termasuk data statistik perlawanan,

data statistik pasukan dan ciri-ciri sejarah pencapaian pasukan seperti kedudukan

pencapaian pasukan dalam FIFA, kedudukan pencapaian dalam liga dan jumlah

bilangan mata yang diperolehi oleh pasukan pada akhir musim. Namun begitu,

tiada kajian yang diketahui dalam menganalisis data prestasi pemain secara individu

sebagai sebahagian daripada parameter dalam meramalkan keputusan perlawanan bola

sepak. Untuk menangani jurang ini, kajian ini telah mencadangkan sebuah model

BN yang berasaskan data prestasi pemain untuk meramal keputusan perlawanan yang

diberi nama sebagai model Prestasi Pemain (PP). Untuk mengesahkan prestasi model

PP yang dicadangkan itu, tiga model ramalan yang sedia ada telah dilaksanakan

semula dan diukur ketepatan ramalannya. Model-model yang sedia ada ialah model

yanng berasaskan Individu Umum(GI), model Statistik Perlawanan (MS), dan model

Statistik Pasukan (TS). Semua model BN telah dibina menggunakan Tree Augmented

Naive Bayes (TAN) untuk pembelajaran struktur. Sampel data yang digunakan

diperolehi daripada Kelab Bolasepak Arsenal yang beraksi dalam Liga Perdana

Inggeris (EPL) bagi musim 2014-2015 dan 2015-2016. Selain daripada data prestasi

pemain secara individu yang dicadangkan, sampel data yang lain termasuk kehadiran

pemain secara individu di dalam sesebuah perlawanan, data statistik perlawanan, dan

data statistik pasukan turut digunakan. Kemudian, model PP telah dibina kembali

dengan menggunakan teknik-teknik pembelajaran mesin seperti Decision Tree (DT)

dan k-Nearest Neighbour (kNN). Keputusan eksperimen menunjukkan 2 keputusan

dimana model PP yang dicadangkan mencapai ketepatan yang lebih tinggi dalam
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meramalkan keputusan untuk perlawanan bola sepak dengan kadar purata ketepatan

sebanyak 63.76% berbanding model GI, model MS dan model TS manakala Model

PP berasaskan BN juga mencapai kadar purata ketepatan lebih tinggi daripada PP

model berasasskan Decision Tree dan k-Nearest Neighbour dengan sebanyak 1.64%

and 6.02%.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Association football, more commonly known as football (British English) or soccer

(American English), is one of the most popular sports in the world. People all around

the globe from all ages enjoy playing or watching the sport, whether at the amateur

or professional level. Nelson Mandela, the former president of South Africa (1918-

2013), was quoted to having said that football has the power to inspire and unite

people. Football enjoys great popularity and has a special place in the hearts of

people. Every four years since 1930, there will be a prestigious international football

competition between qualified nations called the FIFA World Cup. During that time,

people all around the world without background discrimination will be discussing

the performance of their team of choice. This has led to the rise of discussion and

researches on sports analytics based on association football in order to measure every

aspect of the match, whether at pre-match or post-match.

Research in sports analytics for association football advances in two directions;

performance analysis and match prediction. Performance analysis depends on the

performance level, whether as an individual or a team. For individual performance

analysis, such analyses are invaluable in discovering the principal of the observed

outcome; win a match or score goals. In a network theory analysis of football

strategies, some of the teams which participated in the 2010 World Cup were analysed

in terms of team passes. The results produced by Pena & Touchette (2012) were the

closeness (how well connected is a player), betweenness (how dependent the team is
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on the player), page rank (how important a player is), and clustering. The limitation

of the analysis is that it did not consider the defensive strength of the opponents. It

also did not focus on passing accuracy and shot analysis, which are fundamental in a

football match.

Team performance was evaluated in Cotta et al. (2013). In their research,

the additional results produced were match speed (passes per minute) and offensive

elaborateness (consecutive passes without losing the ball) in addition to the analysis

by Pena & Touchette (2012). Goal scoring performance by season was also previously

analysed by Castillo et al. (2011) using the Poisson Sampling and Negative Binomial

Sampling which were then treated with the Bayesian approaches. The data used for

this analysis were sourced from the Spanish football league from season 2000/2001

to season 2008/2009. The features used include the number of goals, minutes played,

position, team rank, and goal scoring abilities obtained from the Poisson sampling. The

results were then presented in terms of probability, whereby the higher the probability

value, the better the player has performed for the season.

Meanwhile, match prediction is concerned with two aspects. The first is

to serve as a benchmark for evaluating the chances of winning before the match

begins. Match prediction is necessary to help the managers and players prepare

countermeasures such using defensive mentality and offside trap if the opponent team

is stronger than them. Second is in terms of profit generation for betting, which is

beyond the scope of this research. The main focus for this research is to verify and

justify whether the individual player performance attribute gives impact towards a

match’s outcome (win, lose and draw) more than the other attributes in a football

match.

Most of the existing match prediction models are solely based on post-match

team data such as team results, goals scored and goals conceded. Hence, not many of

them acknowledge the real contribution of team performance, which are the players.

The lack of a prediction model based on individual players’ data is caused by the

lack of the data itself. The expected outcome of this research is a model to predict

football matches’ outcomes based on individual performance data. It is also expected
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that the proposed model would have higher prediction accuracy than existing football

prediction models because the model is sensitive to different team composition.

1.2 Problem Statement

Sports analytics, in general, focuses on match prediction or performance analysis,

whether as an individual player or as a team including opponents. One particular

analytics that draws wide attention to football is match prediction. Football match

prediction can be classified into two models, which are ex-post model (after complete

set of data for a season have been collected) and ex-ante model (before the match is

played). For example, Maher (1982) created an ex-post model to estimate a team’s

capability for offensive and defensive strength. This means that he carried out an

independent Poison Model based on the home team and away team scores in order

to estimate both the offensive and defensive strength using a full set of data obtained

for a season. The model was incapable of predicting matches that were not yet played.

Dixon & Coles (1997) enhanced the Maher model through a few adjustments, making

it into an ex-ante model so that predictions can take place before a match begins.

Predicting outcomes for future football matches is not easy because there are

many important variables that need to be analysed before the match such as past

meeting results with opponents and ranking of the team and its opponents. Yet,

there are some important variables that cannot be observed until a match is played.

For example, injuries, booked and psychological effects can only be observed during

a match. Determination has a big influence over a match’s outcome when one

team dominate a match and play attack during the entire match. There are many

uncertainties that need to be considered in the prediction of the outcomes of football

matches.

Existing football match prediction models were developed using various

approaches, such as the statistical approach, machine learning approach and Bayesian

approach. Nonetheless, all of the models rely on team features such as match venue,

team goals scored, team goals conceded, opponent goals scored, and opponent goals
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conceded in order to evaluate a team’s outcomes. Other researches use the past features

of a team’s achievement such as its league ranking and points gained at the end of the

season to construct the prediction model. This research scenario is common because

the historical data for team features and team achievement are mostly readily accessible

via newspapers or website compared to other types of historical data such as match

features for each individual player.

To date, individual player data has not been fully capitalised as the main

features in building a prediction model. Although there are researches using individual

football player performance such as in (Duch et al., 2010; McHale & Scarf, 2005;

McHale et al., 2012; Pena & Touchette, 2012), there is a wide range of individual

player data such as a player’s rating and the total number of shoots, passes, tackles

and saves that have yet to be analysed. The closest works that used individual player

data would be researches by Constantinou et al. (2012) and Joseph et al. (2006), but

they only focused on the presence or absence of the selected first eleven players, the

position of key players and the availability of three key players.

Langseth (2013) pointed out that harvesting more match data can generate even

richer prediction models for football. He improvised the work of Rue & Salvesen

(2000) by adding player statistic data and the total number of shots fired and shots

on target which outperformed other traditional statistical football prediction model

(Maher, 1982; Dixon & Coles, 1997; Rue & Salvesen, 2000) which are based on

a team’s past data. Other individual player data such as total number of shots,

goals, assists, passes, tackles and saves cannot be ignored; hence it is formulated and

incorporated in the match outcome prediction model.

1.3 Research Objectives

The research objectives are as follows:

i. To develop a prediction model for football matches outcome (win,lose and

draw) using Bayesian networks (BN) based on individual player performance.
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ii. To implement the Bayesian networks model based on (1) to predict the football

match outcomes (win, lose and draw).

iii. To compare the accuracy in terms of football match outcomes in (2) against

other machine learning techniques.

1.4 Scope of Study

This research is limited to performance data of individual players in the English

Premier League (EPL) as well as historical data of football matches for the

Arsenal Football Club (F.C) between seasons 2014-2015 and 2015-2016 as

well as all 20 competing teams in EPL. Data was extracted from https://

www.premierleague.com/ https://www.whoscored.com/ and http:

//www.squawka.com/ (McHale et al., 2012; Alberti et al., 2013; Langseth, 2013;

Constantinou & Fenton, 2017). This football websites were choose because the data

have same data source which are supplied by Opta (http://www.optasports.

com/), the world’s leading sports data provider. There are 20 competing teams in the

English Premier League and every single team faces the 19 other teams twice a season.

Therefore, in total there will be 38 matches for a season played by Arsenal F.C.

1.5 Significance of Study

According to the FIFA’s Big Count in 2016 through FIFA official website (http://

www.fifa.com/worldfootball/bigcount/allplayers.html), as of 3

May 2016, Malaysia has 585,730 players in which 9,930 are registered and the

remaining 575,800 are unregistered players. This makes up less than one percent of

the 265,000,000 football players across the world. Malaysia also hosts 110 clubs and

a total of 11,810 officials in football matches. Thus, the findings of the study will

contribute greatly to sports development especially for association football or soccer

in our country with need a touch in order to improve our teams ranking, please our

football fans and cool down the criticism towards our football national team. The

proposed model based on player performance is hoped to help coaches evaluate and
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estimate their players’ performance individually in order to create a more accurate

network structure between players and the match outcomes (win, lose and draw). As

a result, these findings are invaluable for developing and forming teams with high

winning probabilities despite detect non-performing players as well as new talents.

In the state of the art for computer science, the football prediction model using

Bayesian networks may provide an analysis on the network of probability in term of

Directed Acyclic Graph (DAG) and Conditional Probability Table (CPT) accordingly

to total number of data row and the data features. Besides, this research will show the

comparative accuracy results between Bayesian networks and other machine learning

techniques such as k-Nearest Neighbour (kNN) and Decision Tree (DT) in prediction.

It is not just helping the football team to predict the match outcome but also help

assist team to identify what data features that correlates in football matches which may

contribute to match outcomes. As the result, it may help managerial team staffs and

coaches a fresh insight for organising better tactics and forming a better first eleven

squad for each match.

From the economic perspective, team managers from clubs are able to identify

and acquire excellent players undervalued by the market, hence minimising the cost

of purchasing talent. Furthermore, by acquiring excellent players, the club’s improved

performance on the field would lead to improved revenue from stadium attendance

and merchandise sold, thus leading to national economic growth. Besides, this new

prediction model can be used to set benchmarks which may assist managers and

players to act with more caution and prepare alternative options to beat opponents that

are stronger than them such as setting up offside traps, implement defensive mentality

and play counter attack if the chance come.

1.6 Organisation of the Thesis

This chapter presents the basis of using sports analytics in prediction of association

football matches by explaining the background of study, research motivation, problem

statement, research objectives, scope of study and significance of study. The rest of the
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chapters in this thesis are organised as follows:-

• Chapter 2 discusses in general the overview of Bayesian Networks (BN) and

existing association football prediction models, which are divided into three

approaches; statistical approaches, machine learning approaches and Bayesian

approaches. Later, a comparative analysis of all prediction models will

summarise the entire prediction model.

• Chapter 3 discusses about the research methodology and the proposed research

prediction model based on player performance using the Bayesian networks.

The chapter also includes a description of the indicator of player performance

which will be used in this research. It also discusses the important processes in

the prediction model, the dataset used and a description and implementation of

existing prediction models, which will be executed using BN and re-constructed

prediction based on player performance using k-Nearest Neighbour (kNN) and

Decision Tree (DT).

• Chapter 4 discusses the results of the new prediction model based on player

performance and compares the accuracy of the developed model with some other

existing model in term of features and techniques.

• Chapter 5 finally concludes the research, explains the limitations of the

proposed model and provides suggestions and recommendations for future

works.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In 1956, Artificial Intelligence (AI) began its first move when it was proposed by John

McCarthy at a conference in Dartmouth. Although, AI was only officially introduced

in 1956, AI has actually been discussed by researchers several years before that. For

example, a simple question, “Can machines think?” had been raised by Turing (1950)

in his paper entitled “Computing Machinery and Intelligence”. AI is a combination

of two terms, machine and human being, which form an intelligent mechanisms

to deal with real world problem. Human intelligence in a machine can be in the

form of a robot, computer or any other electronic equipment (Nehra, 2015). These

intelligent mechanisms contribute greatly to human being in terms of problem-solving,

knowledge, reasoning, learning, communication, robotics and uncertainty. As the time

flows, the AI field keeps expanding and developing whether in practical perspective as

well in theoretical perspective. Even in sports analytics, the machine learning which

parts of AI have been use for assisting the football team to achieve their objective

(Joseph et al., 2006).

In sports, researches on football analytics have grown rapidly due to the

popularity of the sport itself. Sports analytics can be classified into two categories

which are performance-related (team and individual) or predictive analysis. Football

analytics is crucial to clubs management teams, managers, coaches and players

themselves in order to help them win more matches and become better footballers.

Football in particular is a sport full of uncertainty. Anything can happen within 90
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