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ABSTRACT 

 

 

 

   Numerous studies on the performance of the curved diffuser have been made on 

either 2-D or 3-D expansion type with various working geometrical and operating 

parameters. Most researchers are focusing in the existence of flow separation 

phenomenon and secondary flow vortices that often disturb the recovery of pressure 

and uniformity of flow. On top of that, the existing guideline have just integrated the 

geometrical and operating effects in a low range. Therefore, the current work 

focussing on studying the effects of a wider turning angles in a range of 30° to 180° 

integrated with various operating condition by experiment and numerical method. 

The experimental rig was built at Aerodynamics Laboratory, UTHM. The blower 

speed was set in range of 9RPM-25RPM and tested for 30°, 90° and 180° curved 

diffusers. A profound set of Re𝑖𝑛 were obtained for three test made where 

6.149x104-1.828x105 for 30°, 6.080x104-1.820x105 for 90°, and 5.784x104-

1.607x105 for 180°. The result of C𝑝 obtained indicates that 30° curved diffuser have 

the best C𝑝 performance from all curved diffusers tested. In validating the results, 

three solver models are tested which are standard k-휀 adopting enhanced wall 

treatment of 𝑦+ ≈ 1.1-1.8 was the best operated model to validate the experiment 

results against numerical. Two sets of correlations that integrate the performance of 

C𝑝and 𝜎𝑜𝑢𝑡  by using Asymptotic Computational Fluid Dynamics (ACFD) method is 

made. This correlation indicated the novelty of the new correlation made in curved 

diffuser research. 
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ABSTRAK 

 

 

 

  Pelbagai kajian tentang prestasi peresap melengkung telah dibuat pada sama ada 

jenis pengembangan 2-D atau 3-D dengan pelbagai parameter geometri dan operasi 

yang berfungsi. Kebanyakan penyelidik memfokuskan kepada kewujudan fenomena 

pemisahan aliran dan pusaran aliran sekunder yang sering mengganggu pemulihan 

tekanan dan keseragaman aliran. Selain itu, garis panduan sedia ada baru sahaja 

menyepadukan kesan geometri dan operasi dalam julat yang rendah. Oleh itu, kerja 

semasa memfokuskan pada mengkaji kesan sudut pusingan yang lebih luas dalam 

julat 30° hingga 180° disepadukan dengan pelbagai keadaan operasi melalui kaedah 

eksperimen dan berangka. Rig eksperimen telah dibina di Makmal Aerodinamik, 

UTHM. Kelajuan blower ditetapkan dalam julat 9RPM-25RPM dan diuji untuk 

peresap melengkung 30°, 90° and 180°. Re𝑖𝑛 diperolehi untuk tiga ujian yang dibuat 

di mana 6.149x104-1.828x105 untuk 30°, 6.080x104-1.820x105 untuk 90° dan 

5.784x104-1.607x105 untuk 180°. Hasil C𝑝 terhadap ketiga-tiga kajian menunjukkan 

peresap lengkup 30° adalah tertinggi. Untuk kaedah numerik, ANSYS 19.2 (Fluent) 

dengan pelbagai model penyelesai ditambah dengan rawatan dekat dinding telah 

digunakan untuk pengesahan dan simulasi intensif dalam prosedur berangka. Antara 

ketiga-tiga model tersebut, k-ε standard yang mengguna pakai rawatan dinding 

dipertingkatkan 𝑦+ ≈ 1.1-1.8 adalah model kendalian terbaik untuk mengesahkan 

keputusan eksperimen terhadap berangka. Dua set korelasi yang menyepadukan 

indeks prestasi dengan menggunakan kaedah Asymptotic Computational Fluid 

Dynamics (ACFD). Korelasi ini menunjukkan kebaharuan korelasi baharu yang 

dibuat dalam penyelidikan peresap melengkung. 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

1.1 Research Background 

Diffusers has been used widely in engineering systems to decelerate the fluid’s flow 

via the changing phase of the diffuser’s shapes and sizes based on its application. 

Referring to Nordin et al. [1], a straight diffuser is a diverging duct with zero angle 

of turn, whereas a curved diffuser refers to a diverging duct with a certain angle of 

turn. A curved diffuser can be assembled by diverging it into either two or three 

dimensions. 

 

    In recent years, various types of curved diffusers have been used simply based on 

their applicability throughout recent years. A closed-circuit wind tunnel is 

customarily constructed with the principle used of 90° or 180° curved diffusers [2]. 

In general, actual work or applications of a diffuser is always centred on a settlement 

between pressure recovery and flow uniformity [3]. Other than a simple turning 
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diffuser, S-shaped and Y-shaped (fish-tail) diffusers were also found applicable for 

almost all modern combat aircraft that used fuselage-mounted intake [4,5]. The 

nature of the geometry of the curved diffuser has led to the determination of pressure 

recovery, losses, and non-uniformity of flow that usually present at the exit of flow 

as the effects of flow separation and dispersion of core flow [6]. The existence of 

secondary flow in turning diffuser has drawn massive interest in studying its 

performance, especially on the pressure recovery coefficient and flow uniformity 

index. Moreover, various geometrical aspects and operating parameters have been 

applied in consideration of the best turnout model of performance for a turning 

diffuser.  

         

   In this present work, the performance of curved diffuser is in concern with varying 

geometrical and operating parameters, namely turning angle (∆∅), inner wall length 

to inlet throat width ratio (𝐿𝑖𝑛 𝑊1⁄ ) area ratio (AR), outlet-inlet configurations (𝑊2 

/𝑊1, 𝑋2 /𝑋1) and inflow Reynolds number (Rein) were numerically and 

experimentally investigated. Integrated performance correlations of a curved diffuser 

were ultimately developed using Asymptotic Computational Fluid Dynamics.    

1.2 Problem Statement  

Curved diffuser is applied widely in industrial flow to conserve energy by converting 

the kinetic energy to pressure energy. Nevertheless, flow performance is often 

disturbed, especially on a complex flow due to its nature of geometry such as the 

turning angle, aspect ratio, or even inlet flow velocity by the existence of flow 

separation and dispersion of core. The practical application always seeks a 

compromise between maximum permissible pressure recovery and flow uniformity, 

which can be achieved by optimally setting the geometrical and operating 

parameters.  

 

    The performance of various applications of fluid machinery is often disturbed by 

the existence of flow separation [7]. Flow separation problem is common when using 

a diffuser; the cross-sectional area increases and is vulnerable to separation. It is the 

primary cause of pressure drop. The lower Reynolds number applied also causes the 
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problem of separation phenomenon in a passage flow diffuser [8]. This circulation or 

rotating flow phenomenon appears for a fluid with non-uniform velocity distribution 

that passes around a bend. Besides the flow speed, the stagnant fluids in the wall 

boundary layer as the effect of the centrifugal pressure gradient is also the attribution 

of secondary flow or flow separation [9].      

 

There are various literature available for a diffuser that has been made, 

particularly for 2-D curved diffusers. Fox and Kline [7] have established a guideline 

in choosing the optimum geometries of a 2-D curved diffuser free from the stall. 

Nordin et al. [3] recently have developed mathematical correlations to quantitatively 

evaluate pressure recovery and flow quality of 90° curved diffusers. Nevertheless, 

these available guidelines could still not comprehensively represent the performance 

of curved diffuser, particularly when the 3-D expansion of various angle of turns are 

considered.  

1.3 Objectives of research 

The objectives of this research are specified as follows: 

 

1) To numerically and experimentally investigate the effects of varying geometrical 

and operating parameters on the performance of curved diffusers.  

2) To develop performance correlations of curved diffusers by integrating angle of 

turn via the Asymptotic Computational Fluid Dynamics (ACFD) technique.   

3) To propose optimum configuration of geometrical and operating parameters for a 

curved diffuser. 
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1.4 Scope of Research 

The research scopes are as follows: 

 

1) Curved diffusers with identical inlet conditions were considered in range of area 

ratio 1.0 to 4.0 as in guideline.  

2) Performance of curved diffusers was evaluated primarily in terms of pressure 

recovery coefficient, Cp and flow uniformity index, 𝜎𝑜𝑢𝑡.  

3) The angles of turn varied between 30° to 180° representing common turning 

angles applied in HVAC and wind tunnel systems. 

4) ANSYS 19.2 Fluent is used for CFD simulation, including research and data 

management (Workbench), modelling (DesignModeler), grid generation (ICEM 

CFD) and flow analysis (Fluent).  

5) Asymptotic computational fluid dynamics (ACFD) developed the performance 

correlations (𝐶𝑝 and 𝜎𝑜𝑢𝑡) as a function of geometrical and operating parameters 

(𝐿𝑖𝑛/𝑊1, 𝑊2 /𝑊1, 𝑋2 /𝑋1, 𝑅𝑒𝑖𝑛).     

1.5 Significant of Research 

The following were the significant contributions of the research to the body of 

knowledge:  

 

1. The prospective performance of 30° to 180° of 2-D and 3-D curved diffusers has 

been scientifically assessed.  

2. The performance correlations representing the effects of both geometrical and 

operating parameters for 2-D and 3-D turning diffusers have been developed. 

These correlations may be utilised to evaluate the performance of 2-D and 3-D 

curved diffusers without running the full simulations or experiments. 
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