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ABSTRACT 

 

 

 

The introduction of markerless sensor technology in motion capture system offers a 

comparable alternative to the conventional systems by employing infrared-depth 

sensors and retaining the ability to acquire two (2D) and three-dimensional (3D) data 

on human movement. However, its accuracy is often questioned compared to the 

established technologies such as passive marker systems. Therefore, this study sets an 

alternative method to evaluate Kinect Xbox 360 markerless system accuracy based on 

two positioning coordinates of two pairs of sensors. Through this approach, the length 

of lower limb segments was measured in 2D and 3D on each motion frame while 

performing squat movement and compared with the actual segment length. 

Interestingly, all segment lengths in the 3D showed excellent accuracy with the actual 

length of the segment. The angle of knee joints was also evaluated to identify the types 

of squat movements. The same evaluation is also used for the accuracy of a passive 

marker system while capturing the turning kick motion. In addition, the velocity of the 

knee joint was also studied at each phase of movement to determine the speed and 

angular of the knee required to enable the subject's foot to reach the target. For 

validation purposes, simulations of all recorded motions were implemented to evaluate 

the squat and the phases of movement in a turning kick from a visual angle. 

Successfully, the study was able to compare the accuracy and precision of the system 

constructed using lower limb data relative to the passive marker system using actual 

lower limb data. The markerless gave a remarkable difference value between the 

highest and lowest percentage coefficients of variation with 3.90%, while the passive 

marker system gave 5.72%. It is suggested that the multi-camera markerless motion 

capture system used in this study be used only for applications that do not require a 

significant level of accuracy such as animations, gaming and recreational sports 

analyses. 
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ABSTRAK 

 

 

 

Teknologi penderia tanpa penanda dalam sistem tangkapan gerakkan menawarkan 

alternatif yang setanding dengan sistem konvensional. Ia menggunakan penderia 

kedalaman inframerah dan mengekalkan keupayaan untuk memperoleh data 

pergerakkan manusia dalam dua dan tiga dimensi. Walaubagaimanapun, ketepatannya 

sering dipersoalkan jika dibandingkan dengan teknologi sedia ada seperti sistem 

penanda pasif. Maka, kajian ini menetapkan kaedah alternatif untuk menilai ketepatan 

sistem tanpa penanda Kinect Xbox 360 berdasarkan dua koordinat kedudukan bagi dua 

pasang penderia. Melalui pendekatan ini, panjang setiap segmen anggota bawah 

diukur dalam 2D dan 3D pada setiap kerangka semasa melakukan pergerakan 

jongkong dan dibandingkan dengan panjang segmen sebenar. Menariknya kesemua 

panjang segmen dalam 3D menunjukkan ketepatan yang baik. Sudut sendi lutut turut 

dinilai untuk mengenal pasti jenis pergerakan jongkong. Penilaian yang sama juga 

digunakan untuk menilai ketepatan sistem penanda pasif semasa gerakan sepakan 

pusing. Selain itu, halaju sendi lutut turut dikaji pada setiap fasa pergerakan untuk 

menentukan kelajuan dan sudut lutut yang diperlukan bagi membolehkan kaki subjek 

mencapai sasaran. Untuk tujuan pengesahan, simulasi semua gerakan yang dirakam 

dilaksanakan untuk menilai jongkong dan fasa pergerakan tendangan dari sudut visual. 

Kajian ini juga membandingkan ketepatan dan kejituan diantara sistem yang dibina 

dengan sistem penanda pasif menggunakan data anggota bawah. Sistem tanpa penanda 

memberikan nilai perbezaan yang luar biasa antara pekali peratusan variasi tertinggi 

dan terendah dengan 3.90%, manakala sistem penanda pasif memberikan 5.72%. Oleh 

itu, sistem tangkapan gerakan tanpa penanda berbilang kamera yang dibina dalam 

kajian ini dicadangkan hanya digunakan untuk aplikasi yang tidak memerlukan tahap 

ketepatan yang ketara seperti analisis animasi, permainan dan sukan rekreasi. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

Motion capture or often called motion tracking or MoCap is defined as the algorithm 

for recording and converting a live motion event into usable mathematical terms. It is 

performed by tracking the number of critical points in space over time and merging 

them to obtain a three-dimensional (3D) depiction of the human body's movements 

(Wei et al., 2015). Also, it is a computerized method for monitoring and coding the 

motions of objects or living beings that have been developed over decades by applying 

various techniques and technologies. Therefore, experts believe that combining 

infrared (IR) technology with depth sensor in a system would be ideal for detecting an 

object's depth by measuring the time interval between the emission of light and the 

detection of backscattering light (Menolotto et al., 2020). As a result, every living 

movement in space can be mapped in the system's volume environment. 

The development and configuration of MoCap systems have sparked great 

interest across various sectors. For instance, it assists clinical professionals such as 

doctors, nurses, and physiotherapists in decision-making (Kidziński et al., 2020), 

delivering effective services and consultations to patients, and evaluating whether a 

patient's motor healing process is effective or not. Additionally, MoCap is 

advantageous for sports applications since it can scientifically interpret players' 

physical movements to assess their performance, study their postural efficiency, and 

prevent injuries during training (Pueo & Jose, 2017). Meanwhile, in the industrial 

settings, MoCap is used in the entertainment industry, where actors wear a special suit 

with affixed markers and cameras to aid computers in detecting their movements and 

translating them to the screen to create a new character (Delbridge, 2016). Figure 1.1 
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shows an example of a MoCap application in the industry, where actor Andy Serkis 

wears an LED-inlaid costume to play the character of Caesar (King Kong) in Dawn of 

the Planet of the Apes. 

 

 

Figure 1.1: Example of MoCap application in the entertainment industry (Perry, 

2015). 

 

The use of the MoCap application in various sectors necessitates the use of 

cutting-edge technology to improve the efficiency of capturing and analyzing the 

spatial-temporal structure of body motions. As a result, this system's operation is 

separated into two independent components: hardware and software. The commercial 

hardware available in the market can be marker-based or markerless and is used to 

track and record segment locomotion. Simultaneously, the software reviews and 

analyses data acquired via hardware and estimates subject movement positions.  

However, the high cost (Gong et al., 2016) of specialized hardware and 

software, standard calibration procedures, uncomfortable markers, specialized 

clothing, and the costly installation and operating expenses of existing MoCap systems 

have considerably limited their usage. In addition, placing a marker on the human body 

leads to idle time since determining the position of human joints or bones requires 

knowledge. 

An example of a MoCap system that employs markers is depicted in Figure 

1.2. This system is known as a marker-based optical motion capture system. The 

markers are called retroreflective markers, and more than ten markers are attached to 

the subject's body. 
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Figure 1.2: The details of marker arrangement on the subject's joint (Fernández-

Baena et al., 2012). 

 

Thus, this project aims to develop a markerless motion capture system by 

adapting current hardware and optimizing existing software. It will enable more 

effortless, user-friendly, time-efficient usage and facilitate a more relevant assessment 

of human movement in research and perhaps other fields of industrial training. 

Additionally, the motion analysis technique used in this study provides a mechanism 

for determining the accuracy of hardware collecting data on body segment movement 

and a framework for mathematical algorithms frequently used in biomechanical 

analysis. 

 

1.1    Problem Statement  

 

Motion capture systems have been widely used in biomechanical research as a 

fundamental technology for studying human physical behaviour. Therefore, 

researchers have adapted existing hardware to track human physical movements while 

performing activities. Unfortunately, controversy arises about whether the 

measurements tracked by the hardware are accurate or not. As a result, most 

researchers compare their hardware measurement data with standard gold data, which 

is often based on optical systems that employ markers to capture motion (Steinebach 

et al., 2020). 

However, the optical motion capture is constrained by the presence of markers 

during motion tracking operations. Some users may experience discomfort throughout 

the recording procedure when the markers affixed to the skin adhere using double-

Right and left foot 

Right and left hip 

Right and left knee 

Right and left 

shoulder 

Right and 

left elbow 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



4 

 

 

sided adhesive (Shortland, 2020). Moreover, the motion capture technology that 

employs special clothing also causes discomfort to users. Special clothing, such as that 

depicted in Figure 1.3, is typically worn by the elderly who are unable to care for 

themselves. 

 

 

Figure 1.3: A prototype of smart clothing (Guan et al., 2017). 

 

To eliminate discomfort, this study used a markerless motion capture system 

in which infrared camera technology captures human movement. The cost of 

contemporary motion capture systems also plays a role in selecting this human 

locomotion capture system since established manufacturers like Vicon, Optitrack, 

Motion Analysis, Qualisys, and XSense charge a premium for their products. 

In addition, this study was undertaken for the challenging and complex work 

of extracting anatomical tracking information, understanding it, and performing data 

analysis (Müller et al., 2017). Therefore, this study developed a new framework by 

combining existing marker-less motion capture sensors and analyzing the kinematic 

parameters of the observed motion. Also, the motion analysis of kinematic parameters 

will impact biomechanics researchers when accompanied by easy quantitative 

validation. 

 

1.2    Objectives of Study 

 

The main objectives of this study are: 

i. To develop a framework to validate the accuracy of multi-depth camera motion 

capture system. 
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ii. To determine an angle lower limb biomechanics analysis of squat performance 

via the developed framework 

iii. To determine the different accuracy of markerless motion capture with 

conventional optical motion capture 

 

1.3    Scope of Study 

 

The following are included in the scope of this study: 

i. The Kinect Xbox 360 was chosen for its mobility and cost-effectiveness as the 

sample infrared sensor for capturing movement. 

ii. Two pairs of sensors were employed simultaneously to verify the system's 

accuracy while capturing squat motions. 

iii. A pair of sensors (Pair 1) was placed on the rear of the subject, and another 

pair of sensors (Pair 2) was placed on the front of the subject's front to verify 

the ideal sensor placement to record squat movement. 

iv. The Xbox 360 Kinect sensors are connected to the Software Development Kit 

(SDK) v1.8 to record and track squat movement. 

v. Since SDK v1.8 does not have consolidation features, SDK v2.0 is used to 

merge skeletal data for each sensor pair. 

vi. The volunteer activity is half-squat since it is a motion that can monitor 

people's daily functions such as sitting, standing, and walking.  

vii. The motion is repeated three times at the volunteer's own pace because the 

volunteer is a non-athlete. 

viii. The segment lengths in the lower limb at both locations were analysed in each 

2D and 3D plane to obtain the most accurate and consistent data. 

ix. The most accurate results were determined by standard deviation, and then the 

knee angle was analysed using MATLAB software to determine the type of 

squat movement. 

x. The same method was used to analyse the accuracy of the turning kick motion 

data recorded by the passive motion capture system. 

xi. Analysis of angular displacement and angular velocity was performed through 

MATLAB to determine the knee speed when the subject's leg reached the target 

xii. The movement of the turning kick was also analysed qualitatively to find out 

the phases of the kick performed by the subject. 
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xiii. Percentage of lower limb standard deviation obtained by the depth sensor 

system compared with passive motion capture data to determine the accuracy 

and precision of the two motion capture systems. 

 

1.4    Significant of Study 

 

Numerous study groups were able to use the same technique to assess the accuracy of 

MoCap in tracking motion, despite using different types of devices. Furthermore, 

optimizing the infrared sensor can simplify the setup process by eliminating the time 

required for a sophisticated equipment setup compared to a marker-based system.  

In addition, the method developed can also simplify the task of researchers to 

conduct research based on their actual daily activities rather than focusing on 

researching a particular field. 

The study also employed two sets of trace detection to demonstrate how the 

position of the sensor location affects the stability of the data recorded by the device. 

 

1.5    Thesis Layout 

 

Chapter 1 introduces the MoCap system and discusses the purpose of this study, 

including a problem statement and the study's objective, scope, and significance.  

Chapter 2 is divided into four sections: biomechanics in kinesiology, 

mechanical systems, terminology, and technology employed in this research. The 

kinesiology section defines biomechanics and introduces the many types of 

mechanical systems pertinent to biomechanics. Meanwhile, the terminology section 

involves the basic terms used in this research, indicating the movement of the joints 

and joints on each axis and plane. Additionally, this chapter discussed the technology 

used in motion capture. The combination of all available knowledge results in the 

thorough understanding necessary for the work described in this study. 

Chapter 3 discusses the components, formulae, equipment, and methods 

utilized to collect the research data. This chapter's primary objective is to demonstrate 

the system's behaviour and its appropriateness for real-world use. During the 

preliminary design stage, the primary needs for the software receiver and hardware 

must be identified. To begin, the receiver must have sufficient processing capacity to 

conduct a wide variety of mathematical algorithms, such as rigid transformation, 
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because it must do substantial computations while receiving the coordinate axes of X, 

Y, and Z. Finally, the hardware must be capable of mapping and tracking skeletal joints 

and possess the flexibility for parallelization as well as subject move. Additionally, for 

a reader who is not familiar with the squat movement, there are also have a part that 

briefly explains the concepts of squat motion. 

Chapter 4 discusses the experimental validation results for the suggested new 

framework's performance. Thus, the primary data obtained by the two sensor pairs 

were visualized in four different planes. This data was then evaluated in each plane to 

identify which pair of sensors was the most stable when capturing selected motions. 

Therefore, the most stable source data were selected for kinematic analysis. 

Additionally, this new framework was applied to existing data to assess the system's 

accuracy to record the turning kick motion, and a qualitative analysis could then be 

conducted. The coding of all mathematical algorithms is done in the IDE.  

Finally, Chapter 5 discusses the conclusion like the suitable cameras positioned 

to acquire data during squat motion, and future recommendation where the knee angle 

speed data while performing the turning kick movement can be used as a reference by 

other athletes in the future. In addition, it also summarizes the precision of the system 

between markerless and maker-based. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

The work described in this thesis is centered on designing a framework that is suitable 

for MoCap analysis standards. This chapter will cover biomechanics in motion capture 

for software design and computer architecture for hardware applications. The 

combination of each field of specialization provides the necessary context to help the 

reader understand the work concept. The chapter introduces biomechanics under 

kinesiology and follows up with mechanical systems and terminology relevant to 

human motion. Then, the chapter progresses to computer architecture which is a 

discussion of the present ways for translating data collected via hardware recognition 

algorithms. Lastly, the chapter concludes by summarizing the chosen methods and 

technology in this study. This chapter will lead to a better understanding of the 

upcoming technical chapters. 

 

2.1    Fields of Human Movement Study Based on the Discipline of Kinesiology 

 

The term kinesiology refers to the study of the human movement. It associates the field 

of anatomy, physiology, physics, and geometry with human motion (Lippert, 2006). 

Table 2.1 shows the definition of sub-disciplines of kinesiology.  

 

Table 2.1: Definition of sub-disciplines of kinesiology. 

Sub-discipline Definition 

B 

 

Biomechanics is the study of the human body in motion using concepts from 

mechanics and engineering. It is often defined as the discipline that explores  
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Table 2.1 (continued) 

 

the effect of internal and external forces on human and animal bodies in motion 

and at rest (Stergiou et al., 2017). There are numerous publications regarding 

human biomechanics included Sports Biomechanics, Clinical Biomechanics, 

and Computer Methods in Biomechanics and Biomechanical. 

EP 

Identifying the organ's function and mechanisms that support regular exercise 

and training, providing comprehensive treatment services related to analysis, 

improvement, and maintenance of physical and mental health, recovery from 

illnesses or disabilities, and providing professional and athlete advice on sports 

and training (Boone, 2015). 

MD 

Motor developmentalists study the process of motor behaviour changes from 

time to time, including typical trajectories of behaviour across the lifespan, the 

processes that underlie the differences, and factors that affect motor behaviour. 

Many factors that influence motor behaviour are the convergence of multiple 

factors related to living life, such as muscle strength, arousal, and experience. 

Another factor is the aimed goal, such as swinging at a baseball or optimizing 

on power. (Ulrich, 2007).  

ML 

Through instruction, practice, and/or experience, it is possible to change both 

the ability to produce movement performance and the actual movement 

performance in a reliable manner. (Fischman, 2007). 

P 

Pedagogy is defined as the science or profession of teaching. Also referred to 

as pedagogy or curriculum. It is the teaching of movement and sport in 

particular, based on sports pedagogy research  (Tinning, 2008) 

P-S 

Psychosocial is defined as ‘the influence of social factors on an individual's 

mind or behaviour, and the interrelation of behavioural and social factors' by 

the Oxford English Dictionary (Martikainen et al., 2002) 

 

There are six significant disciplines of kinesiology; biomechanics (B), exercise 

physiology (EP), motor development (MD), motor learning (ML), pedagogy (P), and 

psychosocial (P-S). The studies of exercise are more likely to respond to physical 

activity based on the organism's function and the part of the mechanism involved 

during physical activity. Meanwhile, the motor development discipline will study 

changing motor behaviour from the results of the performance movements carried out 

in the motor learning discipline. Therefore, this study's focus is on biomechanical 

discipline as it directly studies the mechanical principles of the human body. 
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