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ABSTRACT 

This research analyses chemostat models for microbial production. Chemostat is a tool 

that can be used for the continuous production of microbes under controlled conditions 

such as pH, temperature, light, and nutrients. This ability makes chemostat promising 

for the applications of microbes as renewable resources, microbial products and 

wastewater treatment. The dynamics of the chemostat can be described using the 

chemostat mathematical model. The microbial growth in the chemostat can be 

interpreted mathematically using the specific growth rate model. The growth of 

microbes chiefly depends on the concentration of the nutrient. However, the growth of 

microbes can be inhibited under a high concentration of nutrients. Therefore, in this 

thesis, Andrew’s growth model was considered to describe the inhibitory effect of high 

substrate concentration on the microbial growth in the chemostat model. The 

dependency of product yield towards the substrate concentration was also incorporated 

into the chemostat model. The performance of chemostat was also investigated with 

the influence of the recycling process. The stability and bifurcation analyses of the 

chemostat models were conducted to examine the dynamical behaviour of the steady-

state of the chemostat system to identify the regions of parameters that generate 

oscillations of microbe population in the chemostat which occurs due to any changes 

in the stability of the steady-state of the system. There are two types of steady-states 

found which are washout steady-state and no washout steady-state. Washout steady-

state means there is no growth of microbes occur in the reactor while no washout 

steady-state means there is growth of microbe occur in the chemostat. The steady-state 

solutions and their stability were determined as a function of residence time. The 

studies revealed the conditions to avoid the situation where no growth of microbes 

occurred in the chemostat. It was identified that there exists a parameters’ region that 

can generate stable limit cycle and also region of bistability of steady-states. The high 

value of recycling parameter increases the cell mass concentration in the chemostat. 
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ABSTRAK 

Kajian ini menganalisis model matematik kemostat yang digunakan untuk 

mengaggarkan penghasilan mikrob. Kemostat adalah satu alat yang digunakan untuk 

penghasilan mikrob secara berterusan dengan mengawal nilai pH, suhu, cahaya, dan 

nutrien dalam kemostat. Keupayaan ini menjadikan kemostat sebagai alat yang boleh 

menghasilkan mikrob sebagai sumber yang boleh diperbaharui, produk mikrob dan 

rawatan air kumbahan. Dinamik kemostat boleh diterangkan dengan menggunakan 

model matematik kemostat. Pertumbuhan mikrob dalam kemostat boleh ditafsirkan 

secara matematik menggunakan model kadar pertumbuhan. Pertumbuhan mikrob 

sangat bergantung kepada kepekatan nutrien. Walau bagaimanapun, pertumbuhan 

mikrob boleh terhalang jika kepekatan nutrien yang digunakan adalah terlalu tinggi. 

Oleh itu, dalam tesis ini, model pertumbuhan Andrew digabungkan dengan model 

kemostat untuk menggambarkan kesan menggunakan kepekatan nutrien yang tinggi 

terhadap pertumbuhan mikrob. Pergantungan hasil produk terhadap kepekatan nutrien 

juga diambil kira dalam model kemostat. Pengaruh proses kitar semula terhadap 

prestasi kemostat juga disiasat dalam kajian ini. Analisis kestabilan dan pencabangan 

model kemostat dijalankan untuk mengkaji dinamik keadaan mantap sistem kemostat 

dan untuk mengenal pasti rantau-rantau parameter yang boleh menghasilkan variasi 

populasi mikrob dalam kemostat di mana berlakunya perubahan terhadap kestabilan 

keadaan mantap sistem kemostat. Terdapat dua jenis keadaan mantap yang dijumpai 

dalam kajian ini iaitu keadaan mantap washout yang bermaksud tiada pertumbuhan 

mikrob dalam kemostat dan keadaan mantap bukan washout, keadaan di mana 

pertumbuhan mikrob berlaku dalam kemostat. Penyelesaian keadaan mantap dan 

kestabilannya ditentukan dalam fungsi waktu kediaman. Kajian mendedahkan syarat 

untuk mengelak keadaan di mana tiada pertumbuhan mikrob berlaku di dalam 

kemostat. Rantau parameter yang menjana had kitaran yang stabil dan rantau yang 

membolehkan dua keadaan mantap stabil telah dikenal pasti. Nilai parameter kitar 

semula yang tinggi dapat meningkatkan kepekatan mikrob dalam kemostat. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of research  

In recent years, biofuel which is a product of microbes has gained interest as an 

alternative fuel that substitutes both petrol and diesel. The increase in the demand for 

biofuel is due to its environmentally friendly property of reducing pollution caused by 

crude oil products. Besides that, the demand for other microbial products such as 

vitamins, antibiotics, vaccines and pharmaceutical drugs have also increased. The 

production of microbes can also be used for wastewater treatment. Hence, to fulfill 

these demands, the production of microbes needs to be improved by understanding the 

mechanism of microbial growth which can be studied using an experimental apparatus 

called continuous stirred tank reactor (CSTR) or chemostat.  

The chemostat is a tool that has been widely used for the continuous production 

of cell mass or microbes over a period of time (Monod, 1950, Novick & Szilard, 1950). 

Chemostats can be used to study the growth of microbes under controlled 

environments such as pH, temperature, light and nutrients so that a maximized product 

yield can be generated in the bioreactor over a long period (Vazquez, 2018). 

Chemostats have an inlet to allow substrates or nutrients to enter the reactor at a 

constant flow rate and the microbes’ growth process takes place in the reactor. Then, 

the culture is drained out of the reactor at the same rate to keep the volume in the 

reactor constant. The efficiency of the chemostat is based on understanding the growth 

rate of the microbes in the reactor (Alqahtani et al., 2012). 

The growth process of microbes in the chemostat is usually modelled by using 

microbial growth kinetic models that explain the relationship between microbes and 

substrates such as from the Monod (1949), Tessier (1936), Moser (1958) and Contois 
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(1959) models. Most of these models express the growth of microbes by consuming 

the substrate or nutrient. However, some substrates may inhibit the growth of microbes 

under high concentrations since more than one substrate molecule bind to an active 

site of the enzyme which deactivates the enzyme and hence reduces the metabolism of 

the cell and the viability of the microbe (Tan et al., 1996; Thatipamala et al., 1992). 

Hence, the growth rate model that expresses the substrate concentration inhibitory 

effects towards the microbial growth is required to estimate the growth of the microbial 

population in the chemostat.  

One of the models that incorporate the substrate concentration inhibition is 

Andrew's (1968) model. Andrew’s growth kinetics model is an extension of the Monod 

model where an additional substrate inhibition term has been taken into account. This 

model has been widely used for many applications since it provides a good fit for 

experimental data, especially for wastewater treatment systems (Abdi et al., 2013; 

Costa & Quintelas, 2011; Economou et al., 2011; Goudar et al., 2000; Halmi et al., 

2014; Krishnan et al., 2017).  

Previous experimental studies of chemostats by Dorofeev et al. (1992) and Lee 

et al. (1976) have found that the oscillatory behaviour of microbe population in the 

chemostat can be explained when the yield coefficient dependent on the substrate 

concentration and not when the yield coefficient is constant. Hence, the yield 

coefficient cannot be assumed as a constant where several theoretical studies have been 

done to study the consequence of this assumption (Alqahtani et al., 2012, Alqahtani et 

al., 2015b, Nelson & Sidhu, 2005, Nelson & Sidhu, 2007, Nelson & Sidhu, 2009). The 

oscillation of microbes in the reactor happens when a stable steady-state of the system 

loses its stability and periodic solution arise. This is called the bifurcation process, 

where a slight change in the parameter value can change the stability of the steady-

state of a system. It has been proven by several previous studies where the productivity 

of microbe is improved by natural oscillation of microbes in the chemostat. The natural 

oscillation of microbes produces more microbes compared to a stable chemostat 

system  (Alqahtani et al., 2015b, Balakrishnan & Yang, 2002; Nelson & Sidhu, 2005, 

2009; Yang & Su, 1993). 

It was also found that the productivity of the microbes can be improved when 

the cell mass leaving the reactor is recycled back into the reactor by using a tool called 

a settling unit. The microbes are recycled back to the chemostat after it has been settled 

down in the settling unit. There are studies that have been conducted to investigate the 
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effect of the recycling process of the microbes which are found to be effective in 

improving the microbe production (Ajbar et al., 1997; Alqahtani et al., 2015a; 

Bhowmik & Alqahtani, 2018; Cao et al., 2015; Nelson et al., 2012; Nelson et al., 2008; 

Vanavil et al., 2014).  

Therefore, in this research, the chemostat model with a variable yield 

coefficient and Andrew’s growth model was analysed to explain the growth of 

microbes in the chemostat. The effect of the recycling process towards the growth of 

microbial with variable yield coefficient and substrate inhibition kinetic model was 

also studied. The dynamical behaviours of the steady-state solutions with and without 

the recycling process were discussed by doing the stability analysis. The conditions 

for the washout of cell mass which means no growth of microbes occurring in the 

reactor and the condition for maximising the cell mass concentration in the reactor 

were identified by performing the stability analysis. The range of parameters that 

generates oscillations of microbes in the chemostat was determined by conducting the 

bifurcation analysis. The effect of natural oscillation of microbes in the chemostat was 

also included in this research. 

1.2 Problem statement  

The improvement of microbe production in a chemostat can be achieved by analysing 

the mathematical models of the chemostat. The chemostat model should be able to 

describe the mechanism of microbes so that the microbe production can be enhanced. 

It is known that the efficiency of the chemostat relies on the growth rate of microbes 

and the product yield. Hence, the growth rate of microbes and the product yield should 

be estimated precisely. The growth rate depends mainly on the concentration of the 

nutrient in the chemostat. However, a high concentration of substrate will inhibit the 

growth of microbes by deactivating the enzyme of the microbes. Hence, the growth 

rate model that expresses the substrate concentration’s inhibitory effects towards the 

microbe growth is required to estimate the growth of the microbe population in the 

chemostat. The product yield that depends on the substrate concentration should be 

considered to define the actual process.  

Previously, many analyses have been performed by considering the Monod 

model as the growth rate model and a few works were done using Andrew’s substrate 
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inhibition model. There are also analyses that considered variable yield coefficient and 

there are studies that considered recycling process into the chemostat model. However, 

there is no analysis yet has been done to the chemostat model with the Andrew’s 

growth model, variable yield coefficient and recycling process. Therefore, in this 

research, the chemostat models with Andrew’s growth model, a substrate inhibition 

model and variable yield coefficient with and without recycling process were analysed 

to study the dynamical behaviour of the steady-states of the chemostat systems. The 

stability and bifurcation analyses were performed to prevent the washout situation 

from occurring in the reactor and to identify the parameter range that generates 

oscillation of microbe population in the chemostat to improve the production of 

microbes. 

1.3 Research objectives 

This research consists of three main objectives which are 

i. to reformulate the chemostat model by taking into account variable yield 

coefficient and Andrew’s growth function with and without the recycling 

process. 

ii. to perform the stability and bifurcation analyses of chemostat model by 

incorporating variable yield coefficient and Andrew’s growth function with 

and without the recycling process. 

iii. to investigate the performance of the reactor with and without the recycling 

process. 

1.4 Scope of research 

There are many types of microbial growth kinetic models that can be used to estimate 

the growth rate of microbes in a chemostat. In this research, Andrew’s growth model 

was applied to express the substrate inhibitory effect on the microbes’ growth rate. The 

chemostat model that was analysed in this research is a model that considers the growth 

of a single cell consuming a single substrate in a single reactor. A single reactor was 

considered so that the output from the single reactor can be set as a benchmark before 
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comparing the output of two or more reactors. The feed was assumed to be a sterile 

feed where no initial amount of cell mass is supplied into the chemostat. The chemostat 

has an inlet to supply initial amounts of substrates and cell mass concentration into the 

reactor. However, no initial amount of cell mass was introduced into the chemostat to 

study the growth of microbes under sterile conditions.  

There are two types of steady-states found in this study which are washout and 

no washout steady state. Washout steady-state means no growth of microbes occur in 

the chemostat while the no washout steady-state means there are growth of microbes 

occur in the chemostat. The stability and bifurcation analyses of this steady states were 

performed as the analysis done by Nelson & Sidhu (2005). The bifurcation analysis in 

this research is the local bifurcation analysis which can be analysed entirely through 

changes in the local stability of the steady-states, periodic orbits and other invariant 

sets.  The phase plane and bifurcation diagrams of the chemostat model were visualised 

using Mathematica software.  

1.5 Significance of research 

The findings of this research will be a good contribution to microbial studies by 

improving the production of microbes using a chemostat system. Theoretically, the 

analysis of the chemostat model with substrate inhibition and variable yield coefficient 

will aid researches in choosing better parameter values for a high production of 

microbe. The stability analysis will present the steady-state solutions and the 

dynamical behaviour of those steady states. The condition for the washout of cell mass 

in the reactor (which means no growth of microbes occurring) was identified, hence, 

this situation can be avoided. Next, the condition for the cell mass in the reactor being 

maximised can be determined by using optimization method and the condition should 

be satisfied to produce a maximum amount of cell mass concentration. The condition 

for the oscillation of microbes to occur, which refers to the condition that makes the 

steady-states of the system becomes unstable, was determined by performing the 

bifurcation analysis. The parameter values should be chosen according to the condition 

since it has been proven that oscillation of microbe population that occurs in the 

chemostat can improve the productivity of the microbes in previous studies.  
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Therefore, the growth of microbes in the chemostat can be maximised continuously 

and the high demand for the microbe population can be fulfilled. 

1.6 Framework of research 

This thesis consists of six chapters. The first chapter discusses the background of 

research, problem statement, objectives of research, scopes of research and framework 

of research. 

 In Chapter 2, the literature review of this research is presented. The first topic 

in this chapter is the introduction of the chemostat where the characteristics and 

applications of the chemostat are discussed. This chapter also provides a discussion 

about existing chemostat models to estimate the production of microbes. The variable 

yield coefficient function and the substrate inhibited growth rate model are also 

addressed in this chapter. Finally, the existing chemostat models with the recycling 

process are described. 

 In Chapter 3, the methodology of this research is provided. The derivation of 

the basic chemostat model is presented and the process of recycling microbes into the 

chemostat is discussed in this chapter. The model involved in performing the stability 

and bifurcation analyses is provided in this chapter in order to analyse the chemostat 

model.  

Next, Chapter 4 analyses the chemostat model with variable yield coefficient 

and substrate inhibition. The dynamical behaviour of the system is presented, and the 

bifurcation point is obtained in this chapter. The results are estimated and plotted by 

using the Mathematica software. 

The fifth chapter presents the analysis of chemostat model with variable yield 

coefficient, substrate inhibition and recycling process. The dynamical behaviour and 

the range of parameters for oscillation occurrence are identified. The effect of 

recycling parameter is studied and the performance of the chemostat system with the 

recycling process is investigated. 

Finally, in Chapter 6, the summary of this research and some recommendations 

for future work are prepared. The framework of this research is summarised in Figure 

1.1. 
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