NEW METHODS OF WINDOWING FOR REDUCING THE OUT OF BAND EMISSION WITH LOW COMPLEXITY IN THE 5G WAVEFORM

AHMED TALAAT HAMMOODI

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Electrical Engineering

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

SEPTEMBER 2022

To the memory of my grandfather, my grandmother, who would have been glad to see me at this moment.

To my beloved mother for her constant, unconditional love throughout my life. To my wife and beloved children, Taem, Tallen for their love and support. To my brothers and my sisters for their support and encouragement. To all my family members and friends for their love and support.

To science, enlightening us.

ACKNOWLEDGMENT

Alhamdulillah, I am so grateful to Allah for giving me enough strength, inspiration and guidance throughout my PhD study. So many people have redounded directly or indirectly to the completion of this thesis, and their assistance is highly appreciated.

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr Lukman Hanif Bin Muhammad Audah, for his invaluable guidance and assistance during my PhD journey. This thesis would not have been completed successfully without his patience and motivation. He gave me the opportunity to start with him a new constructive experience of research work. I have learned from him many aspects not only in academic life but also in my living attitude. I am also thankful to him for spending many hours reading and commenting on my research publication, including this thesis. Thank you also to my co-supervisor, Dr Montadar Abas Taher from the University of Diyala, Baqubah, for his valuable technical advice.

I would like to acknowledge Universiti Tun Hussein Onn Malaysia (UTHM) for giving me the opportunity to undertake my doctorate program by bestowing upon me a university grant scholarship.

Finally, I would like to extend my deepest gratitude to my mother for her neverending love as well as my wife for her kind support and encouragement. I also dedicate this PhD thesis to my lovely children, Taem and Taellen, who always enjoys my time. At last, I want to thank all my family members and friends who supported me during my PhD journey.

ABSTRACT

Various 5G waveform candidates are used for wireless communication in multicarrier waveform design. This specifically includes Filtered-Orthogonal Frequency Division Multiplexing (F-OFDM) and Universal Filtered Multicarrier (UFMC) waveforms adopted in the high-speed 5G system and beyond. Previous literature studies showed that a high level for out of band emission (OOBE) and attaining accurate KPIs in real applications are the main obstacles in the 5G communication. Thus, the present study contributed in three new methods in the time domain, namely, Kaiser Hankel subband Window (KHW), hybrid window group subcarrier-windowing (HWG subcarrier windowing), and Convolution New Window type-windowing (CNW windowing) to suppress the value of OOBE in F-OFDM and UFMC and improve Power Spectral Density (PSD) without degradation of Bit Error Rate (BER) in the system. On the other hand, two methods were proposed in the frequency domain to decrease the OOBE while maintaining a low computational complexity, namely, Array window subcarrier windowing (AWsubcarrer-windowing) and the Half subcarrier edge windowing (HSE-windowing). The OOBE decrease for KHW, HWG, and CNW is 70%, 75%, and 80% for the ACLPRG for KHW, HWG, and CNW, respectively. Moreover, ACLPRG for AW and HSE is 78% and 81% of either the traditional in frequency domain approach. The merging also reduces suppression ACLPRG OOBE by 88%. Also, difficult real-addition and multiplication operations have been reduced by 33-45%. The new methods helped reduce the value of OOBE without affecting the system's KPIs. The waveform could also coexist with a legacy system without affecting the core KPIs and key quality indicators (KQIs) by reduce the OOBE in the 5G waveform. Moreover, the study found that lowering OOBE did not increase system complexity. These findings have ramifications for academics, and 5G communication.

ABSTRAK

Pelbagai bentuk gelombang 5G digunakan untuk komunikasi tanpa wayar dalam reka bentuk gelombang berbilang pembawa. Ini secara khusus termasuk pemultipleksan pembahagian frekuensi orthogonal yang ditapis (F-OFDM) dan Pembawa Berbilang Penapis Universal (UFMC) yang diterima pakai dalam sistem 5G berkelajuan tinggi dan selanjutnya. Walau bagaimanapun, kajian literatur sebelum ini menunjukkan bahawa tahap pelepasan luar jalur (OOBE) yang tinggi dan mencapai petunjuk kualiti utama (KPI). yang tepat dalam aplikasi sebenar merupakan halangan utama dalam komunikasi 5G. Oleh itu, kajian ini menyumbang kepada tiga kaedah baharu dalam domain masa, iaitu, tetingkap sub-jalur Kaiser Hankel (KHW), tetingkap subpembawa kumpulan tetingkap hibrid (tetingkap sub-pembawa HWG), dan tetingkap jenis Tetingkap Konvolusi Baharu (tetingkap CNW). Ini adalah untuk memadatkan nilai OOBE dalam F-OFDM dan UFMC dan meningkatkan Ketumpatan Spektrum Kuasa (PSD) tanpa penurunan Kadar Ralat Bit (BER) dalam sistem. Sebaliknya, dua kaedah telah dicadangkan dalam domain frekuensi untuk mengurangkan OOBE sambil mengekalkan kerumitan pengiraan yang rendah, iaitu, tetingkap sub-pembawa tingkap tatasusunan (tetingkap AW sub-pembawa) dan tetingkap sudut sub-pembawa separuh (tetingkap HSE). Sehubungan itu, berbanding dengan teknik tetingkap tradisional dalam domain masa, pengurangan OOBE berkenaan Keuntungan Pengurangan Kuasa Bocoran Saluran Bersebelahan (ACLPRG) untuk KHW, HWG dan CNW masing-masing 70%, 75%, dan 82%. Selain itu, kaedah ACLPRG untuk AW dan HSE dibandingkan dengan kaedah domain frekuensi tradisional dengan 78% dan 81%, masing-masing. Tambahan pula, pengurangan ACLPRG OOBE penindasan untuk kaedah gabungan ialah 88%. Di samping itu, bilangan operasi tambah nyata dan pendaraban kompleks telah dikurangkan kepada 33-45%, masing-masing. Penemuan semasa mengakui bahawa kaedah baharu menyumbang kepada mengehadkan nilai OOBE ke tahap yang lebih rendah tanpa menjejaskan prestasi Petunjuk Prestasi Utama (KPI) dalam sistem. Selain itu, kewujudan bersama yang novel mencadangkan bentuk

gelombang 5G dengan sistem warisan tanpa penurunan dalam KPI utama dan petunjuk kualiti utama (KQI). Selain itu, kajian itu mengesahkan bahawa penurunan nilai OOBE tidak menyebabkan sebarang kerumitan yang tinggi dalam sistem. Kesimpulan ini boleh menarik implikasi kajian ini tentang bidang akademik dan komunikasi 5G yang realistik .

CONTENTS

	TITLI	E	i
	DECL	ARATION	ii
	DEDI	CATION	iii
	ACKN	IOWLEDGMENT	iv
	ABST	RACT	v
	ABST	RAK	vi
	CONT	TENTS	viii
	LIST	OF TABLES	xiii
	LIST	OF FIGURES	XV
	LIST	OF SYMBOLS AND ABBREVIATIONS	XX
	LIST	OF APPENDICES	xxiv
CHAPTER 1	INTR	ODUCTION	1
	1.1 F	Research Background	1
	1.2 F	Problem Statement	5
	1.3 F	Research Questions	7
	1.4 F	Research Objectives	7
	1.5 F	Research Scope	8
	1.6 F	Research Contribution	9
	1.7]	Thesis Organization	12
CHAPTER 2	LITEI	RATURE REVIEW	14
	2.1 I	ntroduction	14
	2.1 I 2.2 S	ntroduction Systematic Reviewing Procedures	14 15

	2.4	Waveform Candidates	17
	2.5	Cyclic Prefix OFDM (CP-OFDM) 4G Waveform	18
	2.6	Universal Filtered Multicarrier (UFMC) 5G	
		Waveform	21
	2.7	Filtered OFDM (F-OFDM) 5G Waveform	24
	2.8	Filter Bank Multicarrier (FBMC) 5G Waveform	26
	2.9	Generalized Frequency Division Multiplexing	
		(GFDM) 5G Waveform	28
	2.10	Elements of Measuring KPI Performance	31
		2.10.1 Computational Complexity	31
		2.10.2 Filter Length	33
		2.10.3 Out of Band Emission (OOBE)	35
	2.11	Reduction Techniques	38
		2.11.1 Conventional Windowing Techniques	40
		2.11.2 Coexistence Between Secondary 5G and	
		Legacy CP-OFDM	44
		2.11.3 Green Coexistence 5G Waveform	47
	2.12	Summary of the Literature Review	47
	2.13	Research Gap	51
	2.14	Summary	55
CHAPTER 3	RES	EARCH METHODOLOGY	56
	3.1	Introduction	56
	3.2	Research Design	57
	3.3	Parameter Specifications	60
	3.4	The Proposed Approaches for OOBE Reduction	61
	3.5	Mathematical Modules	62
		3.5.1 Mathematical Presentation of Rectangular	
		Window for OOBE Reduction and Prototype	
		Filtering	63

	3.5.2	Maximization of the PSD in Time Domain by	
		Using Windowing Method	66
	3.5.3	Maximization the PSD in Frequency Domain	
		by Used Windowing Method	69
	3.5.4	Mathematical Model of Bit Error Rate of	
		Windowing Method	70
	3.5.5	Computational Complexity of Waveform	
		Windowing and Filtering	73
3.6	The P	roposed Methods in The Time-Domain	76
	3.6.1	The Kaiser Hankel Subband Window (KHW)	80
	3.6.2	The Hybrid Window Group Subcarrier-	
		Windowing (HWG Subcarrier-Windowing	84
	3.6.3	The Convolution New Window Type-	
		Windowing (CNW-Windowing)	86
	3.6.4	Time-Domain Algorithms Based on UFMC	
		System	90
	3.6.5	Time-Domain Algorithms Novel Universal	
		Windowing Multicarrier (UWMC) Systems	93
3.7	The P	roposed Methods in The Frequency-Domain	96
	3.7.1	The Array Window Subcarrier Windowing	
		(AWsubcarrer-Windowing)	100
	3.7.2	The HSE-windowing Method	102
	3.7.3	Time-Domain Algorithms Based on the F-	
		OFDM System	104
3.8	Comb	ining Time-Frequency Method CNW-	
	Windo	owing and HSE Subcarrier-Windowing	105
3.9	Novel	Green Coexistence in 5G Waveform	107
3.10	Experi	imental Testbed	111
3.11	Evalua	ation of the Proposed Methods	114
	3.11.1	Simulation Evaluation	114

		3.11.2	Real Experimental Evaluation	116
	3.12	Summ	nary	117
CHAPTER 4	RES	ULTS	AND DISCUSSION	119
	4.1	Introd	uction	119
	4.2	The P	roposed Methods in the Time Domain	119
		4.2.1	The PSD Evaluation of the Time domain	
			Method	120
		4.2.2	Real Experimental Testbed of F-OFDM	129
		4.2.3	The BER Evaluation of the Time domain	
			Method	134
		4.2.4	The Computational Complexity Evaluation of	
			the Time Domain Methods	136
	4.3	The p	roposed Methods in the Frequency Domain	141
		4.3.1	The PSD Evaluation of the Frequency Domain	
			Method	142
		4.3.2	The BER Evaluation of the Frequency Domain	
			Method	147
		4.3.3	The Computational Complexity Evaluation of	
			the Frequency domain Methods	149
	4.4	The P	roposed Combining Method CNW-Windowing	
		and H	SE Subcarrier-Windowing	153
		4.4.1	The PSD Evaluation of the Combining Method	154
		4.4.2	The BER Evaluation of the Combining	
			Method	159
		4.4.3	The Computational Complexity of the	
			Combining Method	160
	4.5	Novel	Coexistence Universal Windowing Multicarrier	
		Wave	form for 5G Systems	164
	4.6	Summ	ary of Proposed Methods and Algorithms	168
	4.7	Preser	nt Study and Benchmark	169

		4.7.1 KHW Method	169
		4.7.2 HWG Method	170
		4.7.3 CNW Method	170
		4.7.4 AW Method	171
		4.7.5 HSE Method	171
		4.7.6 Combining Method	172
2	4.8	Summary	177
CHAPTER 5	CON	CLUSIONS AND FUTURE WORKS	178
:	5.1	Introduction	178
	5.2	Conclusions	178
:	5.3	Recommendations for Future Works	180
		REFERENCES	182
		APPENDICES	193

LIST OF TABLES

2.1	The implementation of the different waveforms	31
2.2	The Computational Complexity Equations for each of the 5G	
	Candidate Waveforms	32
2.3	Filter length recommendations with different waveforms	34
2.4	Previous studies on enhancing windowing technique	48
2.5	Research gap for enhancing the windowing method in the	
	time and frequency domain	54
3.1	The simulation parameters	60
3.2	The verification system parameters [199, 200]	61
3.3	Column mapping data in frequency domain scheme	98
3.4	Windowing mapping data in frequency domain scheme	98
4.1	Computational time domain methods based on F-OFDM	
	ACLR and ACLRG with baseline CP-OFDM system, $N =$	
	1024, $M = 64$ QAM	121
4.2	Computational time domain methods based on UFMC ACLR	
	and ACLRG improved windowing methods	128
4.3	Computational time domain methods based on F-OFDM	
	ACLR and ACLRG system	132
4.4	Computational frequency domain method based on F-OFDM	
	ACLR and ACLRG.	144
4.5	Computational frequency domain method based on UFMC	
	ACLR and ACLRG	146
4.6	Computational combining method based on F-OFDM ACLR	
	and ACLRG and the previously improved windowing	
	method	156
4.7	Computational combining method based on UFMC ACLR and	
	ACLRG and the previously improved windowing method	158

4.8 Summary of Previous Findings in Comparison to Present Outcomes

174

LIST OF FIGURES

1.1	Illustration of the limitation design of the incumbent system	2
1.2	Procedures of a systematic review	3
1.3	The effective Rectangular window on CP OFDM windowing	
	technique	5
2.1	Procedures of a systematic review	15
2.2	The different generations of mobile communication	16
2.3	The implementation of the multicarrier waveform	18
2.4	Transmitter and receiver of the CP-OFDM-WOLA	19
2.5	The idea of CP-OFDM-WOLA in transmitter and receiver	20
2.6	The transmitter and receiver of UFMC	21
2.7	The process at the transmitter side	22
2.8	The process at the receiver side	22
2.9	The difference between the FCP-OFDM and UFMC	23
2.10	UFMC candidate.	24
2.11	F-OFDM candidate.	25
2.12	Divided the bandwidth into different subbands.	26
2.13	Different cyclic prefixes for each specific subband.	26
2.14	FBMC candidate	27
2.15	Classification of GFDM resources	29
2.16	The GFDM block in both time and frequency domain [95]	29
2.17	The GFDM block in time and frequency domain [102]	30
2.18	Tone offset (TO) in filter design	33
2.19	The explanation of how-to measurements ACPR	37
2.20	5G sequence to measure the OOBE with different carrier	
	spacing [49]	37
2.21	OOBE reduction techniques	41
2.22	Reviewing windowing techniques	42

2.23	Coexistence scenarios 5G waveform	46
2.24	Green coexistence 5G waveform	47
2.25	Flowchart of the research study	52
3.1	Multicarrier transmitter for F-OFDM and UFMC 5G system	57
3.2	Flowchart for representing the conducted research	
	methodology in this study	59
3.3	Conceptual flowchart of the developed methods for OOBE	
	reduction in 5G with a categorization of the methods	62
3.4	The construction of a Multi-carrier 5G waveform	64
3.5	The synthesizing of the windowing filter method	66
3.6	The synthesizing complexity	76
3.7	The synthesizing transmitter of the pulse-shaping filter or	
	windowing in the time-domain	78
3.8	KHW windowing waveform suppression the OOBE	82
3.9	Hankel Function performance to suppression the OOBE with	
	Kaiser windowing	83
3.10	The transmitter structure for the HWG subcarrier-windowing	
	method	85
3.11	Baseband of UFMC system architecture	92
3.12	Baseband of UWMC System Architecture	95
3.13	Baseband F-OFDM signal using the time-domain windowing	
	algorithms	104
3.14	Windowing method in the frequency domain	100
3.15	Windowing method in the frequency domain	102
3.16	Baseband HSE-windowing method in the frequency domain	104
3.17	Baseband Combining windowing method	105
3.18	Flow chart of the proposed methods	109
3.19	Realistic experiments	113
3.20	Flowchart for the validation process	115
3.21	Flowchart real experimental evaluation	117

4.1	PSD of the CP-OFDM, F-OFDM-Kaiser scheme and the	
	original signal in the F-OFDM system, $N = 1024$, $M =$	
	64QAM	121
4.2	PSD of the CP-OFDM, multi-CNW-windowing F-OFDM	
	method	123
4.3	PSD of the CP-OFDM, UFMC-chebwin scheme, $N = 1024$,	
	M = 64QAM	124
4.4	PSD of UFMC KHW windowing scheme, $N = 1024$, $M = 64$	
	QAM	125
4.5	Time-Frequency localization of UFMC-Hankel scheme	
	compares with the benchmark	125
4.6	PSD of UFMC HWG windowing scheme, $N = 1024$, $M = 64$	
	QAM	126
4.7	PSD of UFMC CNW windowing scheme, $N = 1024$, $M = 64$	
	QAM	127
4.8	PSD of the F-OFDM Hanning windowing	130
4.9	PSD of the F-OFDM KHW windowing	130
4.10	PSD of the F-OFDM CNW windowing	131
4.11	The interference of the F-OFDM Hanning windowing	133
4.12	The interference of the F-OFDM CNW windowing	134
4.13	The BER performance of time domain windowing methods	
	based on the F-OFDM $N = 1024$, $M = 64$ QAM	135
4.14	The BER performance of time domain windowing methods	
	based on the UFMC $N = 1024$, $M = 64$ QAM	136
4.15	Comparison of the number of complex additions for various	
	Methods in time domain based on the F-OFDM	137
4.16	Comparison of the number of complex multiplications for	
	various methods in time domain based on the F-OFDM	139
4.17	Comparison of the number of complex additions for various	
	methods in time domain based on the UFMC	140

4.18	Comparison of the number of complex multiplications for	
	various methods in time domain based on the UFMC	141
4.19	PSD of frequency domain method based on FOFDM, $N =$	
	1024, <i>M</i> = 64 QAM	143
4.20	PSD of AW-windowing UFMC method	145
4.21	PSD of the UFMC, HSE-windowing F-OFDM method	147
4.22	BER of frequency domain windowing method based on F-	
	OFDM, $N = 1024$, $M = 64$ QAM	148
4.23	BER of frequency domain windowing method based UFMC,	
	N = 1024, M = 64QAM	149
4.24	Comparison of the number of complex additions for various	
	methods in frequency domain based on the F-OFDM	150
4.25	Comparison of the number of complex multiplications for	
	various methods in frequency domain based on the F-OFDM	151
4.26	Comparison of the number of complex additions for various	
	methods in frequency domain based on the UFMC	152
4.27	Comparison of the number of complex multiplications for	
	various methods in time domain based on the UFMC	153
4.28	The structure of the Combining method	154
4.29	PSD of the CP-OFDM, combining method F-OFDM method	155
4.30	PSD of the Combining method UFMC waveform	157
4.31	BER of the combining method in F-OFDM, $N = 1024$, $M =$	
	64QAM	159
4.32	BER of the combining method in UFMC, $N = 1024$, $M =$	
	64QAM	160
4.33	Comparison of the number of complex addition for various	
	methods	161
4.34	Comparison of the number of complex multiplications for	
	various algorithms	162

4.35	Comparison of the number of complex additions for various	
	algorithms	163
4.36	Comparison of the number of complex multiplications for	
	various algorithms	163
4.37	Coexistence universal windowing multicarrier waveform for	
	5G systems	165
4.38	Novel coexistence universal windowing multicarrier	
	waveform	166
4.39	Novel coexistence proposed 5G waveform with legacy	
	system	166
4.40	BER for coexistence 5G Waveform	167
4.41	BER for coexistence proposed 5G waveform with legacy	
	system	167
4.42	Benchmarking of proposed scheme with existing methods	
	according to the Table 4.10	176

LIST OF SYMBOLS AND ABBREVIATIONS

$T_{pts_s}^{groups}$	-	Type of Partitioning Method
Δf	-	Frequency Space between Subcarriers
3G	-	Third Generation
3GPP	-	Third Generation Partnership Project
4G	-	Fourth Generation
5G	-	Fifth Generation
ADC	-	Analog to Digital Converters
Ad-PTS	-	Adjacent Partitioning Scheme
AWGN	-	Additive White Gaussian Noise
В	-	Bandwidth of The Symbol
BER	-	Bit Error Rate
b_{v}	-	Phase Factors Elements
С	_	Number of The Candidate Signals
$C_{ m add}$	-	Number of Complex Addition Operations
CCDER		Computational Complexity Level
CCDF	-	Complementary Cumulative Distribution Function
C_{comp}	-	Number of Comparison Operations
CCRR+	-	Addition Operations Ratio
CCRR×	-	Multiplication Operations Ratio
CFO	-	Carrier Frequency Offset
C_{mult}	-	Number of Complex Multiplication Operations
СР	-	Cyclic Prefix
C-PTS	-	Conventional Partial Transmit Sequence
D/A	-	Digital to Analogue
DAB	-	Digital Audio Broadcasting
DAC	-	Digital to Analog Converters
dB	-	Decibel

DVB-H	-	Digital Video Broadcasting-Handheld
DVB-T	-	Digital Video Broadcasting-Terrestrial
E	-	Length of DFT Block
f(n)	-	Spectrum Shaping Filter
FBMC	-	Filter Bank Multi-Carrier
FFT	-	Fast Fourier Transform
FMT	-	Filtered Multi-Tone
F-OFDM	-	Filtered-Orthogonal Frequency Division Multiplexing
G-C-PTS	-	Grouping Complex Iteration PTS Algorithm
Gray-PTS	-	Gray Code PTS Algorithm
Н	-	Shift Number Sets
$h_{LPF}(n)$	-	Sinc Impulse Response
HPA	-	High Power Amplifier
H-PTS	_	Hybrid Random and Terminals Exchange Algorithm
I	-	Number of Iterations
IDFT	-	Inverse Discrete Fourie Transform
IFFT	-	Inverse Fast Fourier Transform
IL-PTS	0-1	Interleaving Partitioning Scheme
IoTPEK	-	Internet of Things
ISI	-	Inter-Symbol Interference
J	-	Concatenated Factor
k	-	Frequency Domain Index
Κ	-	Number of Interleavers
l	-	Number of The Intermediate Data Sequence Stages
L	-	Oversampling Factor
LFSR	-	Left Feedback Shift Register
LPF	-	Low Pass Filter
LTE	-	Long Term Evolution Standard
LTE-A	-	LTE-Advanced
LTE-A-Pro	-	LTE-Advanced-Pro

М	-	Constellation Order
M2M	-	Machine to Machine
MATLAB	-	Matrix Lab Software
M-PSK	-	Phase Shift Keying
M-QAM	-	Quadrature Amplitude Modulation
MSR	-	Multiple Signal Representation
n	-	Discrete-Time Index
Ν	-	Number of Subcarriers
n-l	-	Number of The IFFT Stages in Lim's Method
0	-	Filter Length
OFDM	-	Orthogonal Frequency Division Multiplexing
OOBE	-	Out-Of-Band Emission
P/S	-	Parallel to Serial Converter
PAPR	1	Peak-to-Average-Power Ratio
PAPR ₀	-	Threshold Value
PHY	-	Physical Layer
РМ	-	Number of Partitioning Methods
PR-PTS	5	Pseudo-Random Partitioning Scheme
PRV	-	Phase Rotation Vectors
PSD	-	Power Spectral Density
PTS	-	Partial Transmit Sequence
pts	-	Transformed Subblocks in The Time-Domain
PTS-F-OFDM	1-	F-OFDM Based on The PTS Technique
Q	-	Number of Cyclic Iterations
Q_n	-	Cost Function
r	-	Roll-Off Factor
RF	-	Radio Frequency
RRC	-	Rooted Raised Cosine Window
S/P	-	Serial to Parallel Converter
Sb-PTS	-	Subsets Partitioning PTS Scheme

SI	-	Number of Side Information Bits
SLM	-	Selective Level Mapping
SLM-CSS-PT	<i>S</i> -	Combining SLM and Cyclically Shift Sequence PTS
SNR	-	Signal-to-Noise Ratio
SS	-	Number of Conjugated Subblocks
SSCP	-	Number of Special Subblocks Circular Permutation
SS-PTS	-	Sine Shape PTS Scheme
Т	-	Total Time of The Symbol
U	-	Total Number of Phase Rotation Factors in SLM
UTHM	-	Universiti Tun Hussein Onn Malaysia
V	-	Number of Subblocks
V2V	-	Vehicle to Vehicle
W	-	Number of Allowed Phase Factors
<i>w</i> (<i>n</i>)	1	Windowing Mask Impulse Response
WLAN	-	Wireless Local Area Networks
WMAN	-	Wireless Metropolitan Area Networks
W_N	-	IFFT Matrix
W_N	5-1	Twiddle Factor
WPAN	-	Wireless Personal Area Networks
WRAN	-	Wireless Regional Area Networks
X(k)	-	OFDM Samples
x(n)	-	OFDM Time-Domain Samples
x ^{opt}	-	Optimum OFDM Signal
α	-	Determination Value
ω	-	Channel Effect

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	The Calculation Computational Complexity for the Time	196
	Domain	
В	The Calculation Computational Complexity for the	202
	Frequency Domain	
С	The Calculation Computational Complexity for Combining	206
	method	
D	List of Publications	209
E	Achievement	211
F	VITA	217

CHAPTER 1

INTRODUCTION

1.1 Research Background

Internet services and multimedia applications have extensively been utilized in recent times due to the rapid development of smart services, including smart machines, mobile computers, and smartphones. These applications and resources have emerged from an urgent need for everyday activities and lives. In addition, an exponential expansion of the mobile wireless communication networks imparted further impetus to necessitating the high-speed data rates, thus satisfying the market demands [1, 2]. Consequently, various techniques have been evolved to deal with the high-speed data transmission rates [3]. In this view, the cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) system can be regarded as a fundamental enabling technology for high-speed wireless communication [4].

technology for high-speed wireless communication [4]. Over the years, the wireless technology transformation from third-generation (3G) to fourth generation (4G) systems that mainly relies on the Cyclic Prefix – Orthogonal Frequency Division Multiplexing (CP-OFDM) scheme can be credited to the fundamental foundation for the waveform design in the 5th generation (5G) communication networks [5]. The CP-OFDM modulation technology has increasingly been gaining popularity in high-speed wireless communication environments because of its superior performance over other modulation techniques. The CP-OFDM modulation technology possesses high immunity against multipath fading [3], increased system capacity [4] [5] and efficient bandwidth utilization [6] [7]. Accordingly, diverse wireless communication systems have adopted the CP-OFDM design. Numerous studies have highlighted various limitations of the 4G communication network system in accomplishing the market demands [6], wherein

REFERENCES

- [1] R. K. Saha, "Spectrum Allocation and Reuse in 5G New Radio on Licensed and Unlicensed Millimeter-Wave Bands in Indoor Environments," *Mobile Information Systems*, vol. 2021, p. 5538820, 2021/04/05 2021.
- [2] L. Zhang, A. Ijaz, P. Xiao, M. M. Molu, and R. Tafazolli, "Filtered OFDM Systems, Algorithms, and Performance Analysis for 5G and Beyond," *IEEE Transactions on Communications*, vol. 66, no. 3, pp. 1205-1218, 2018.
- [3] Z. E. Ankaralı, B. Peköz, and H. Arslan, "Enhanced OFDM for 5G ran," *ZTE Communications*, vol. 15, no. S1, pp. 11-20, 2020.
- [4] A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, "5G evolution: A view on 5G cellular technology beyond 3GPP release 15," *IEEE Access*, vol. 7, pp. 127639-127651, 2019.
- [5] K. Sheth, K. Patel, H. Shah, S. Tanwar, R. Gupta, and N. Kumar, "A taxonomy of AI techniques for 6G communication networks," *Computer Communications*, vol. 161, pp. 279-303, 2020.
- [6] Nokia, Alcatel-Lucent, and S. Bell, "New radio waveforms for the Multi-Service Air Interface below 6 GHz," *R1-165012*, *Nanjing*, *China*, meeting vol. R1-165012, May 23–27 2016, Art. no. 3GPP TSG-RAN WG1 #85.
- [7] A. Gupta and R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," *IEEE Access*, vol. 3, pp. 1206-1232, 2015.
- [8] I. Baig, U. Farooq, N. U. Hasan, M. Zghaibeh, V. Jeoti, and M. Imran, "A Low PAPR Universal Filtered Multi-Carrier System for 5G Machine Type Communications," in *2019 Wireless Days (WD)*, 2019, pp. 1-4: IEEE.
- [9] A. F. Almutairi, M. Al-Gharabally, and A. Krishna, "Performance analysis of hybrid peak to average power ratio reduction techniques in 5G UFMC systems," *IEEE Access*, vol. 7, pp. 80651-80660, 2019.
- [10] Y. A. Al-Jawhar, K. N. Ramli, A. Mustapha, S. A. Mostafa, N. S. M. Shah, and M. A. Taher, "Reducing PAPR with low complexity for 4G and 5G waveform designs," *IEEE Access*, vol. 7, pp. 97673-97688, 2019.
- [11] Y. Liu, X. Chen, Z. Zhong, B. Ai, D. Miao, Z. Zhao, J. Sun, Y. Teng, and H. Guan, "Waveform design for 5G networks: Analysis and comparison," *IEEE Access*, vol. 5, pp. 19282-19292, 2017.
- G. Wunder, T. Wild, F. Schaich, D. Kténas, J. Baptiste Doré, I. Gaspar, and G. Fettweis, "New Waveforms for New Services in 5G," in *Orthogonal Waveforms and Filter Banks for Future Communication Systems*, M. Renfors, X. Mestre, E. Kofidis, and F. Bader, Eds. Cambridge: Academic Press, 2017, pp. 3-33.
- [13] T. Poornima, K. Dhinesh, and R. Sudhakar, "Waveform candidates for 5G mobile communications," in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2017, pp. 856-860.

- [14] R. Gerzaguet, N. Bartzoudis, L. G. Baltar, V. Berg, J.-B. Doré, D. Kténas, O. Font-Bach, X. Mestre, M. Payaró, M. Färber, and K. Roth, "The 5G candidate waveform race: a comparison of complexity and performance," *EURASIP Journal on Wireless Communications and Networking*, journal article vol. 2017, no. 1, p. 13, January 11 2017.
- [15] A. R. Jafri, J. Majid, M. A. Shami, M. A. Imran, and M. Najam-Ul-Islam, "Hardware Complexity Reduction in Universal Filtered Multicarrier Transmitter Implementation," *IEEE Access*, vol. 5, pp. 13401-13408, 2017.
- [16] R. Gerzaguet, Y. Medjahdi, D. Demmer, R. Zayani, J. Doré, H. Shaiek, and D. Roviras, "Comparison of promising candidate waveforms for 5G: WOLA-OFDM versus BF-OFDM," in 2017 International Symposium on Wireless Communication Systems (ISWCS), 2017, pp. 355-359.
- [17] S. Gökceli, B. Canli, and G. K. Kurt, "Universal filtered multicarrier systems: Testbed deployment of a 5G waveform candidate," in 2016 IEEE 37th Sarnoff Symposium, 2016, pp. 94-99.
- [18] X. Yang, S. Yan, X. Li, and F. Li, "A Unified Spectrum Formulation for OFDM, FBMC, and F-OFDM," *Electronics*, vol. 9, no. 8, p. 1285, 2020.
- [19] C. Goztepe and G. K. Kurt, "The impact of out of band emissions: A measurement based performance comparison of UF-OFDM and CP-OFDM," *Physical Communication*, vol. 33, pp. 78-89, 2019.
- [20] P. N. Rani and C. S. Rani, "UFMC: The 5G modulation technique," in 2016 *IEEE International Conference on Computational Intelligence and Computing Research (ICCIC)*, 2016, pp. 1-3.
- [21] D. Wu, X. Zhang, J. Qiu, L. Gu, Y. Saito, A. Benjebbour, and Y. Kishiyama, "A Field Trial of f-OFDM toward 5G," in 2016 IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1-6.
- [22] X. Cheng, Y. He, B. Ge, and C. He, "A Filtered OFDM Using FIR Filter Based on Window Function Method," in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1-5.
- [23] X. Zhang, L. Chen, J. Qiu, and J. Abdoli, "On the waveform for 5G," *IEEE Communications Magazine*, vol. 54, no. 11, pp. 74-80, 2016.
- Y. Medjahdi, S. Traverso, R. Gerzaguet, H. Shaiek, R. Zayani, D. Demmer, R. Zakaria, J.-B. Doré, M. B. Mabrouk, and D. Le Ruyet, "On the road to 5G: Comparative study of physical layer in MTC context," *IEEE Access*, vol. 5, pp. 26556-26581, 2017.
- [25] Y. Medjahdi, S. Traverso, R. Gerzaguet, H. Shaïek, R. Zayani, D. Demmer, R. Zakaria, J. Doré, M. B. Mabrouk, D. L. Ruyet, Y. Louët, and D. Roviras, "On the Road to 5G: Comparative Study of Physical Layer in MTC Context," *IEEE Access*, vol. 5, pp. 26556-26581, 2017.
- [26] S. Wei, H. Li, W. Zhang, and W. Cheng, "A comprehensive performance evaluation of universal filtered multi-carrier technique," *IEEE Access*, vol. 7, pp. 81429-81440, 2019.
- [27] N. Taşpinar and Ş. Şimşir, "PAPR Reduction Based on Partial Transmit Sequence Technique in UFMC Waveform," in 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 2019, pp. 1-6: IEEE.
- [28] S. A. Fathy, M. N. Ibrahim, S. S. Elagooz, and H. M. El-Hennawy, "Efficient SLM Technique for PAPR Reduction in UFMC Systems," in 2019 36th National Radio Science Conference (NRSC), 2019, pp. 118-125: IEEE.
- [29] K. Liu, Y. Ge, and Y. Liu, "An Efficient Piecewise Nonlinear Companding Transform for PAPR Reduction in UFMC Systems," in 2019 IEEE/CIC

International Conference on Communications in China (ICCC), 2019, pp. 730-734: IEEE.

- [30] M. Lin, Q. Huang, T. de Cola, J.-B. Wang, J. Wang, M. Guizani, and J.-Y. Wang, "Integrated 5G-satellite networks: A perspective on physical layer reliability and security," *IEEE Wireless Communications*, vol. 27, no. 6, pp. 152-159, 2020.
- [31] R. BS, "Performance Analysis of OFDM, FBMC and UFMC Modulation Schemes for 5G Mobile Communication MIMO systems," 2021.
- [32] M. Ishibashi, M. Umehira, W. Xiaoyan, and S. Takeda, "FFT-based frequency domain filter design for multichannel overlap-windowed-DFTs-OFDM signals," in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1-5: IEEE.
- [33] A. Hazareena, "UFMC System Performance Analysis for 5G Cellular Networks," *Turkish Journal of Computer and Mathematics Education (TURCOMAT)*, vol. 12, no. 10, pp. 162-167, 2021.
- [34] R. S. Yarrabothu and U. R. Nelakuditi, "Optimization of out-of-band emission using kaiser-bessel filter for UFMC in 5G cellular communications," *China Communications*, vol. 16, no. 8, pp. 15-23, 2019.
- [35] S. Gopi and S. Kalyani, "An Optimized SLM for PAPR Reduction in Noncoherent OFDM-IM," *IEEE Wireless Communications Letters*, 2020.
- [36] M. Mounir, M. B. El Mashade, and G. S. Gaba, "Nature-Inspired-Based PTS for PAPR Reduction in OFDM Systems," in *Nature-Inspired Computing Applications in Advanced Communication Networks*: IGI Global, 2020, pp. 57-88.
- [37] B. Cai, W. Xie, and H. Guo, "Analysis and Field Trial on Interference Coexistence of 5G NR and 4G LTE Dynamic Spectrum Sharing," in 2021 International Wireless Communications and Mobile Computing (IWCMC), 2021, pp. 1281-1285: IEEE.
- [38] L. Wan, Z. Guo, and X. Chen, "Enabling efficient 5G NR and 4G LTE coexistence," *IEEE Wireless Communications*, vol. 26, no. 1, pp. 6-8, 2019.
- [39] R. Ahmed, T. Wild, and F. Schaich, "Coexistence of UF-OFDM and CP-OFDM," in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1-5.
- [40] X. Zhang, X. Wang, and Z. Chen, "A transceiver modification for universal filtered multicarrier scheme in 5G cellular network," in 2018 IEEE International Conference on Communications (ICC), 2018, pp. 1-6: IEEE.
- [41] P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, "Modulation Formats and Waveforms for 5G Networks: Who Will Be the Heir of OFDM?: An overview of alternative modulation schemes for improved spectral efficiency," *IEEE Signal Processing Magazine*, vol. 31, no. 6, pp. 80-93, 2014.
- [42] H. Huawei, "F-OFDM scheme and filter design, R1-165425," May 23 27, 2016., Available: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/R1-165425.zip.
- [43] G. Wunder, R. F. Fischer, H. Boche, S. Litsyn, and J.-S. No, "The PAPR problem in OFDM transmission: New directions for a long-lasting problem," *IEEE Signal Processing Magazine*, vol. 30, no. 6, pp. 130-144, 2013.

- [44] J. Abdoli, M. Jia, and J. Ma, "Filtered OFDM: A new waveform for future wireless systems," in *Signal Processing Advances in Wireless Communications* (SPAWC), 2015 IEEE 16th International Workshop on, 2015, pp. 66-70: IEEE.
- [45] S. Mohammady, R. Farrell, D. Malone, and J. Dooley, "Performance Investigation of Peak Shrinking and Interpolating the PAPR Reduction Technique for LTE-Advance and 5G Signals," *Information*, vol. 11, no. 1, p. 20, 2020.
- [46] C. An, B. Kim, and H.-G. Ryu, "WR-OFDM system and OOB spectrum comparison," in 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), 2017, pp. 373-377: IEEE.
- [47] E. Kofidis, M. Renfors, J. Louveaux, X. Mestre, D. Gregoratti, D. Le Ruyet, and R. Zakaria, "Chapter 14 - MIMO-FBMC Receivers," in *Orthogonal Waveforms and Filter Banks for Future Communication Systems*, M. Renfors, X. Mestre, E. Kofidis, and F. Bader, Eds.: Academic Press, 2017, pp. 375-406.
- [48] H. Lin, "Flexible configured OFDM for 5G air interface," *IEEE Access*, vol. 3, pp. 1861-1870, 2015.
- [49] Q. Incorporated, "Waveform Candidates," 3GPP, Busan, Korea, Report 2016.
- [50] R. Gerzaguet, Y. Medjahdi, D. Demmer, R. Zayani, J.-B. Dore, H. Shaiek, and D. Roviras, "Comparison of Promising Candidate Waveforms for 5G: WOLA-OFDM Versus BF-OFDM."
- [51] H. Kim, "Time Spread-Windowed OFDM for Spectral Efficiency Improvement," (in english), *IEEE Wireless Communications Letters*, vol.no. 5, pp. .696-699, 2018.
- [52] B. Farhang, "OFDM versus filter bank multicarrier," *IEEE Signal Processing Magazine*, vol. 28, no. 3, pp. 92-112, 2011.
- [53] D.-J. Han, J. Moon, J.-y. Sohn, S. Jo, and J. H. Kim, "Combined window-filter waveform design with transmitter-side channel state information," *IEEE Transactions on Vehicular Technology*, vol. 67, no. 9, pp. 8959-8963, 2018.
- [54] L. Yang and Y. Xu, "Filtered-OFDM system performance research based on Nuttall's Blackman-Harris window," in 2017 IEEE 17th International Conference on Communication Technology (ICCT), 2017, pp. 687-691.
- [55] C. An, B. Kim, and H. Ryu, "WF-OFDM (windowing and filtering OFDM) system for the 5G new radio waveform," in 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1-4, 2017.
- [56] S. H. Han and J. H. Lee, "PAPR reduction of OFDM signals using a reduced complexity PTS technique," *IEEE Signal Processing Letters*, vol. 11, no. 11, pp. 887-890, 2004.
- [57] T. Saha, S. Chakrabarty, S. Bhattacharjee, and S. Sil, "Algorithm based new Tone Reservation method for mitigating PAPR in OFDM systems," *International Journal of Electronics and Telecommunications*, vol. 63, no. 3, pp. 293-298, 2017.
- [58] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, "What will 5G be?," *IEEE Journal on Selected Areas in Communications*, vol. 32, no. 6, pp. 1065-1082, 2014.
- [59] X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, "Filtered-OFDM-enabler for flexible waveform in the 5th generation cellular networks," in *Global Communications Conference (GLOBECOM),IEEE*, pp. 1-6:,2015.
- [60] X. Chen, L. Wu, Z. Zhang, J. Dang, and J. Wang, "Adaptive Modulation and Filter Configuration in Universal Filtered Multi-Carrier Systems," *IEEE*

Transactions on Wireless Communications, vol. 17, no. 3, pp. 1869-1881, 2018.

- [61] J. Nadal, C. A. Nour, and A. Baghdadi, "Novel UF-OFDM Transmitter: Significant Complexity Reduction Without Signal Approximation," *IEEE Transactions on Vehicular Technology*, vol. 67, no. 3, pp. 2141-2154, 2018.
- [62] M. Kasmi, S. Mhatli, F. Bahloul, I. Dayoub, and K. Oh, "Performance analysis of UFMC waveform in graded index fiber for 5G communications and beyond," *Optics Communications*, vol. 454, p. 124360, 2020.
- [63] J. Wen, J. Hua, W. Lu, Y. Zhang, and D. Wang, "Design of Waveform Shaping Filter in the UFMC System," *IEEE Access*, vol. 6, pp. 32300-32309, 2018.
- [64] M. Matthe, D. Zhang, F. Schaich, T. Wild, R. Ahmed, and G. Fettweis, "A reduced complexity time-domain transmitter for UF-OFDM," in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1-5: IEEE.
- [65] G. Suiyan, X. Xin, C. Linlin, Z. Xiongwen, and H. Biao, "UFMC system performance analysis for discrete narrow-band private networks," in 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 2015, pp. 303-307.
- [66] V. Vakilian, T. Wild, F. Schaich, S. t. Brink, and J. Frigon, "Universal-filtered multi-carrier technique for wireless systems beyond LTE," in 2013 IEEE Globecom Workshops (GC Workshps), pp. 223-228, 2013.
- [67] F. Schaich and T. Wild, "Waveform contenders for 5G—OFDM vs. FBMC vs. UFMC," in *Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on,* 2014, pp. 457-460: IEEE.
- [68] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon, "Universalfiltered multi-carrier technique for wireless systems beyond LTE," in *Globecom Workshops (GC Wkshps), 2013 IEEE*, 2013, pp. 223-228: IEEE.
- [69] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Ten Brink,
 I. Gaspar, N. Michailow, and A. Festag, "5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications," *IEEE Communications Magazine*, vol. 52, no. 2, pp. 97-105, 2014.
- [70] T. Yunzheng, L. Long, L. Shang, and Z. Zhi, "A survey: Several technologies of non-orthogonal transmission for 5G," *China Communications*, vol. 12, no. 10, pp. 1-15, 2015.
- [71] F. Schaich, T. Wild, and Y. Chen, "Waveform contenders for 5G-suitability for short packet and low latency transmissions," in *Vehicular Technology Conference (VTC Spring), 2014 IEEE 79th,* 2014, pp. 1-5: IEEE.
- [72] T. Wild and F. Schaich, "A reduced complexity transmitter for UF-OFDM," in Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st, 2015, pp. 1-6: IEEE.
- [73] A. Roessler, "5G Waveform Candidates Application Note," Rohde&Schwarz, Munich, Germany, Tech. Rep. 1MA271 ,2016.
- [74] F.-L. Luo and C. Zhang, Signal processing for 5G: algorithms and implementations. John Wiley & Sons, 2016.
- [75] Y. Liu, X. Chen, Z. Zhong, B. Ai, D. Miao, Z. Zhao, J. Sun, Y. Teng, and H. Guan, "Waveform Candidates for 5G Networks: Analysis and Comparison," arXiv preprint arXiv:1609.02427, 2016.
- [76] J. Li, E. Bala, and R. Yang, "Resource block Filtered-OFDM for future spectrally agile and power efficient systems," *Physical Communication*, vol. 11, pp. 36-55, 2014/06/01/ 2014.

- [77] J. Wang, A. Jin, D. Shi, L. Wang, H. Shen, D. Wu, L. Hu, L. Gu, L. Lu, and Y. Chen, "Spectral Efficiency Improvement with 5G Technologies: Results from Field Tests," *IEEE Journal on Selected Areas in Communications*, 2017.
- [78] A. Ijaz, L. Zhang, P. Xiao, and R. Tafazolli, "Analysis of Candidate Waveforms for 5G Cellular Systems," in *Towards 5G Wireless Networks - A Physical Layer Perspective*, H. K. Bizaki, Ed. Rijeka: InTech, 2016, p. Ch. 01.
- [79] R. Ahmed, T. Wild, and F. Schaich, "Coexistence of UF-OFDM and CP-OFDM," in *Vehicular Technology Conference (VTC Spring), 2016 IEEE 83rd*, 2016, pp. 1-5: IEEE.
- [80] B. Saltzberg, "Performance of an efficient parallel data transmission system," *IEEE Transactions on Communication Technology*, vol. 15, no. 6, pp. 805-811, 1967.
- [81] M. Bellanger, D. Le Ruyet, D. Roviras, M. Terré, J. Nossek, L. Baltar, Q. Bai, D. Waldhauser, M. Renfors, and T. Ihalainen, "FBMC physical layer: a primer," *PHYDYAS, January*, vol. 25, no. 4, pp. 7-10, 2010.
- [82] N. Moret and A. M. Tonello, "Design of orthogonal filtered multitone modulation systems and comparison among efficient realizations," *EURASIP Journal on Advances in Signal Processing*, vol. 2010, no. 1, p. 141865, 2010.
- [83] M. Bellanger, "Physical layer for future broadband radio systems," in *Radio* and Wireless Symposium (RWS), 2010 IEEE, 2010, pp. 436-439: IEEE.
- [84] M. Bellanger, "Efficiency of filter bank multicarrier techniques in burst radio transmission," in *Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE*, 2010, pp. 1-4: IEEE.
- [85] J. Bazzi, P. Weitkemper, K. Kusume, A. Benjebbour, and Y. Kishiyama, "Design and performance tradeoffs of alternative multi-carrier waveforms for 5G," in *Globecom Workshops (GC Workshps), 2015 IEEE*, 2015, pp. 1-6: IEEE.
- [86] D. Na and K. Choi, "Low PAPR FBMC," *IEEE Transactions on Wireless Communications*, vol. 17, no. 1, pp. 182-193, 2018.
- [87] I. Galdino, R. Zakaria, D. Le Ruyet, and M. L. De Campos, "Short-Filter design for intrinsic interference reduction in QAM-FBMC modulation," *IEEE Communications Letters*, 2020.
- [88] A. Hasan, M. Zeeshan, M. A. Mumtaz, and M. W. Khan, "PAPR reduction of FBMC-OQAM using A-law and Mu-law companding," in *2018 ELEKTRO*, 2018, pp. 1-4.
- [89] N. Maziar, W. Yue, T. Milos, W. Shangbin, Q. Yinan, and A.-I. Mohammed, "Overview of 5G modulation and waveforms candidates," *Journal of Communications and Information Networks*, vol. 1, no. 1, pp. 44-60, 2016.
- [90] R. Nissel, S. Schwarz, and M. Rupp, "Filter Bank Multicarrier Modulation Schemes for Future Mobile Communications," *IEEE Journal on Selected Areas in Communications*, vol. 35, no. 8, pp. 1768-1782, 2017.
- [91] S. S. Helwa, M. Ibrahim, and S. Elramly, "Universal Filtered Multi-carrier Performance Analysis with Multipath Fading Channels," in *Next Generation Mobile Applications, Security and Technologies (NGMAST), 2016 10th International Conference on,* 2016, pp. 35-40: IEEE.
- [92] S. Hong, M. Sagong, C. Lim, S. Cho, K. Cheun, and K. Yang, "Frequency and quadrature-amplitude modulation for downlink cellular OFDMA networks," *IEEE journal on selected areas in communications*, vol. 32, no. 6, pp. 1256-1267, 2014.

- [93] M. J. Abdoli, M. Jia, and J. Ma, "Weighted circularly convolved filtering in OFDM/OQAM," in *Personal Indoor and Mobile Radio Communications* (*PIMRC*), 2013 IEEE 24th International Symposium on, 2013, pp. 657-661: IEEE.
- [94] G. Fettweis, M. Krondorf, and S. Bittner, "GFDM-generalized frequency division multiplexing," in *Vehicular Technology Conference*, 2009. VTC Spring 2009. IEEE 69th, 2009, pp. 1-4: IEEE.
- [95] V. W. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang, *Key Technologies for* 5G Wireless Systems. Cambridge University Press, 2017.
- [96] N. Michailow, I. Gaspar, S. Krone, M. Lentmaier, and G. Fettweis, "Generalized frequency division multiplexing: Analysis of an alternative multi-carrier technique for next generation cellular systems," in *Wireless Communication Systems (ISWCS), 2012 International Symposium on, 2012,* pp. 171-175: IEEE.
- [97] N. Michailow, M. Matthé, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, "Generalized frequency division multiplexing for 5th generation cellular networks," *IEEE Transactions on Communications*, vol. 62, no. 9, pp. 3045-3061, 2014.
- [98] G. R. Al-Juboori, A. Doufexi, and A. R. Nix, "System level 5G evaluation of GFDM waveforms in an LTE-A platform," in *Wireless Communication Systems (ISWCS), 2016 International Symposium on,* 2016, pp. 335-340: IEEE.
- [99] I. S. Gaspar, L. L. Mendes, N. Michailow, and G. Fettweis, "A synchronization technique for generalized frequency division multiplexing," *EURASIP Journal on Advances in Signal Processing*, vol. 2014, no. 1, p. 67, 2014.
- [100] R. Datta, N. Michailow, M. Lentmaier, and G. Fettweis, "GFDM interference cancellation for flexible cognitive radio PHY design," in *Vehicular Technology Conference (VTC Fall), 2012 IEEE*, 2012, pp. 1-5: IEEE.
- [101] D. Jeon, S. Kim, B. Kwon, H. Lee, and S. Lee, "Prototype filter design for QAM-based filter bank multicarrier system," *Digital Signal Processing*, vol. 57, pp. 66-78, 2016/10/01/ 2016.
- [102] A. Farhang, N. Marchetti, and L. E. Doyle, "Low-Complexity Modem Design for GFDM," *IEEE Transactions on Signal Processing*, vol. 64, no. 6, pp. 1507-1518, 2016.
- [103] A. Aminjavaheri, A. Farhang, A. Rezazadeh, and B. Farhang-Boroujeny, "Impact of timing and frequency offsets on multicarrier waveform candidates for 5G," in *Signal Processing and Signal Processing Education Workshop* (SP/SPE), 2015 IEEE, 2015, pp. 178-183: IEEE.
- [104] I. F. Akyildiz, S. Nie, S.-C. Lin, and M. Chandrasekaran, "5G roadmap: 10 key enabling technologies," *Computer Networks*, vol. 106, pp. 17-48, 2016.
- [105] A. Farhang, N. Marchetti, and L. E. Doyle, "Low-Complexity Modem Design for GFDM," *IEEE Transactions. Signal Processing*, vol. 64, no. 6, pp. 1507-1518, 2016.
- [106] P. Siohan, C. Siclet, and N. Lacaille, "Analysis and design of OFDM/OQAM systems based on filterbank theory," *IEEE Transactions on Signal Processing*, vol. 50, no. 5, pp. 1170-1183, 2002.
- [107] M. Agiwal, N. Saxena, and A. Roy, "Ten Commandments of Emerging 5G Networks," *Wireless Personal Communications*, pp. 1-31, 2017.
- [108] H. Huawei, "F-OFDM Scheme and Filter Design," *R1-165425*, China, May 23–27, 2016.

- [109] R. Vannithamby and S. Talwar, *Towards 5G: Applications, Requirements and Candidate Technologies*. John Wiley & Sons, 2017.
- [110] M. Van Eeckhaute, A. Bourdoux, P. De Doncker, and F. Horlin, "Performance of emerging multi-carrier waveforms for 5G asynchronous communications," *EURASIP Journal on wireless communications and networking*, vol. 2017, no. 1, p. 29, 2017.
- [111] M. Schellmann, Z. Zhao, H. Lin, P. Siohan, N. Rajatheva, V. Luecken, and A. Ishaque, "FBMC-based air interface for 5G mobile: Challenges and proposed solutions," in *Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)*, 2014 9th International Conference on, 2014, pp. 102-107: IEEE.
- [112] T. Wild, F. Schaich, and Y. Chen, "5G air interface design based on universal filtered (UF-) OFDM," in *Digital Signal Processing (DSP), 2014 19th International Conference on*, 2014, pp. 699-704: IEEE.
- [113] D. Wu, X. Zhang, J. Qiu, L. Gu, Y. Saito, A. Benjebbour, and Y. Kishiyama, "A field trial of f-OFDM toward 5G," in *Globecom Workshops (GC Wkshps)*, 2016 IEEE, 2016, pp. 1-6: IEEE.
- [114] D. Gottlieb and C.-W. Shu, "On the Gibbs phenomenon and its resolution," Survey and Review (*SIAM review*), vol. 39, no. 4, pp. 644-668, 1997.
- [115] A. Ijaz, L. Zhang, P. Xiao, and R. Tafazolli, "Analysis of Candidate Waveforms for 5G Cellular Systems," in *Towards 5G Wireless Networks-A Physical Layer Perspective*: InTech, 2016.
- [116] Y. Wang, G. Liu, and T. Sun, "SS-OFDM: A low complexity method to improve spectral efficiency," in *Visual Communications and Image Processing* (*VCIP*), pp. 1-4: IEEE, 2016.
- [117] S. Gökceli and B. Canli, "Universal filtered multicarrier systems: Testbed deployment of a 5G waveform candidate," in *Sarnoff Symposium, IEEE 37th*, pp. 94-99: IEEE, 2016.
- [118] G. Bochechka, V. Tikhvinskiy, I. Vorozhishchev, A. Aitmagambetov, and B. Nurgozhin, "Comparative analysis of UFMC technology in 5G networks," in *Control and Communications (SIBCON), International Siberian Conference on*, pp. 1-6: IEEE, 2017.
- [119] E. Öztürk, E. Basar, and H. A. Çirpan, "Generalized Frequency Division Multiplexing With Flexible Index Modulation," *IEEE Access*, 2017.
- [120] M. Mukherjee, L. Shu, V. Kumar, P. Kumar, and R. Matam, "Reduced out-ofband radiation-based filter optimization for UFMC systems in 5G," in 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1150-1155, 2015.
- [121] A. A. Sahrab and A. D. Yaseen, "Filtered orthogonal frequency division multiplexing for improved 5G systems," *Bulletin of Electrical Engineering and Informatics*, vol. 10, no. 4, pp. 2079-2087, 2021.
- [122] J. A. Bingham, "RFI suppression in multicarrier transmission systems," in Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference, vol. 2, pp. 1026-1030: IEEE, 1996.
- [123] Z. E. Ankaralı, A. Şahin, and H. Arslan, "Joint time-frequency alignment for PAPR and OOBE suppression of OFDM-based waveforms," *IEEE Communications Letters*, vol. 21, no. 12, pp. 2586-2589, 2017.
- [124] A. Hammoodi, L. Audah, and M. A. Taher, "Green coexistence for 5G waveform candidates: a review," *IEEE Access*, vol. 7, pp. 10103-10126, 2019.

- [125] T. A. Weiss and F. K. Jondral, "Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency," *IEEE communications Magazine*, vol. 42, no. 3, pp. S8-14, 2004.
- [126] M. S. El-Saadany, A. F. Shalash, and M. Abdallah, "Revisiting active cancellation carriers for shaping the spectrum of OFDM-based cognitive radios," in 2009 IEEE Sarnoff Symposium, 2009, pp. 1-5: IEEE.
- [127] A. Sahin and H. Arslan, "Edge windowing for OFDM based systems," *IEEE Communications Letters*, vol. 15, no. 11, pp. 1208-1211, 2011.
- [128] J. A. Sheikh, Z. I. Mir, S. A. Parah, and G. M. Bhat, "A New Filter Bank Multicarrier (FBMC) Based Cognitive Radio for 5G Networks Using Optimization Techniques," *Wireless Personal Communications*, pp. 1-16, 2020.
- [129] K. Hussain and R. López-Valcarce, "Optimal Window Design for W-OFDM," in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 5275-5289: IEEE.
- [130] H. Huawei, "5G waveform: requirements and design principles," *3GPP Standard Contribution (R1-162151), Busan, Korea,* 2016.
- [131] B. Farhang-Boroujeny and C. Yuen, "Cosine Modulated and Offset QAM Filter Bank Multicarrier Techniques: A Continuous-Time Prospect," *EURASIP Journal on Advances in Signal Processing*, vol. 2010, no. 1, p. 165654, February 08 2010.
- [132] D. Qu, Z. Wang, and T. Jiang, "Extended Active Interference Cancellation for Sidelobe Suppression in Cognitive Radio OFDM Systems With Cyclic Prefix," *IEEE Transactions on Vehicular Technology*, vol. 59, no. 4, pp. 1689-1695, 2010.
- [133] S. Brandes, I. Cosovic, and M. Schnell, "Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers," *IEEE communications letters*, vol. 10, no. 6, pp. 420-422, 2006.
- [134] W. Ding, F. Yang, and J. Song, "Novel approach to shape the spectrum for TDS-OFDM systems with cancellation carriers," in 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, 2014, pp. 1-4: IEEE.
- [135] J.-L. Jiang, C.-D. Chung, and W.-C. Chen, "Cancellation Symbol Insertion for Spectrally Compact OFDM Pilot Waveform," in 2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020, pp. 1-6: IEEE.
- [136] J. van de Beek, "Orthogonal multiplexing in a subspace of frequency welllocalized signals," *IEEE communications letters*, vol. 14, no. 10, pp. 882-884, 2010.
- [137] M. Ma, X. Huang, B. Jiao, and Y. J. Guo, "Optimal orthogonal precoding for power leakage suppression in DFT-based systems," *IEEE Transactions on Communications*, vol. 59, no. 3, pp. 844-853, 2010.
- [138] T. Taheri, M. Mohamad, R. Nilsson, and J. van de Beek, "Joint spectral-spatial precoders in MIMO-OFDM transmitters," *Signal Processing*, p. 107538, 2020.
- [139] I. Cosovic, S. Brandes, and M. Schnell, "Subcarrier weighting: a method for sidelobe suppression in OFDM systems," *IEEE Communications Letters*, vol. 10, no. 6, pp. 444-446, 2006.
- [140] A. Elahi, A. Ahmed, N. Gul, R. Ahmed, and M. Kamran, "A Mongrel Technique for the Reducation of Sidelobes in OFDM–Based Cognitive Radio System," in 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2020, pp. 686-689: IEEE.

- [141] A. F. Demir and H. Arslan, "Inter-numerology Interference Management with Adaptive Guards: A Cross-layer Approach," *IEEE Access*, vol. 8, pp. 30378-30386, 2020.
- [142] V. Kumar, S. Bangar, S. N. Kumar, and S. Jit, "Design of effective window function for FIR filters," in 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014), 2014, pp. 1-5: IEEE.
- [143] M. Renfors and J. Yli-Kaakinen, "Chapter 5 Multirate Signal Processing and Filterbanks," in Orthogonal Waveforms and Filter Banks for Future Communication Systems, M. Renfors, X. Mestre, E. Kofidis, and F. Bader, Eds.: Academic Press, 2017, pp. 89-104.
- [144] M. Jain, A. S. Mandloi, A. Parihar, and R. Shrivastava, "A new spectral efficient window for designing of efficient FIR filter," in 2015 International Conference on Computer, Communication and Control (IC4), 2015, pp. 1-4: IEEE.
- [145] L. Jiang, H. Zhang, S. Cheng, H. Lv, and P. Li, "An overview of FIR filter design in future multicarrier communication systems," *Electronics*, vol. 9, no. 4, p. 599, 2020.
- [146] F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," *Proceedings of the IEEE*, vol. 66, no. 1, pp. 51-83, 1978.
- [147] L. Zhang, A. Ijaz, P. Xiao, and R. Tafazolli, "Multi-Service System: An Enabler of Flexible 5G Air Interface," *IEEE Communications Magazine*, vol. 55, no. 10, pp. 152-159, 2017.
- [148] M. Mukherjee, R. Y. Chang, and V. Kumar, "OFDM-based overlay cognitive radios with improved spectral leakage suppression for future generation communications," in 2015 IEEE Wireless Communications and Networking Conference (WCNC), 2015, pp. 434-439: IEEE.
- [149] X. Zhou, G. Y. Li, and G. Sun, "Multiuser spectral precoding for OFDM-based cognitive radio systems," *IEEE Journal on Selected Areas in Communications*, vol. 31, no. 3, pp. 345-352, 2013.
- [150] X. Zhou, G. Y. Li, and G. Sun, "Low-complexity spectrum shaping for OFDMbased cognitive radios," in 2011 IEEE Wireless Communications and Networking Conference, 2011, pp. 1471-1475: IEEE.
- [151] G. Berardinelli, K. I. Pedersen, T. B. Sorensen, and P. Mogensen, "Generalized DFT-Spread-OFDM as 5G Waveform," *IEEE Communications Magazine*, vol. 54, no. 11, pp. 99-105, 2016.
- [152] E. Bala, J. Li, and R. Yang, "Shaping spectral leakage: A novel low-complexity transceiver architecture for cognitive radio," *IEEE Vehicular Technology Magazine*, vol. 8, no. 3, pp. 38-46, 2013.
- [153] K. Mizutani, Z. Lan, and H. Harada, "Time-domain windowing design for IEEE 802.11 af based TVWS-WLAN systems to suppress out-of-band emission," *IEICE Transactions on Communications*, vol. 97, no. 4, pp. 875-885, 2014.
- [154] F. Conceição, M. Gomes, V. Silva, and R. Dinis, "An OFDM-based waveform with high spectral efficiency," *IEEE Communications Letters*, 2020.
- [155] C. An, B. Kim, and H.-G. Ryu, "WF-OFDM (windowing and filtering OFDM) system for the 5G new radio waveform," in 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2017, pp. 1-4: IEEE.

- [156] F. Schaich, T. Wild, and Y. Chen, "Waveform Contenders for 5G Suitability for Short Packet and Low Latency Transmissions," in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), 2014, pp. 1-5.
- [157] Y. A. Jawhar, L. Audah, M. A. Taher, K. N. Ramli, N. S. M. Shah, M. Musa, and M. S. Ahmed, "A review of partial transmit sequence for PAPR reduction in the OFDM systems," *IEEE Access*, vol. 7, pp. 18021-18041, 2019.
- [158] Y. Medjahdi, R. Zayani, H. Shaiek, and D. Roviras, "Wola processing: A useful tool for windowed waveforms in 5G with relaxed synchronicity," in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), 2017, pp. 393-398: IEEE.
- [159] A. Kumar and M. Magarini, "Improved Nyquist pulse shaping filters for generalized frequency division multiplexing," in 2016 8th IEEE Latin-American Conference on Communications (LATINCOM), 2016, pp. 1-7: IEEE.
- [160] Y. Tian, D. Chen, K. Luo, and T. Jiang, "Prototype Filter Design to Minimize Stopband Energy With Constraint on Channel Estimation Performance for OQAM/FBMC Systems," *IEEE Transactions on Broadcasting*, pp. 1-10, 2018.
- [161] S. Haykin, "Cognitive radio: brain-empowered wireless communications," *IEEE journal on selected areas in communications*, vol. 23, no. 2, pp. 201-220, 2005.
- [162] M. Shaat and F. Bader, "Computationally efficient power allocation algorithm in multicarrier-based cognitive radio networks: OFDM and FBMC systems," *EURASIP Journal on Advances in Signal Processing*, vol. 2010, no. 1, p. 528378, 2010.
- [163] H. A. Mahmoud, T. Yucek, and H. Arslan, "OFDM for cognitive radio: merits and challenges," *IEEE wireless communications*, vol. 16, no. 2, 2009.
- [164] A. M. Tonello, "Performance limits for filtered multitone modulation in fading channels," *IEEE Transactions on Wireless Communications*, vol. 4, no. 5, pp. 2121-2135, 2005.
- [165] M. Renfors, "D2. 1: FB-MC and enhanced OFDM schemes," *Project ICT-Emphatic, Tech. Rep*, 2013.
- [166] M. Bellanger, D. Mattera, and M. Tanda, "A filter bank multicarrier scheme running at symbol rate for future wireless systems," in *Wireless Telecommunications Symposium (WTS)*, 2015, 2015, pp. 1-5: IEEE.
- [167] D. Noguet, M. Gautier, and V. Berg, "Advances in opportunistic radio technologies for TVWS," *EURASIP Journal on Wireless Communications and Networking*, journal article vol. 2011, no. 1, p. 170, November 15 2011.
- [168] N. Michailow, M. Lentmaier, P. Rost, and G. Fettweis, "Integration of a GFDM secondary system in an OFDM primary system," in *Future Network & Mobile Summit*, pp. 1-8: IEEE, 2011.
- [169] E. N. Ayvaz, M. Maraş, M. Gömeç, A. Savaşcıhabeş, and A. Özen, "A Novel Concatenated LWT and WHT Based UFMC Waveform Design for the Next Generation Wireless Communication Systems," *IEEJ Transactions on Electrical and Electronic Engineering*, vol. 16, no. 5, pp. 743-753, 2021.
- [170] M. G. Bellanger, "Specification and design of a prototype filter for filter bank based multicarrier transmission," in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 2001, vol. 4, pp. 2417-2420 vol.4.
- [171] A. Viholainen, M. Bellanger, and M. Huchard, "D5. 1 Prototype filter and structure optimization," *PHYDYAS project*, 2009.

- [172] A. Viholainen, T. Ihalainen, T. H. Stitz, M. Renfors, and M. Bellanger, "Prototype filter design for filter bank based multicarrier transmission," in 2009 17th European Signal Processing Conference, pp. 1359-1363: IEEE, 2009.
- [173] M. Mottaghi-Kashtiban and M. G. Shayesteh, "A new window function for signal spectrum analysis and FIR filter design," in 2010 18th Iranian Conference on Electrical Engineering, pp. 215-219: IEEE, 2010.
- [174] H. Rakshit and M. A. Ullah, "An adjustable novel Window function with its application to FIR filter design," in 2015 International Conference on Computer and Information Engineering (ICCIE), 2015, pp. 36-41: IEEE.
- [175] P. Martín-Martín, R. Bregovic, A. Martín-Marcos, F. Cruz-Roldán, and T. Saramaki, "A generalized window approach for designing transmultiplexers," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 55, no. 9, pp. 2696-2706, 2008.
- [176] X. He, F. Wang, X. Chen, D. Miao, and Z. Zhao, "Non-orthogonal waveforms for machine type communication," in 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 2017, pp. 1-4: IEEE.
- [177] Z. Guo, Q. Liu, W. Zhang, and S. Wang, "Low complexity implementation of universal filtered multi-carrier transmitter," *IEEE Access*, vol. 8, pp. 24799-24807, 2020.
- [178] J. Fang and I.-T. Lu, "Practical designs for out-of-band emission suppression and adjacent channel interference rejection for orthogonal frequency division multiplexing-based cognitive radios," *EURASIP Journal on Wireless Communications and Networking*, journal article vol. 2015, no. 1, p. 147, May 26 2015.
- [179] T. H. Pham, I. V. McLoughlin, and S. A. Fahmy, "Shaping spectral leakage for IEEE 802.11 p vehicular communications," in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1-5: IEEE, 2014.
- [180] M.-F. Tang and B. Su, "Filter optimization of low out-of-subband emission for universal-filtered multicarrier systems," in 2016 IEEE International Conference on Communications Workshops (ICC), 2016, pp. 468-473: IEEE.
- [181] E. Güvenkaya, A. Şahin, E. Bala, R. Yang, and H. Arslan, "A windowing technique for optimal time-frequency concentration and ACI rejection in OFDM-based systems," *IEEE Transactions on Communications*, vol. 63, no. 12, pp. 4977-4989, 2015.
- [182] C. An, B. Kim, and H.-G. Ryu, "Design and evaluation of spectrum efficient WR-OFDM system for 5G and B5G mobile system," in 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), 2017, pp. 1-5: IEEE.
- [183] Demir, A.F. and Arslan, H., University of South Florida, "System and method for adaptive OFDM guards", U.S. Patent 10,411,819,2019.
- [184] D. Kalaiyarasi and T. K. Reddy, "A hybrid window function to design finite impulse response low pass filter with an improved frequency response," in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 2017, pp. 138-143: IEEE.
- [185] J. Tan, B. Wen, Y. Tian, and M. Tian, "Frequency convolution for implementing window functions in spectral analysis," *Circuits, Systems, and Signal Processing*, vol. 36, no. 5, pp. 2198-2208, 2017.

- [186] A. M. Jaradat, J. M. Hamamreh, and H. Arslan, "Floating OFDM-SNM for PAPR and OOBE Reduction," in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1-5: IEEE.
- [187] F. A. de Figueiredo, N. F. Aniceto, J. Seki, I. Moerman, and G. Fraidenraich, "Comparing f-OFDM and OFDM performance for MIMO systems considering a 5G scenario," in 2019 IEEE 2nd 5G World Forum (5GWF), 2019, pp. 532-535: IEEE.
- [188] J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama, "Optimized fast convolution based filtered-OFDM processing for 5G," in 2017 European Conference on Networks and Communications (EuCNC), 2017, pp. 1-6: IEEE.
- [189] Y. Zhao, X. Hao, Z. Liu, H. Wu, and S. Ding, "Resource block filtered-OFDM as a multi-carrier transmission scheme for 5G," *Computers & Electrical Engineering*, 2017/12/09/ 2017.
- [190] H. Wang and Y. Huang, "Performance evaluation of the universal filtered multi-carrier communications under various multipath fading propagation conditions," in 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), 2017, pp. 466-469.
- [191] S. Chen and J. Zhao, "The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication," *IEEE Communications Magazine*, vol. 52, no. 5, pp. 36-43, 2014.
- [192] 3GPP, "3GPP Release 15 Overview," (in English), *IEEE ComSoc*, White Paper pp. 1-11, 2018.
- [193] A. Viholainen, M. Bellanger, and M. Huchard, "PHYDYAS project, deliverable D9. 1: WiMAX FBMC-OFDM comparison scenarios," ed, 2009.
- [194] Y. Wang, G. Liu, and T. Sun, "SS-OFDM: A low complexity method to improve spectral efficiency," in 2016 Visual Communications and Image Processing (VCIP), 2016, pp. 1-4.
- [195] E. Dahlman, S. Parkvall, and J. Skold, *5G NR: The next generation wireless access technology*. Academic Press, 2020.
- [196] J. G. Proakis and M. Salehi, *Digital communications*. McGraw-Hill., 2008.
- [197] L. Hanzo, W. Webb, and T. Keller, *Single-and multi-carrier quadrature amplitude modulation: principles and applications for personal communications, WATM and broadcasting: 2nd.* IEEE Press-John Wiley, 2000.
- [198] X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, "Filtered-OFDM Enabler for Flexible Waveform in the 5th Generation Cellular Networks," in 2015 IEEE Global Communications Conference (GLOBECOM), 2015, pp. 1-6.
- [199] A. Osseiran, J. F. Monserrat, and P. Marsch, 5G mobile and wireless communications technology. Cambridge University Press, 2016.
- [200] J. Yeo, T. Kim, J. Oh, S. Park, Y. Kim, and J. Lee, "Advanced data transmission framework for 5G wireless communications in the 3GPP new radio standard," *IEEE Communications Standards Magazine*, vol. 3, no. 3, pp. 38-43, 2019.
- [201] 3GPP, "Cellular system support for ultra-low complexity and low throughput Internet of Things (CIoT)," *3GPP and GSM/EDGE Radio Access Group*, vol. Tech. Rep. 45.820, Aug. 2015.
- [202] 3GPP, "5G New Radio: Introduction to the Physical Layer White Paper," *ComSoc*, 2018.

[203] L. Díez, J. A. Cortés, F. J. Cañete, E. Martos-Naya, and S. Iranzo, "A generalized spectral shaping method for OFDM signals," *IEEE Transactions* on Communications, vol. 67, no. 5, pp. 3540-3551, 2019.

APPENDIX D

LIST OF PUBLICATIONS

Journal and proceeding Articles

- Hammoodi, A., Audah, L., Taher, M. A., Mohammed, M. A., Aljumaily, M. S., Salh, A., & Hamzah, S. A. "Novel Universal Windowing Multicarrier Waveform for 5G Systems." CMC-COMPUTERS MATERIALS & CONTINUA 67.2 (2021): 1523-1536. (WoS indexed Q1).
- Hammoodi, A., Audah, L., Taher, M. A., Mohammed, M. A., Aljumaily, M. S., Salh, A., & Hamzah, S. A." New 5G Kaiser-Based Windowing to Reduce Out of Band Emission" CMC-COMPUTERS MATERIALS & CONTINUA 2021 (WoS indexed Q1).
- 3. Hammoodi, Ahmed, Lukman Audah, and Montadar Abas Taher. "Green coexistence for 5G waveform candidates: a review." *IEEE Access* 7 (2019): 10103-10126. (WoS Indexed SCI Q1).
- Hammoodi, Ahmed Talaat, et al. "Under test filtered-OFDM and UFMC 5G waveform using cellular network." Journal of Southwest Jiaotong University 54.5 (2019). (WoS Indexed SCI Q1).
- Hammoodi, A., Audah, L., Aljumaily, M. S., Mohammed, M. A., & Rasool, J. (2022). Neural Network Based Windowing Scheme to Maximize the PSD for 5G and Beyond. In *International Conference on Innovative Computing and Communications* (pp. 881-889). Springer, Singapore. (SCOPUS Indexed 2022).
- Hammoodi, Ahmed, Lukman Audah, Mustafa S. Aljumaily, Montadar A. Taher, and Farooq Sijal Shawqi. "Green Coexistence of CP-OFDM and UFMC Waveforms for 5G and Beyond Systems." In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1-6. IEEE, 2020. (SCOPUS Indexed 2020).

Co-authored Papers

- Shawqi, Farooq Sijal, Lukman Audah, Salama A. Mostafa, Saraswathy Shamini Gunasekaran, Abdullah Baz, Ahmed Talaat Hammoodi, Hosam Alhakami, Mustafa Hamid Hassan, Mohammed Ahmed Jubair, and Wajdi Alhakami. "A new SLM-UFMC model for universal filtered multi-carrier to reduce cubic metric and peak to average power ratio in 5G technology." Symmetry 12, no. 6 (2020): 909. (WoS Indexed SCI).
- Aljumaily, Mustafa S., Ahmed Hammoodi, Lukman Audah, Husheng Li, Farooq Sijal Shawqi, and Mustafa Maad Hamdi. "Combined Beamforming-Waveform Design using Mid-Band Frequencies for 5G and Beyond Networks." In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1-5. IEEE, 2020. (SCOPUS Indexed 2020).
- 3. Shawqi, Farooq Sijal, Lukman Audah, Ahmed Talaat Hammoodi, Mustafa Maad Hamdi, and ALAA HAMID MOHAMMED. "A Review of PAPR Reduction Techniques for UFMC Waveform." In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1-6. IEEE, 2020. (SCOPUS Indexed 2020).
- Shawqi, Farooq Sijal, Ahmed Talaat Hammoodia, Lukman Audah, and Ammar Ahmed Falih. "PAPR Reduction of a Universal Filtered Multicarrier Using a Selective Mapping Scheme." *Journal of Southwest Jiaotong University* 54, no. 5 (2019). (WoS Indexed SCI Q1).
- Ramli, Khairun, Montadar Taher, Lukman Audah, Nor Shahida Shah, Mustafa Ahmed, and Ahmed Hammoodi. "An enhanced partial transmit sequence based on combining Hadamard matrix and partitioning schemes in OFDM systems." *International Journal of Integrated Engineering* 10, no. 3 (2018).).
 (WoS Indexed SCI).