CONTROL AND PREDICTION OF TRAFFIC CRASHES IN THE RESIDENTIAL STREETS IN IRAQ USING THE EXPERT SYSTEM

ALI AHMED MOHAMMED

A thesis submitted in fulfilment of the requirement for the award of the Doctor of Philosophy

> Faculty of Civil Engineering and Built Environment Universiti Tun Hussein Onn Malaysia

> > FEBRUARY 2022

DEDICATION

To the one who suffered a lot to overcome my difficulties......

To the one who was burning day and night to make me shine and glitter.....

To the one who stayed up nights to give me a moment of happiness.....

To the one who was with my side by side and never leave me behind

TUNKU TUN AMINA To the one who supported me a lot during my research journey....

To my beloved wife.....

I wish to dedicate my research to my children Hussein and Larrein for their endurance throughout my Ph.D journey.

Ali Ahmed Mohammed

ACKNOWLEDGEMENT

I wish to express my serious thanks and appreciation for my supervisor, Associate Professor. Dr. Kamarudin Ambak for his massive sustenance and enormous cooperation with me throughout this research. I am so grateful for him for all that he has done for me as I have learned lots from him far beyond knowledge and science, Dr. Kamarudin Ambak is not just a supervisor; he is more than a guider and a leader; how am thankful for Allah for giving me the opportunity to meet such a noble and great human-like him in my life, he is a perfect asset of how the supervisor should be. I wish to express my thankfulness and gratitude to my co-supervisor, Dr. Deprizon, for her kind cooperation with me and facilitating the difficulties throughout my research course.

Many thanks are drawn to the York University, the ministry of transportation, the Baghdad majority, the ministry of planning, the general traffic office, and the University of Technology to provide me with whole the facilities I needed to accomplish my doctoral study.

Finally, I would like to acknowledge the civil engineering laboratories in technicians for their kind assistance and solidarity throughout my experimental works

Ali Ahmed Mohammed

ABSTRACT

Residential streets suffer from various traffic safety problems related to traffic accidents, especially in low and middle-income countries. This research's objective was to develop a novel system for controlling and predicting traffic accidents in the residential streets using the expert system (CPTCRSI-ES). Knowledge of the CPTCRSI-ES was collected from domain experts and published sources. The system comprised nine modules: the module to identify types of car accidents-causespreventive actions effects, module to identify safety problems and related solutions, module to find the speed calculation, module to find the cut-through traffic calculation, module to find the Equivalent Property Damage Only (EPDO), module to find residential density calculation, module to rank traffic safety parameters, module to control the traffic accidents, and module to find the traffic accidents prediction. Verification, validation, and evaluation process (V, V and E) was conducted. Results were statistically analyzed using Number Cruncher Statistical Systems (NCSS) version 26. Verification was done by asking three groups of experts involving 20 professional engineering computers and domain experts. The arithmetic mean for evaluators' responses was higher than 4.2 out of 5, indicating a strong agreement. The Cronbach's alpha was 0.960, and internal consistency reliability (ICR) showed excellent reliability. Results for verification demonstrated the satisfaction of the experts with the proposed system. In the validation process, the experts were requested to propose appropriate strategies and solutions to address the safety problems and reduce traffic accidents. The arithmetic mean for matching the experts' answers and the outputs of CPTCRSI-ES was higher than 4, and the Cronbach's alpha was 0.917 and ICR, indicating excellent reliability. Finally, evaluation of the system by its endusers showed that the overall assessment rating was more than 4, Cronbach's alpha was 0.932, and ICR showed excellent reliability. Results for V, V, and E demonstrated that the system had met its primary objectives. The proposed system adopted in this research can help traffic safety authorities control and predict traffic accidents.

ABSTRAK

Jalan-jalan kawasan perumahan mengalami pelbagai masalah keselamatan lalu lintas yang berkaitan dengan kemalangan jalan raya, terutama di negara berpendapatan rendah dan sederhana. Objektif penyelidikan ini adalah untuk mengembangkan sistem baru untuk mengawal dan meramalkan kemalangan jalan raya di jalan kawasan perumahan menggunakan sistem pakar (CPTCRSI-ES). Pengetahuan mengenai dikumpulkan dari pakar domain dan sumber yang diterbitkan. Sistem ini merangkumi sembilan modul: modul untuk mengenal pasti jenis kemalangan kereta - kesan tindakan pencegahan-penyebab, modul untuk mengenal pasti masalah keselamatan dan penyelesaian yang berkaitan, modul untuk mencari pengiraan kelajuan, modul untuk mencari pengiraan lalu lintas, modul untuk menentukan Kesetaraan Kerosakan Hartabenda Sahaja (EPDO), dan penilaian (V, Vand E) telah dilakukan. Hasilnya dianalisis secara statistik menggunakan Sistem Perangkaan Number Cruncher (NCSS) versi 26. Pengesahan dilakukan dengan meminta tiga kumpulan pakar yang melibatkan 20 profesional komputer kejuruteraan dan pakar domain. Purata aritmetik untuk tindak balas penilai lebih tinggi daripada 4.2 daripada 5, menunjukkan persetujuan yang kuat. Cronbach's alpha adalah 0.960, dan kebolehpercayaan ketekalan dalaman (ICR) menunjukkan kebolehpercayaan yang sangat baik. Hasil pengesahan menunjukkan kepuasan para pakar dengan sistem yang dicadangkan. Dalam proses validasi, para ahli diminta untuk mengusulkan strategi dan penyelesaian yang sesuai untuk mengatasi masalah keselamatan dan mengurangi kemalangan jalan raya. Purata aritmetik untuk padanan jawapan pakar dan output CPTCRSI-ES lebih tinggi daripada 4, dan alpha Cronbach adalah 0.917 dan ICR, menunjukkan kebolehpercayaan yang sangat baik. Akhirnya, penilaian sistem oleh pengguna akhir menunjukkan bahawa Penilaian keseluruhan penilaian lebih dari 4. Cronbach's alpha adalah 0.932, dan ICR menunjukkan kebolehpercayaan yang sangat baik. Hasil untuk V, V, dan E menunjukkan bahawa sistem telah memenuhi objektif utamanya. Sistem cadangan yang digunakan dalam penyelidikan ini dapat membantu pihak berkuasa keselamatan lalu lintas mengawal dan meramalkan kemalangan jalan raya.

TABLE OF CONTENTS

T	ITLE	i
D	ECLARATION	ii
D	EDICATION	iii
Α	CKNOWLEDGMENT	iv
A	BSTRACT	v
A	BSTRAK	vi
T	ABLE OF CONTENTS	vii
L	IST OF TABLES	xvii
L	IST OF FIGURES	XX
L	IST OF ABBREVIATION AND SYMBOLS	xxiv
L	IST OF APPENDICES	xxv
CHAPTER 1 IN	TRODUCTION	1
PER 1.	1 Research Background	1
1.	2 Problem statement	3
1.	3 Expert system as problem-solving technique	4
1.	4 Research Objectives	5
1.	5 Scope of the research	6
1.	6 Research Significance	7
1.	7 Structure of The Thesis	7
CHAPTER 2 LI	ITERATURE REVIEW	10
2.	1 Introduction	10

		2.2	Traffic	e accidents in Iraq	10
		2.3	Variat	bles responsible for traffic accidents	13
			2.3.1	Human factor	13
				2.3.1.1 External driver distraction	14
				2.3.1.2 Internal driver distraction	14
				2.3.1.3 Drink driving	15
			2.3.2	Road factors	16
				2.3.2.1 Speed limit	16
				2.3.2.2 Road curves	17
				2.3.2.3 Horizontal curves	18
				2.3.2.4 Median barrier	18
				2.3.2.5 Lane width	19
				2.3.2.6 Shoulder width	20
		2.4	Strateg	gies to reduce the traffic accidents	21
			2.4.1	Reducing speed in residential streets	21
			2.4.2	Reducing cut-through traffic (rat-running) in	
				residential streets	22
	2.5		2.4.3	Providing liveable residential streets for residents	22
		2.5	Vertic	al deflection strategy	23
			2.5.1	Speed bump	24
			2.5.2	Speed hump	24
			2.5.3	Speed table	25
			2.5.4	Speed cushion	26
			2.5.5	Raised crosswalks/raised intersections	27
			2.5.6	Transverse, rumble, strips (TRS)	28

viii

2.6	Horizontal deflection strategy	29
	2.6.1 Chicane	30
	2.6.2 Center island chicane	30
	2.6.3 Lateral shift	31
	2.6.4 Traffic circle	32
2.7	Narrowing strategy	32
	2.7.1 Median (center island narrowing)	33
	2.7.2 Neck-downs	34
	2.7.3 Choker	34
	2.7.4 Pedestrian, refuge, island	35
	2.7.5 Road diet (Lane reduction)	36
	2.7.6 Bus bulb	36
	2.7.7 Sidewalk widening2.7.8 Turn lane (flush median)	37
	2.7.8 Turn lane (flush median)	38
	2.7.9 Hatched marking	39
2.8	Pavement treatment strategy	40
PER 2.9	Parking management strategy	41
	2.9.1 Parking restriction/prohibition	42
	2.9.2 Non-parallel parking	42
2.10	Volume control strategy	44
	2.10.1 Full closure	45
	2.10.2 Half closure	45
	2.10.3 Diagonal diverters	46
	2.10.4 Turn prohibition	47
2.11	Streetscaping strategy	47

ix

	2.11.1 Street furniture	48
	2.11.2 Tree planting	49
	2.11.3 Gateway	50
2.12	Changes to speed limit strategy	51
	2.12.1 Speed limit reduction	51
	2.12.2 Heavy vehicle speed limit	52
	2.12.3 School zone	53
2.13	Enforcement strategy	54
	2.13.1 Increasing the presence of police	54
	2.13.2 Increasing Punishment	55
	2.13.3 Speed camera	55
2.14	Special zones strategy	56
	2.14.1 Pedestrian Zone	56
	2.14.1 Pedestrian Zone2.14.2 Home zone	58
2.15	Traffic accidents prediction models	60
	2.15.1 Accidents prediction models based on the	
	geometric and traffic features	60
	2.15.2 Accidents prediction models based on the access	
	road and segment length	62
	2.15.3 Accidents prediction models based on speed	63
	2.15.4 Accidents prediction models based on heavy	
	vehicles	64
2.16	Artificial intelligence techniques	68
	2.16.1 Fuzzy logic (FL)	68
	2.16.2 Neural network	69

X

	2.16.3	Expert system	70
		2.16.3.1 Motives behind using expert system	70
2.17	Expert	system applications in civil engineering	72
	2.17.1	Various practices of experts system in	
		engineering transportation	72
2.18	Chapte	er summary	78
CHAPTER 3 RES	EARC	H METHODOLOGY	80
3.1	Introd	uction	80
3.2	The N	eed for CPTCRSI-ESprogram	82
3.3	Comp	onents of CPTCRSI-ES	83
	3.3.1	Knowledge base	83
	3.3.2	Working memory	84
	3.3.3	Working memory Inference engine Design user interface	85
	3.3.4	Design user interface	87
		3.3.4.1 Textboxes	88
		3.3.4.2 Labels	89
		3.3.4.3 Images	90
		3.3.4.4 Dropdown lists	90
		3.3.4.5 Checkbox	91
		3.3.4.6 CPTCRSI-EScoding	91
3.4	CPTC	RSI-ES program development team	92
	3.4.1	Domain expert	92
	3.4.2	Knowledge engineer	94
	3.4.3	End-user	95
3.5	Develo	opment of CPTCRSI-ES	95

xi

	3.5.1	Knowledge acquisition	95
	3.5.2	Knowledge representation	98
		3.5.2.1 Rule-based representation	99
		3.5.2.2 Frames	100
3.6	System	m computerization	100
3.7	Devel	opment of a prototype system	101
3.8	Comp	lete system	101
3.9	Verifi	cation, Validation, and Evaluation (V, V, E)	102
	3.9.1	Verification	102
		3.9.1.1 Unit Testing	102
		3.9.1.2 Integration testing	103
		3.9.1.3 System testing	103
	3.9.2	Validation Evaluation	103
	3.9.3	Evaluation	106
CHAPTER 4 STR	RUCTU	RE OF CPTCRSI-ESPROGRAMME	107
4.1	Introd	uction	107
PER 4.2	Struct	ure of CPTCRSI-ES	107
	4.2.1	Knowledge base	107
4.3	Modu	les of CPTCRSI-ES Knowledgebase	110
	4.3.1	Module of types of traffic accidents descriptions-	
		causes-effects and preventive actions.	110
		4.3.1.1 Single car accident	110
		4.3.1.2 Multiple vehicle pile-up	112
		4.3.1.3 Rear-impact collision	114
		4.3.1.4 Head-on collisions	115

xii

	4.3.1.5 Side impact collision	117
4.3.2	Module to find safety problems and related	
	solutions (problem finding)	118
	4.3.2.1 Speeding	121
	4.3.2.2 Grade	128
	4.3.2.3 Sharp Curves	129
	4.3.2.4 Cut-through traffic	131
	4.3.2.5 Wide street	132
	4.3.2.6 Streets without lighting	133
	4.3.2.7 Accident rate	134
	4.3.2.8 Uncontrolled intersections	134
	4.3.2.9 On-street parking	136
	4.3.2.10 Heavy vehicles	138
	4.3.2.11 Sidewalk	139
	4.3.2.12 Uncontrolled mid-block crosswalk	141
	4.3.2.13 Bus stops	142
	4.3.2.14 High residential density	143
	4.3.2.15 Trips generators (commercial areas)	145
	4.3.2.16 Bike lane	146
	4.3.2.17 Primary schools	147
	4.3.2.18 Residential complexes	149
	4.3.2.19 Toolbox of traffic safety problem and	
	solutions in the CPTCRSI-ES	151
4.3.3	Speed differential calculation module	152
	4.3.3.1 Toolbox of the Speed differential calculation	154

xiii

4.3.4	Cut-through traffic calculation module	155
	4.3.4.1 Toolbox of the Cut-through traffic	
	calculation module	157
	4.3.4.2 Equivalent Property Damage Only (EPDO)	
	calculation module	157
	4.3.4.3 Toolbox of the EPDO calculation module	158
4.3.5	Residential density calculation module	158
4.3.6	Toolbox residential density calculation module	160
4.3.7	Module to rank traffic safety parameters	160
	4.3.7.1 Toolbox of ranking traffic safety parameters	163
4.3.8	Module to control the traffic accident	166
	4.3.8.1 Basing strategy on good data	166
	4.3.8.2 Engineering strategy for a safer system	168
	4.3.8.3 Education for safer people	170
	4.3.8.4 Enforcing road safety laws	173
	4.3.8.5 Effective sanctions	176
	4.3.8.6 Enforcement through police and technology	176
	4.3.8.7 Preventative effects	177
4.3.9	Module of traffic accident prediction	178
	4.3.9.1 Flow Function Model	179
	4.3.9.2 Model with explanatory variables	179
	4.3.9.3 Toolbox of the module of traffic accident	
	prediction	181
4.4 Runni	ng CPTCRSI-ES	183
4.5 Summ	nary	183

CHAPTER 5 VERIFICATION, VALIDATION AND EVALUATION OF

	CPI	CCRSI-ES	185		
	5.1	Introduction	185		
	5.2	CPTCRSI-ES verification	187		
		5.2.1 Unit Testing	187		
		5.2.2 Integrated Testing	188		
		5.2.3 System testing by computer professionals	189		
		5.2.4 System testing by transportation engineers	193		
		5.2.5 System testing in an educational environment	195		
	5.3	CPTCRSI-ES validation	198		
	5.4	Evaluation of the System	204		
	5.5	Chapter summary	207		
CHAPTER 6 COMPARISONS AND CONTRAST OF CPTAIRS-ES WITHIN					
	THI	E RELEVENT EXPERT SYSTEMS	209		
	6.1	Introduction	209		
		6.1.1 Comparison with RSA Expert Systems	209		
		6.1.2 Comparison with SLR Expert Systems	210		
		6.1.3 Comparison with transportation management Expert			
		Systems	210		
	6.2	Research contribution	211		
	6.3	Innovation	211		
	6.4	Chapter Summary	212		
	CHAPTER 7 CON	NCLUSION AND RECOMMRNDATIONS	215		
	7.1	Introduction	215		
	7.2	Conclusion	215		

7.3 Recommendations for Future Works	218
REFERENCES	220
APPENDICES	246
VITA	

xvi

LIST OF TABLES

2.1	Summary of the factors affecting traffic accidents.	21
2.2	Classification of Traffic accident reduction strategies	23
2.3	Summary of the accidents prediction models adopted	66
	by the literature review	
2.4	Summary of Expert systems developed in the Domain	77
	of Engineering Transportation	
3.1	The respondance of the questionnaire validation	82
	process	
3.2	Example of facts contained in the working memory	85
	CPTCRSI-ES	
3.3	List of domain experts who participated in the study	85 93
3.4	List of literature guides, manuals, and books used for	96
	developing the knowledge base of CPTCRSI-ES	
3.5	List of article were used for developing the knowledge	97
	base of CPTCRSI-ES	
3.6	Examples of rules used in the CPTCRSI-ES	99
3.7	Value of descriptive frequencies by weight	104
3.8	A range data for interpreting alpha for Likert scale	105
	questions	
4.1	Modules and sub-modules in the knowledge base of	108
	CPTCRSI-ES	
4.2	Results from the questionnaire about the Importance	119
	of the parameters	
4.3	Conditions of traffic safety parameters.	120
4.4	Solutions for dealing with traffic safety problems	121
4.5	Solutions for speeding	122
4.6	Solutions for dealing with the street with steep slope	129

xvii

4.7	Recommendations for dealing with problems related	130
	to sharp curves	
4.8	Solutions for cut-through traffic	131
4.9	Solutions for the problems of wide lanes	133
4.10	Recommendations toward improving safety in streets	134
	without lighting	
4.11	Recommendations for improving safety near	136
	uncontrolled intersections	
4.12	Solutions for problems related to on-street parking	137
4.13	Solutions for problem-related to heavy vehicles	139
4.14	Solutions for dealing with the problems related to	140
	sidewalk	
4.15	Recommendations toward improving safety near	142
	uncontrolled crosswalks	
4.16	Recommendations toward improving safety near bus	143
	stops	143
4.17	Recommendations for improving safety in high	144
	residential density streets	
4.18	Recommendations toward improving safety near trip	146
	generators	
4.19	Recommendations toward improving safety in the	147
	streets without a bike lane	
4.20	Recommendations toward improving safety near	148
	kindergartens and primary schools	
4.21	Recommendations toward improving safety inside	150
	residential complexes	
4.22	Trip generation models for different types of	156
	residential land –use	
4.23	An example of residential density categories	159
4.24	Points assigned to traffic safety parameters	162
4.25	Priority level for the different range of points	163
4.26	Estimated parameter values	180
5.1	Correlation matrix	190

5.2	Statistical analysis of the professional computer	191		
	responses			
5.3	Reliability statistics results	191		
5.4	Correlation matrix	192		
5.5	Evaluation of CPTCRSI-ES by professionals after	192		
	modifications			
5.6	Reliability Statistics results	193		
5.7	Correlation Matrix of the questionnaire 194			
5.8	Statistical analysis of the transportation engineers 195			
5.9	Reliability statistics	195		
5.10	Correlation matrix of the questionnaire	197		
5.11	Statistical analysis of the respondents in an	198		
	educational environment			
5.12	Reliability statistics results	198		
5.13	Statistical analysis of the comparison between the	199 199		
	expert's evaluation and CPTCRSI-ES			
5.14	Reliability statistics results	200		
5.15	Comparison between the points assigned by evaluators	201		
	and CPTCRSI-ES			
5.16	Statistical analysis for the matching answers between	202		
	the evaluation and CPTCRSI-ES outputs			
5.17	Reliability statistics results	202		
5.18	Correlation matrix of the modules	203		
5.19	Statistical analysis for the comparison between the	204		
	expert's evaluation and the CPTCRSI-ES			
5.20	Statistics reliability results	204		
5.21	Correlation matrix of the questionnaire	206		
5.22	The statistical analysis of the end-users evaluations.	207		
5.23	Reliability statistics	207		

LIST OF FIGURES

2.1	An example of a plastic speed bump in a residential	24
	street.	
2.2	An implementation of a speed hump in a residential	25
	street	
2.3	An implementation of the speed table in a residential	26
	street	
2.4	An example of a speed cushion in a residential street	27
2.5	An example of a raised crosswalk in the residential	28
	streets	
2.6	An example of a raised intersection in the residential	28
	streets	
2.7	An example of TRS	29
2.8	An implementation of chicane in a local street	30
2.9	An example of center islands chicane	31
2.10	An implementation or lateral shift	31
2.11	An example of a traffic circle	32
2.12	An example of center-island narrowing	33
2.13	An example of a neck-down	34
2.14	An example of a choker	35
2.15	An example of pedestrian, refuge, island	35
2.16	An example of a lane reduction	36
2.17	An example of a bus bulb	37
2.18	An example of Sidewalks widening	38
2.19	An example of a Turn lane	39
2.20	An example of hatched markings	40
2.21	An example of brick paving	41
2.22	An example of stone paving	41

2.23	An example of the parking prohibition signs	42	
2.24	An example of Angled Parking	44	
2.25	An example of parallel Parking	44	
2.26	An example of full closure	45	
2.27	An example of a half closure	46	
2.28	An example of a diagonal diverter	46	
2.29	An example of a turn prohibition	47	
2.30	An example of a streetscaping	48	
2.31	An example of street furniture	49	
2.32	An example of tree planting	50	
2.33	An example of a gateway	50	
2.34	An example of speed limit signs	51	
2.35	An example of a speed limit reduction sign	52	
2.36	An example of a vehicle speed limit reduction sign	53	
2.37	An example of a school zone signs	54	
2.38	An example of a speed camera installed in the street	56	
2.39	An example of a pedestrian zone in a residential street	58	
2.40	An example of a home zone in a residential street	59	
3.1	Methodology of CPTCRSI-ES development	81	
3.2	Components of an expert system	84	
3.3	Example of inference engine work	86	
3.4 Example of data input as inference engine work of 86			
	CPTCRSI-ES		
3.5	Example of CPTCRSI-ES design user Interface	88	
	window		
3.6	Example of CPTCRSI-ES code window	88	
3.7	Example of a textbox in CPTCRSI-ES	89	
3.8	Example of labels in CPTCRSI-ES.	89	
3.9	Example of images in CPTCRSI-ES	90	
3.10	Example of images in CPTCRSI-ES	91	
4.1	The single-car accident in the CPTCRSI-ESadopted in	112	
	this research.		

4.2	Multiple vehicle pile-up accidents in the CPTCRSI-	114
	ESadopted in this research.	
4.3	The rear-end collisions in the CPTCRSI-ESadopted in	115
	this research	
4.4	Head-on collisions in the CPTCRSI-ESadopted in this	116
	research.	
4.5	The side-impact collision in the CPTCRSI-ESadopted	117
	in this research.	
4.6	Screenshot of the page related to solutions for	151
	speeding problems in residential streets	
4.7	Screenshot of the streetscaping related to solutions for	152
	speeding.	
4.8	A diagram for determining an 85th percentile speed.	153
4.9	Speed differential calculator page.	154
4.10	Relationship between total traffic volume, cut-through	156
	traffic, and local trips.	
4.11	A screenshot of the cut-through calculator page.	157
4.12	A screenshot of EPDO calculator page	158
4.13	An example aerial survey for calculating residential	159
	density in Iraq.	
4.14	Screenshot of residential density calculator toolbox.	160
4.15	Parameters involved in ranking traffic Safety	161
	Parameters	
4.16	Toolbox of ranking traffic safety parameters calculator	164
	for a high priority level street.	
4.17	Toolbox of ranking traffic safety parameters calculator	165
	for a medium priority level street.	
4.18	Toolbox of ranking traffic safety parameters calculator	165
	for a low priority level street.	
4.19	Basing strategy on good data.	167
4.20	Toolbox of good quality data in the CPTCRSI-ES.	167
4.21	Engineering strategies adopted in CPTCRSI-ES to	168
	control the traffic accidents	

4.22	Toolbox of engineering for infrastructure in the	169
	CPTCRSI-ES.	
4.23	Toolbox of the infrastructure measures adopted in the	169
	CPTCRSI-ES	
4.24	Toolbox of illertration for a technlogies in the	170
	CPTCRSI-ES.	
4.25	Toolbox of education for safer people the CPTCRSI-	171
	ES.	
4.26	Toolbox training strategy for Safer People in the	172
	CPTCRSI-ES	
4.27	Toolbox of Campaigns for Safer People in the	173
	CPTCRSI-ES	
4.28	Flowchart enforcing road safety laws in the CPTCRSI-	174
	ES	
4.29	Toolbox for the Enforcement of the road safety laws	176
	adopted in the CPTCRSI-ES.	
4.30	Toolbox of the model adopted to predict traffic	182
	accident in the CPTCRSI-ES.	
4.31	Toolbox of the model adopted to predict traffic	182
	accident in the CPTCRSI-ES.	
4.32	CPTCRSI-ES start page	183
5.1 E	VV&E process of CPTCRSI-ES.	186
5.2	Interactions between end-user and CPTCRSI-ES.	189

LIST OF ABBREVIATIONS AND SYMBOLS

CPTCRSI-ES	-	Control and Prediction of Traffic Crashes In The
		Residential Streets In Iraq Using The Expert System
EPDO	-	Equivalent Property Damage Only
AI	-	Artificial Intelligence
CSO	-	Central Statistical Organization
TRS	-	Transverse, rumble, dtrips
AADT	-	Annual Average Daily Traffic
FL	-	Fuzzy logic
KA	-	Knowledge acquisition
TRB	-	Transportation Research Board The Federal Highway Administration
FHWA	-	The Federal Highway Administration
ITE	-	Institute of Transportation Engineers
NHTSA	-	The National Highway Traffic Safety Administration
BAC	-	Blood Alcohol Concentration
APM	-TA	Accident Prediction Model
PERPL		

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A1	Traffic Safety Parameters in CPTCRSI-ES	246
A2	Solutions for Traffic Safety Problem in CPTCRSI- ES	248
A3	Quentionnaire for Computer Professionals	250
A4	Quentionnaire for Domain Experts	251
A5	Questionnaire for the Investigate and the Acceptance of End Users	253
В	Comparison System of Traffic Signs Strategies	255
C PERP	Sample of CPTCRSI-EScoding	286

REFERENCES

- Abdulkadir, T., Sulea, B., and Salami W. (2012a). Application of Artificial Neural Network Model to the Management of Hydropower Reservoirs along River Niger. *International Journal of Engineering, Fascicule 3*, pp.1584-2673.
- Abdulridha, I., Mohammed, S. (2016). Development an Assessment Checklist for sustainable Housing Regulation. *Applied Research Journal*,2 (7), pp.307-319.
- Abraham, A. (2004). Meta-Learning Evolutionary Artificial Neural Networks. *Neurocomputing Journal, 56c, Elsevier Science, Netherlands*, pp.1–38.
- Adimurthy, M., Mallinath, B., Kuchanur, P., Sagar, R., (2017). Parallel Parking: A Review. International Journal of Engineering and Technical Research, 6, pp. 145-149.
- Aguilar, R., Muñoz, V., Noda, M., Bruno, A., Moreno, L. (2008). Verification and validation of an intelligent tutorial system. *Expert Systems with Applications*, 35(3), pp. 677-685.
- Ahmadi, F. and Ebadi, H. (2010). Design and implementation of an expert interface system for integration of photogrammetric and Geographic Information Systems for intelligent preparation and structuring of spatial data. *Expert System Application*, 37(12), pp. 8006–8013.
- Ahmed, H., Ahmed, A. (2020). The Importance of Integrating Street Furniture in the Visual Image of the City. *International Journal of Modern Engineering Research*, 9(2).pp.1-23.
- Ahmed, M., Ambak, K., Raqib, A., Sukor, N. (2013). Helmet usage among adolescents in rural road from the extended theory of planned behaviour. *Journal of Applied sceince*, 13(1), pp. 161-166.
- Akhtar, M., Utne, I. (2014). Human fatigue's effect on the risk of maritime groundings- A Bayesian Network modeling approach. Safe Science 62, pp.427–440.

- Aköz, M. Karsligil, E. (2010). Severity detection of traffic accidents at intersections based on vehicle motion analysis and multiphase linear regression. 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, pp. 474-479, doi: 10.1109/ITSC.2010.5624990.
- Al-Jameel, H., (2016). Reducing the Number of Accidents in Iraq by Using Expert System. Journal of University of Babylon. Babylon University, 24(4), pp. 1099–1112.
- Al-Weshah, G., Al-Zubi, K. (2012). E-business enablers and barriers: an empirical study of SMEs in Jordanian communication sector Glob. Journal of Bussiness *Research*, 6, pp. 1–15.
- Alluri, P., Gan, A., Haleem, K., Mauthner, J. (2015). Safety performance of G4 (1S) w-beam guardrails versus cable median barriers on Florida's freeways'. Journal of Transportation Safety and Security, 7 (3), pp. 208–227.
- Al-Obaedi, J. (2015). Evaluation of Traffic Accidents Rates in Al-Diwaniya City', Journal of University of Babylon. Babylon University, 23(3), pp. 571–578.
- Amiri, M., Ardeshir, A. and Zarandi, M. (2017). Fuzzy probabilistic expert system for occupational hazard assessment in construction. Safety Science, 93, pp. 16-28.
- Andrey, J. (2010). Long-term trends in weather-related crash risks. Journal of Transportation Geography, 18, pp. 247–258.
- Andersson, A., Chapman, L. (2011b). The use of temporal analog to predict future traffic accidents and winter road conditions in Sweden. Meteorological Application, 18, pp. 125–136.
- Andersson, A., Chapman, L. (2011a). The impact of climate change on winter road maintenance and traffic accidents in West Midlands. Accident Analysis and Prevention, 43, pp. 284-289.
- Antoa, P., Soares, C. (2006). Fault-tree models of accident scenarios of ropax vessels. International Journal of Automation and computing, 2, pp.107-116.
- Abraham, A. (2004). Meta-Learning Evolutionary Artificial Neural Networks. *Neurocomputing Journal*, 56c, *Elsevier Science*, *Netherlands*, pp.1–38.
- Anastasopoulos, P., Mannering, F., Shankar, V., Haddock, J. (2012). A study of factors affecting highway accident rates using the random-parameters Tobit model. Accident Analysis and Prevention, 45, pp. 628–633.

- Airun, S., Abdul Azeez, K., Mohd Zin M., and Mansor, I. (2016). Theoretical overview of road hump effects on traffic speed in the residential environment. *Journal of the Malaysian Institute of Planners, special issue IV*, pp. 343 – 352
- Aurélien, D. (2016). A Multi-lane Capacity Model Designed for Variable Speed Limit Applications. *Traffic Management, 3*, pp.183-201.
- Asad, F. (2017). Road Traffic Accidents In Iraq: A Review Of Evidence-Based Literature. *International Journal for Traffic and Transport Engineering*, 7(2), pp. 256-275.
- Atchley, P., Hadlock, C. and Lane, S. (2012). Stuck in the 70s: the role of social norms in distracted driving. *Accident Analysis and Prevention*, 48, pp. 279–284.
- Bachani, A., Zhang, X., Allen, K., Hyder, A. (2014). Injuries and violence in the Eastern Mediterranean Region: a review of the health, economic and social burden. *Eastern Mediterranean health journal*, 20(10), pp.643-652.
- Bao, S., Flannagan, C., Xiong, H. and Sayer, J. (2014). Eye glance behavior associated with cell-phone use: examination with naturalistic driving data. *In Proceedings* of the Human Factors and Ergonomics Society Annual Meeting. Sage Publications Sage CA: Los Angeles, CA, pp. 2112–2116.
- Bärgman, J., Lisovskaja, V., Victor, T., Flannagan, C., Dozza, M. (2015). How do glance behavior influence crash and injury risk? A "what-if" counterfactual simulation using crashes and near-crashes from SHRP2'. *Transportation Research Part F: Traffic Psychology and Behaviour, 35*, pp. 152–169.
- Bangaram, N., Nekkanti, K., Chundupalli,S. (2017). A Review of Road Crash Prediction Models for Developed Countries. *American Journal of Traffic and Transportation Engineering*, 2(2), pp. 10-25
- Bashar, A., Ghuzlan, K., Hasan, H. (2013). Traffic accidents trends and characteristics in Jordan. *International Journal of Civil and Environmental Engineering*, 13, pp. 9–16.
- Bae, Y., Ahn, S., Chung, J. (2013). Anala is on a comparison of highway accident severity between weekday and weekend using structural equation model. *Journal Korean Society Civil Engineering*, 33 (6), pp. 2483–2491.
- Beanland, V., Fitzharris, M., Young, K., Lenné, M., (2013). Driver inattention and driver distraction in serious casualty crashes: Data from the Australian National Crash In-depth Study. Accident Analysis and Prevention, 54, pp. 99– 107.

- Behnood, A., Mannering, F. (2015). The temporal stability of factors affecting driverinjury severities in single-vehicle crashes: some empirical evidence. *Analytic methods in accident research*, 8, pp. 7–32.
- Bella, F. (2013). Driver perception of roadside configurations on two-lane rural roads: effects on speed and lateral placement. Accident Analysis and Prevention, 50, pp. 251–262.
- Ben-Bassat, T., Shinar, D. (2011). Effect of shoulder width, guardrail and roadway geometry on driver perception and behavior. Accident Analysis and Prevention, 43 (6), pp. 2142–2152.
- Beverly, P., Daniel, F., Jill, P. (2018). Road traffic accidents in Scottish military veterans. *Accident Analysis and Prevention*, *113*, pp. 287-291.
- Bezuglov, A., Comert, G. (2016). Short-term freeway traffic parameter prediction: Application of grey system theory models. *Expert Systems with Applications*, 62, pp. 284–292.
- Bianchini, A. (2012). Fuzzy representation of pavement condition for efficient pavement management. *Computer-Aided Civil and Infrastructure Engineering*, 27(8), pp. 608–619.
- Bingham, C., Zakrajsek, J., Almani, F., Shope, J., Sayer T. (2015). Do as I say, not as I do: Distracted driving behavior of teens and their parents. *Journal of Safety Research*, 55, pp. 21–29.
- Birdsall, W., Reed, B., Huq, S., Wheeler, L., Rush, S. (2012). Alcohol-impaired driving: average quantity consumed and frequency of drinking do matter. *Traffic injury prevention. Taylor and Francis, 13(1)*, pp. 24–30.
- Bogstrand, S., Gjerde, H., Normann, P., Rossow, I., Ekeberg, O. (2012). Alcohol, psychoactive substances, and non-fatal road traffic accidents – a case-control study. *BMC Public Health 12 (1)*, 734.
- Bosurgi, G., Dandrea, A. (2012). A Polynomial Parametric Curve (PPC-CURVE) for the Design of Horizontal Geometry of Highways. *Computer-Aided Civil and Infrastructure Engineering*, 27(4), pp. 304-312.
- Brendan, J., Peter, T. (2018). A comparison of freeway median crash frequency, severity, and barrier strike outcomes by median barrier type. *Accident Analysis* and Prevention, 117, pp. 216–224.

- Brendan, M., David, M., Andrew, O. (2017). Evaluating the Safety in Numbers's effect for pedestrians at urban intersections. *Journal Accident Analysis and Prevention*, 106, pp. 181–19
- Cafiso, S., Dagostino, C. (2012). Safety performance function for motorways using generalized estimation equations. *Procedia – Social Behaviour Science*, 53, pp. 900–909.
- Centeral Statistical Organization (2020). The total traffic acciddents recorded in 2020. Rerived from: http://www.cosit.gov.iq/en/ on September 2021.
- Chao, W., Mohammed, A., Stephen, G. (2013). The effect of traffic and road characteristics on road safety: A review and future research direction. *Safety Science*, 57, pp. 264–275.
- Chaturabong, P., Kanitpong, K., Jiwattanakulpaisarn, P. (2011). Analysis of motorcycle accident costs in Thaia land by a willingness to pay method. *Transportation Research*, pp. 56–63.
- Chang, L., Chien, J. (2013). Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. *Safe Science* 51 (1), pp.17–22.
- Chan, K., Dillon, T., Singh, J., Chang, E. (2012). Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm. *IEEE Transactions on Intelligent Transportation Systems*, 13(2), pp. 644-654, doi: 10.1109/TITS.2011.2174051.
- Chanyu, K., Jikuang, Y., (2010). Logistic regression analysis of pedestrian causality risk in passenger vehicle collisions in China. *Accident Analysis and Prevention, 42*, pp. 987-993.
- Charlton, S., Baas, P. (2006). Speed change management for New Zealand roads (No. 300). Wellington: Land Transport New Zealand. https://www.nzta.govt.nz/assets/resources/research/reports/300/docs/300.pdf
- Chinthaka, P., Tomohiro, Y., Mehrdad, P., Takaya, Y., Hiraku, O., Toshiaki, F., Masayuki T. (2015). Outdoor Road-to-Vehicle Visible Light Communication Using On-Vehicle High-Speed Camera. International journal of intelligent transportation systems research, 13(1), pp.28-36.
- Chimba, D., Ruhazwe, E., Allen, S., Waters, J. (2017). Digesting the safety effectiveness of cable barrier systems by numbers. *Transportation Research Part A*, *95*, pp. 227–237.

- Chiou, Y., Lan, L., Chen, W. (2010). Contributory factors to crash severity in Taiwan's freeways: genetic mining rule approach. *Journal of the Eastern Asia Society* for Transportation Studies, 8, pp. 1865-1877.
- Chiu, P., Lin, C., Wu, C., Fang, P., Lu, C., Hsu, H., Chi, C. (2018). Ambulance traffic accidents in Taiwan. *Journal of the Formosan Medical Association*, 117(4), pp. 283–291.
- Cestac, J., Paran, F., Delhomme, P. (2011). Young drivers' sensation seeking, subjective norms, and perceived behavioral control and their roles in predicting speeding intention: how risk-taking motivations to evolve with gender and driving experience. *Safety Science*, 49, pp.424–432.
- Clark, E. (2010). Older driver's perception and acceptance of in-vehicle devices for traffic safety and traffic efficiency. *Journal of Transportation Engineering*, *136*, pp. 472-479.
- Clifton, K., Currans, K., Muhs, C. (2015). Adjusting ITE's trip generation handbook for the urban context. *Journal of Transport and Land Use*, 8(1),pp. 5-29.
- David, L., Francisco, J., Alfredo, G. (2018). Development of a global inertial consistency model to assess road safety on Spanish two-lane rural roads. *Accident Analysis and Prevention*, 119, pp. 138–148.
- David, L., Francisco J., Alfredo G. (2018). Calibration of the inertial consistency index to assess road safety on horizontal curves of two-lane rural roads. *Accident Analysis and Prevention*, 118, pp. 1–10
- Da Silva, F., Santos, J., Meireles, A. (2014). Road accident: driver behavior, learning, and driving task. *Procedia-Social Behaviour Science*, *162*, pp. 300–309
- Dhitivara, P. (2007). Development of EXDAW: An expert system for designing asphal concrete mixture containing waste materials and by-products. Ms.c thesis. Alhousie University.
- Di Milia L., Smolensky M., Costa, G., Howarth, H., Ohayon M., Philip P. (2011) Demographic factors, fatigue, and driving accidents: an examination of the published literature. *Accident Analysis and Prevention 43* (2), pp.516–532.
- Dijksterhuis, C., Brookhuis, K., De Waard, D. (2011). Effects of steering demand on lane-keeping behavior, self-reports, and physiology A simulator studies. *Accident and Analysis Prevention*, 43 (3), pp. 1074–1081.

- Deogratias, V., Peter, H. (2010). Identification of risk factors associated with motorcycle-related fatalities in Ohio. *Journal of Transportation Engineering*, *4*, pp. 1-13.
- Densona, T., Cappera, M., Oatenb, M., Malte, F., Schofielda, T. (2011). Self-control training decreases aggression in response to provocation in aggressive individuals. *Journal of Research in Personality, 45,* pp. 252–256.
- Dukic, T., Ahlstrom, C., Patten, C., Kettwich, C., Kircher, K. (2013). Effects of electronic billboards on driver distraction. *Traffic injury prevention*, 14(5), pp. 469–476.
- Dula, C., Adams, C., Miesner, M., Leonard, R. (2010). Examining relationships between anxiety and dangerous driving. Accident Analysis and Prevention, 42(6), pp., 2050–2056.
- El-Basyouny, K., Kwon, D. (2012). Assessing time and weather effects on collision frequency by severity in Edmonton using multivariate safety performance functions. *Proceedings of 91 Annual Meeting of the Transportation Research Board.*
- El-Menyar, A., Al-Thani, H., Tuma, M., Parchani, A., Abdulrahman, H., Peralta, R., Asim, M., Zarour, A., and Latifi, R. (2014). Epidemiology, causes, and prevention of car rollover crash with ejection. *Annals of medical and health sciences research*, 4(4), pp.495-502.
- Elliott, M., Thomson, J. (2010). The social-cognitive determinants of offending drivers' speeding behavior. Accident Analysis and Prevention, 42, pp.1595–1605.
- Elvik, R. (2013). Risk of road accident associated with the use of drugs: a systematic review and meta-analysis of evidence from epidemiological studies. Accident Analysis and Prevention, 60, pp. 254–267.
- Elziny, A., Mohamadien, M., Ibrahim, H. Fattah, M. (2016). An expert system to manage dispute resolutions in construction projects in Egypt. *Ain Shams Engineering Journal*, 7(1), pp. 57–71.
- Falamarzi, A., Borhan, M., Rahmat, R. (2014). Developing a web-based advisory expert system for implementing traffic calming strategies. *The Scientific World Journal. Hindawi*. https://doi.org/10.1155/2014/757981

- Falamarzi, A., Borhan, M., Rahmat, R., Cheraghi, S., Javadi, H. (2016). Development of a fuzzy expert system to prioritize traffic calming projects. *Jurnal Teknologi*, 78(2), pp. 43-53
- Falamarzi, A., Rahmat, R. (2014). Using Appropriate Speed Tables Regarding the Speed Limit of Streets. *Research Journal of Applied Sciences, Engineering,* and Technology, 7(13), pp.2741-2746.
- Fernandes, R., Hatfield, J., Job, R. (2010). A systematic investigation of the differential predictors for speeding, drink–driving, driving while fatigued, and not wearing a seat belt, among young drivers. *Transportation Research Part F: Traffic Psychology and Behavior 13*, pp. 179–196.
- Francesca, L., Monica, M., Lorenzo, D., Valentina, B., Niccolo, T., Andrea, P. (2019). Development of an accident prediction model for Italian freeways. *Accident Analysis and Prevention*, 124, pp. 1–11
- Francis, J. (2017). The impact of road improvements on road safety and related characteristics. *IATSS Research, 40*, pp. 72–75.
- Fatimah, U., Strohbehn, C., Arendt, S. (2014). An empirical investigation of food safety culture in onsite foodservice operations. *Food Control, 46*, pp. 255–263
- Garach, L., de Oña, J., López, G., Baena, L. (2016). Development of safety performance functions for Spanish two-lane rural highways on flat terrain. *Accident Analysis Prevention*, 95, pp. 250–265.
- Gavrilovic, T., Ninot, J., Smadja, L., (2010). Frequency filtering and connected components characterization for zebra-crossing and hatched marking detection. *IAPRS*, *38*(*3A*), pp. 43-48
- Ghasem, M., Mohammad, R., Seyed T., Amin, H., Kamran, B., Yaser, S. (2013). An epidemiologic survey of road traffic accidents in Iran: analysis of driver-related factors. *Chinese Journal of Traumatology*, 16(3), pp.140-144.
- Gao, L., Xie, C., Zhang, Z. Waller, S. (2012). Network-level road pavement maintenance and rehabilitation scheduling for optimal performance improvement and budget utilization. *Computer-Aided Civil and Infrastructure Engineering*, 27(4), pp. 278–287.
- Geedipally, S., Lord, D. Dhavala, S. (2014). A caution about using deviance information criterion while modeling traffic crashes. *Safety Science*, 62, pp. 495–498.

- González-Iglesias, B., Gómez-Fraguela, J., Luengo-Martín, M. (2012). Driving anger and traffic violations: gender differences. Transportation Research F: *Traffic Psychology Behavior 15 (4)*, pp. 404–412.
- Gooch, J., Gayah, V., Donnell, E. (2016). Quantifying the safety effects of horizontal curves on two-way, two-lane rural roads. *Accident Analysis Prevention*, 92, pp. 71–81.
- Granié, M., Pannetier, M., Guého, L. (2013). Developing a self-reporting method to measure pedestrian behaviors at all ages. Accident Analysis and Prevention, 50, pp.830–839.
- Guangnan, Z., Ying, T., Rong-Chang, J. (2016). Factors influencing traffic signal violations by car drivers, cyclists, and pedestrians: A case study from Guangdong, China. Transportation Research Part F, 42, pp. 205–216
- Haque, M., Chin, H., Lim, B. (2010). Effects of impulsive sensation seeking, aggression and risk-taking behaviors on the vulnerability of motorcyclists. *Asian Transport Studies*, 1, pp. 165-180.
- Haadi, A. (2012). Identification of Factors that Cause Severity of Road Accidents in Ghana: A Case Study of the Northern Region. Ms.c dissertatio, Ghana.
- Hartman R., Huestis, M. (2013). Cannabis effects on driving skills. *Clinical Chemistry*, 59 (3), pp. 478–492.
- Heydari, S., Maharlouei, N., Foroutan, A. (2012). Fatal motorcycle accidents in Fars Province, Iran: a community-based survey. *Chinese Journal of Traumatology*, 15(4), pp.222-227.
- Hourdos, J., Hong, F. (2010). TH-36 Full Closure Construction: Evaluation of Traffic OperationsAlternatives.https://conservancy.umn.edu/bitstream/handle/11299/ 150612/Mn_DOT2010-04.pdf?sequence=1&isAllowed=y
- Howland, J., Rohsenow, D., Arnedt, J., Bliss, C., Hunt, S., Calise, T., Heeren, T., Winter, M., Littlefield, C., Gottlieb, D. (2011). The acute effects of caffeinated versus non-caffeinated alcoholic beverage on driving performance and attention/reaction time. *Addiction*, 106(2), pp. 335–341.
- Hugo, P., Lili, B., (2015). Evaluating road safety audit procedures: some questions and a new method of study. *Transportation Planning and Technology*, 38, pp. 909-934.

- Hummer, J., Rasdorf, W., Findley, D., Zegeer, C. Sundstrom, C. (2010). Curve collisions: road and collision characteristics and countermeasures. *Journal of Transportation Safety and Security*, 2(3), pp. 203–220.
- Hyder, A., Paichadze, N., Toroyan, T., Peden, M. (2017). Monitoring the decade of action for global road safety 2011–2020: an update. *Global public health*, 12(12), 1492-1505.
- Ibrahim, S., Sayed T., Ismail, K. (2012). Methodology for safety optimization of highway cross-sections for horizontal curves with restricted sight distance. *Accident Analysis and Prevention*, 49, pp. 476–485.
- Ihueze, C., Onwurah, U. (2018). Road traffic accidents prediction modeling: An analysis of Anambra State, Nigeria. Accident Analysis and Prevention, 112, pp. 21–29.
- Ismail, A. (2012). Comprehension of posted highway traffic signs in Iraq. Tikrit Journal of Engineering Sciences. *Tikrit University*, *19*(*1*), pp. 62–70.
- Janine, D., (2010). Age-related safety in professional heavy vehicle drivers. *Accident Analysis and Prevention*, 42(2), pp.364-371.
- Jan, H., van, P., Fred, W. (2014). Analyzing road design risk factors for run-off-road crashes in the Netherlands with crash prediction models. *Journal of Safety Research*, 49, pp. 121–127
- Jelena, D., Aleksandra, D., Milena, V., Petar, D., MilenaDinic, B. (2018). Thermal comfort of pedestrian spaces and the influence of pavement materials on warming up during summer, *Energy and Buildings*, 159, pp. 474-485.
- Jeon, M., Walker, B., Yim, J. (2014). Effects of specific emotions on subjective judgment, driving performance, and perceived workload. Transportation Research F. *Traffic Psychology Behavior*, 24, pp.197–209.
- Joni, H., Mohammed, A., Shakir, A. (2020). Classification of traffic accident datasets between 2003–2017 in Iraq. *Data in brief*, 28, 104902.
- Johnson, M., Newstead, S., Charlton, J., Oxley, J. (2011). Riding through red lights: The rate, characteristics, and risk factors of non-compliant urban commuter cyclists. *Accident Analysis and Prevention*, 43(1), pp. 323–328.
- Jonghak, L., Junghyo, C., Taekwan, Y., Hojin, Y. (2018). Traffic accident severity analysis with rain-related factors using structural equation modeling – A case study of Seoul City. Accident Analysis and Prevention, 112, pp. 1–10.

- Joshua, S., Yi, L. (2015). Effects of extraordinary snowfall on traffic safety. *Accident Analysis and Prevention*, *81*, pp. 194–203.
- Jrew, B., Msallam, M., Khaled, S., Abojaradeh, M. (2017). Analysis and evaluation of traffic accidents for principle urban streets in Arbil city in Iraq. *Diyala Journal* of Engineering Sciences. Diyala University, 10(1), pp. 118–131.
- Jrew, B., Abojaradeh, M. and Abojaradeh, E. (2012). Development of Statistical Prediction Models to reduce Fatal and Injury Accidents in Jordan. *Proceeding in the 6th Traffic Safety in Jordan by the Jordan Traffic Institute*. Jordan.
- Jung, S., Jung, X., Noyce, D. (2010). Rainfall effect on single-vehicle crash severities using polychotomous response models. *Accidental Analysis Prevention*, 42 (1), pp. 213–224.
- Kay, F., Dominique, L., Byung-Jung P. (2010). Horizontal curve accident modification factor with consideration of driveway Dena city on a rural fourlane highway in Texas. *Journal of Transportation Engineering*, 136 (9), pp. 827-835.
- Karathodorou, N., Graham, D., Hu, J., Richter, T., Ruhl, S., Yannis, G., Dragomanovits, A., Laiou, A., La Torre, F., Domenichini, L. (2016).
 Development of a crash modification factors model within the PRACT project. *Proceedings of the Road Safety in 5 Continents Conference*, Brasil.
- Kaygisiz, Ö., Senbil, M., Yildiz, A. (2017). Influence of urban built environment on traffic accidents: The case of Eskisehir (Turkey). *Case studies on transport policy*, 5(2), pp. 306–313.
- Kaygisiz, Ö., Yildiz, A., Duzgun, S. (2015). Spatio-temporal pedestrian accident analysis to improve urban pedestrian safety: the case of the Eskisehir Motorway. *Gazi University Journal of Science*, 28(4), pp. 623–630.
- Kayigisiz, O., Yildiz A., Duzgun S. (2015 b). Spatial-Temporal analysis for accident prevention in relation to behavioral factor in driving: The case study of South Anatolian Motorway. *Transportation Research Part F, Traffic Phycology Behavior, 33*, pp. 128-140.
- Kazuhiko, H., Zobair I. (2013). A concept for an expert system based accident prediction Technique for ship maneuvering. *Proceedings of IDFS*, pp.25-27.
- Kim, L., Wiggins, J. (2012). Expert Systems: Applications to Urban Planning. Spring Verlag, Springer Science and Bussiness Media. https://www.springer.com/gp/book/9781461279761

- Klauer, S., Guo F., Simons-Morton B., Ouimet M., Lee S., and Dingus T. (2014). Distracted driving and risk of road crashes among novice and experienced drivers. *New England Journal of Medicine*, 370(1), pp. 54–59.
- Knapp, K. K., L. D. Smithson, & A. J. Khattak. (2000). The mobility and safety impacts of winter storm events in a freeway environment, In Mid-continent Transportation

Symposium 2000 proceedings. Ames, IA

- Kubota, H. (2013). Speeding behavior on urban residential streets with a 30 km/h speed limit under the framework of the theory of planned behavior. *Transport policy*, *29*, pp.199-208.
- Lansdown, T. (2012). Individual differences and propensity to engage with in-vehicle distractions–A self-report survey. *Transportation research part F: Traffic psychology and behavior*, 15(1), pp. 1–8.
- Laurent, C., Etienne, B. (2013). An assessment of the safety effects of the French speed camera program. *Accident Analysis and Prevention*, *51*, pp. 301-309.
- Larsson, P., Dekker, S., Tingvall, C. (2010). The need for a systems theory approach to road safety. *Safety Science*, 48(9), pp. 1167–1174.
- La Torre, F., Domenichini, L., Meocci, M., Graham, D., Karathodorou, N., Richter, T., Ruhl, S., Yannis, G., Dragomanovits, A., Laiou, A. (2016). Development of a transnational accident prediction model. *Transportation Research Procedia*, 14, pp. 1772–1781.
- Leidman, E., Maliniak, M., Sultan, A., Hassan, A., Hussain, S., Bilukha, O. (2016).
 Road traffic fatalities in selected governorates of Iraq from 2010 to 2013:
 prospective surveillance. *Conflict and health. BioMed Central*, 10(1), pp. 2.
- Ilies, R., Johnson, M., Judge, T., Keeney J. (2011). A within-individual study of interpersonal conflict as a work stressor: dispositional and situational moderators. *Journal of Organizational Behavior*, 32, pp. 44–64.
- Li, X., Yan, X., Wong, S. (2015). Effects of fog, driver experience and gender on driving behavior on S-curved road segments. Accident Analysis and Prevention, 77, pp. 91–104.
- Li, D., Liu, Q., Yuan, W., Liu, H. (2010). Relationship between fatigue driving and traffic accident. *Journal of Traffic Transportation Engineering*, (02), pp. 104–109.

- Liu, L. (2013). A methodology for developing performance-related specifications for pavement preservation treatments. Ph.D thesis Texas A & M University, College Station, TX, United State of America.
- Li, C., Sze, N., Wong, S., Wei, K., Tsui, F. (2016). A simulation study of the effects of alcohol on driving performance in a Chinese population. *Accident Analysis* and Prevention, 95, pp. 334–34
- Liang, Y., Lee, J. D. (2010). Combining cognitive and visual distraction: Less than the sum of its parts. *Accident Analysis and Prevention*, *42(3)*, pp. 881–890.
- Ling, M., Luo, S. Hu, F. Gu, R. (2017). Numerical modeling and artificial neural network for predicting J-integral of top-down cracking in asphalt concrete pavement. *In Transportation Research Board 96th Annual Meeting* (No. 17-05318).
- Liang, Y., Lee, J., Yekhshatyan, L. (2012). How dangerous is looking away from the road? Algorithms predict crash risk from glance patterns in naturalistic driving. *Human Factors*, 54(6), pp. 1104–1116.
- Lord, D., Geedipally, S. (2011). The negative binomial–Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros. *Accident Analysis and Prevention*, 43(5), pp. 1738–1742.
- Lord, D., Mannering, F. (2010). The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives. *Transportation Research Part A: Policy and Practice*, 44(5), pp. 291–305.
- Lovegrove, G., Clarklim, M., Sayed, T., (2010). Community-based, macro-level collision prediction model: use with a regional transportation plan. *Journal of Transportation Engineering*, *136*, pp. 120-128.
- Lu, M., Xuedong, Y., Chong, W., Jiangfeng, W. (2016). Modeling the equivalent property damage only crash rate for road segments using the hurdle regression framework, *Analytic Methods in Accident Research*, 11, pp. 48-61.
- MacLeod, K., Karriker-Jaffe, K., Ragland, D., Satariano, W., Kelley-Baker, T. Lacey, J. (2015). Acceptance of drinking and driving and alcohol-involved driving crashes in California. *Accident Analysis and Prevention*, 81, pp. 134–142.
- MacLeod, K., Griswold, J., Arnold L., Ragland, D. (2012). Factors associated with hitand-run pedestrian fatalities and driver identification. *Accident Analysis Prevention*, 45 (0), pp. 366–372.

- Macready, W., Wolpert, D. (1997). The No Free Lunch Theorems. *IEEE Transactions* on Evolutionary Computing, 1(1), pp. 67–82.
- Maurice, A., Romain, B., Nour-Eddin, E., Régine, S. (2015). Traffic indicators, accidents, and rain: some relationships calibrated on a French urban motorway network. *Transportation Research Procedia*, 10, pp. 31 – 40.
- Mansyur, R., Rahmat, R., Ismail, A. Kabit, M. (2011). Decision support system for transportation demand management: Object-oriented approach using kappa PC 2.4 expert system shell. *ARPN Journal of Engineering and Applied Science*, 6(2), pp. 73–81.
- Mansyur, R. (2011). Development of an expert advisory system for strategy implementation in transport demand management (E-ASSIST). Ph.D thesis. Universiti Kebangsaan Malaysia.
- Maria, G., PaolaCozzo, S. (2015). Dominance-based rough set approach: An application case study for setting speed limits for vehicles in speed controlled zones. *Knowledge-Based Systems*, 89, pp. 288-300.
- Martin, T., Solbeck, P., Mayers, D. (2013). A review of alcohol-impaired driving: the role of blood alcohol concentration and complexity of the driving task. *Journal of Forensic Science*, 58, pp.1238-1250.
- Mandic, D., Chambers, J. (2001). *Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures, and Stability.* John Wiley & Sons, New York.
- Mao, J., Koorey, G. (2010). Investigating and modelling the effects of traffic calming devices.https://ir.canterbury.ac.nz/bitstream/handle/10092/3897/12624226_IP ENZTG10-MaoKoorey.pdf?sequence=1&isAllowed=y
- McCartt, A., Hellinga, L., Strouse, L., Farmer, C. (2010). Long-term effects of handheld cell phone laws on driver handheld cell phone use. *Traffic injury* prevention. Taylor & Francis, 11(2), pp. 133–141.
- McIlroy, R., Plant, K., Jikyong, U., Nam, V., Bunyasi, B., Kokwaro, G., Wu, J., Hoque, S., Preston, J., Stanton, N.. (2019). Vulnerable road users in low-, middle-, and high-income countries: Validation of a pedestrian behavior questionnaire. *Accident Analysis and Prevention*, 131, 80–94.
- Milad, A., Basri, N., Borhan, M., Rahmat, R. (2016). A review of web-based expert systems for flexible pavement maintenance. *Journal of Technology*, 78(6), pp. 139–147.

- Miller, S., Hartmann, T., and Doree A. (2011) 'Measuring and visualizing hot mix asphalt concrete paving operations. *Automation in construction*, 20(4), pp. 474–481.
- Mohammed, A., Ambak, K., Mosa, A., Syamsunur, D. (2018). Traffic accidents in Iraq: an analytical study. *Journal of Advanced Research in Civil and Environmental Engineering*, 5, pp. 1-13.
- Mohammedi, M., Imani, M., Tajheri, F. (2012). Human and vehicle factors in Motor vehicle crashes and severity of related injuries in South East Iraq. *Journal of Health Scope, 1*, pp. 61-65.
- Mohammad, S., Payman, S., Mahdi, R., Mina, S., Mansoureh, R., Farhad S., Vafa, R. (2017). Alcohol consumption for simulated driving performance: A systematic review. *Chinese Journal of Traumatology*, 20, pp.166-172
- Moafian, G., Aghabebei, M., Heydari, S. (2013). An epidemiologic survey of road accidents in Iran: Analysis of drivers related factor. *Chinese Journal of Traumatology*, 16, pp. 140-144.
- Monarca, D., Cecchini M. (2013). Abstracts of the 10th Conference of the Italian Society of Agricultural Engineering. *Journal of Agricultural. Engineering*, 44(1), pp. 1–75.
- Mueller, A., Trick, L. (2012). Driving in fog: the effects of driving experience and visibility on speed compensation and hazard avoidance. *Accident Analysis and Prevention*, 48, pp. 472–479.
- Mustakim, F., Fujita, M. (2011). Development of accident predictive model for rural roadway. *Engineering and Technology*, 58, pp. 126-131.
- Morgan, N., Lesley, A., Benjamin, M., Haley, J., Shannon, M. (2016). Wittig, Despina Stavrinos, Differential impact of personality traits on distracted driving behaviors in teens and older adults. *Accident Analysis and Prevention*, 92, pp. 107–112.
- Murphy, B., Levinson, D., Owen, A. (2017). Evaluating the Safety In Numbers' effect for pedestrians at urban intersections. *Accident Analysis and Prevention*, 106, pp. 181–190.
- Mutooro, S., Mutakooha, E., Kyamanywa, P. (2010). A comparison of Kampala trauma score II with the new injury severity score in Mbarara University Teaching Hospital in Uganda. *East and Central African Journal of Surgery*, 15(1), pp. 62–71.

- Montella, A., Imbriani, L. (2015). Safety performance functions incorporating design consistency variables. *Accident Analysis and Prevention*, *74*, pp. 133–144.
- Mosa, A., Atiq, R., Raihantaha, M., Ismail, A. (2011). A knowledgebase system to control construction problems in rigid highway pavements. *Australian Journal* of Basic and Applied Sciences, 5(6), pp. 1126–1136.
- Mosa, A., Taha, M., Ismail, A., Rahmat, R. (2013a). A diagnostic expert system to overcome construction problems in rigid highway pavement. *Journal of Civil Engineering and Management*, 19(6), pp. 846–861.
- Mosa, A., Taha, M., Ismail, A., Rahmat, R. (2013b). An Educational Knowledgebased System For Civil Engineering Students in Cement Concrete Construction Problems. *Procedia-Social and Behavioral Sciences*, 102, pp. 311–319.
- Mosa, A., Rahmat, R., Ismail, A., Taha, M., (2013). Expert system to control construction problems in flexible pavements. *Computer-Aided Civil and Infrastructure Engineering*, 28(4), pp. 307–323.
- Mosa, A., Atiq, R., Ismail, A. (2011). Classification of construction problems in rigid highway pavements. *Australasian Journal of Basic and Applied Science*, 5(3), pp. 378–395.
- Mosa A., Atiq, R., Taha, M., Ismail, A. (2011). A knowledgebase system to control construction problems in rigid highway pavements. *Australian Journal of Basic and Applied Science*, 5(6), pp. 1126–1136.
- Mosa, A., Ismail, N., Yusoff, N., Mubaraki, M., Memon, N., Taha, M., Hainin, M. (2015). An expert system to remedy concrete imperfections and their effects on rigid pavements. *Jurnal Teknologi. Penerbit Universiti Teknologi Malaysia*, 76(14), pp. 105–119.
- Murphy, B., Levinson, D., Owen, A. (2017). Evaluating the Safety In Numbers's effect for pedestrians at urban intersections. *Accident Analysis and Prevention*, 106, pp. 181–190.
- Mutooro, S., Mutakooha, E., Kyamanywa, P. (2010). A comparison of Kampala trauma score II with the new injury severity score in Mbarara University Teaching Hospital in Uganda. *East and Central African Journal of Surgery*, 15(1), pp. 62–71.

- Natalia, D., Salvatore, L. (2017). Effect of speed table, chicane, and narrowing on vehicle speed in urban area. VI International Symposium New Horizona 2017 of transport and communications.
- Nawaf, O., Alsrehin, A., Klaib, A. (2019). Intelligent Transportation and Control Systems Using Data Mining and Machine Learning Techniques: A Comprehensive Study. *IEEE*, (7), pp. 49830-49857.
- Nemme, H., White, K. (2010). Texting while driving: Psychosocial influences on young people's texting intentions and behavior. Accident Analysis and Prevention, 42(4), pp. 1257–1265.
- Nesbit, S., Conger, J. (2012). Predicting aggressive driving behavior from anger and negative cognitions. *Transportation Research Part F: Traffic Psychological Behavior 15* (6), pp. 710–718.
- Ni, R., Bian, Z., Guindon, A., Andersen, G. (2012). Aging and the detection of imminent collisions under simulated fog conditions. *Accident Analysis and Prevention*, 49, pp. 525–531.
- Nikiforos, S., Dominique, L., Jerry, P. (2010). Safety impact of design element tradeoffs for multilane rural highways. *Journal of Transportation Engineering, 35*, pp. 1-24.
- National Highway Traffic Safety Administration, NHTSA. (2015). *Traffic Safety Facts*. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115.
- Nishikawa, T., Yoshida, J., Sugiyama, T., Fujino, Y. (2012). Concrete crack detection by multiple sequential image filtering', Computer Civil Infrastructure Engineering, 27(1), pp. 29–47.
- Oana-Elena, B. (2013). Pedestrian zones as important urban strategies in redeveloping the community-A case study: Alba Iulia Borough park.*Transylvanian Review* of Administrative Sciences, 9(38), 5-22.
- Obaidat, M., Ramadan, T. (2012). Traffic accidents at hazardous locations of urban roads. *Jordan Journal of Civil Engineering*, *6*(*4*), pp. 436-447.
- Ohlms, P., Dougald, L., MacKnight, H. (2018). Assessing the Feasibility of a Pedestrian and Bicycle Count Program in Virginia (No. FHWA/VTRC 19-R4).
 Virginia. Deptartment of Transportation. https://rosap.ntl.bts.gov/view/dot/37155

- Ogunmodede, T. Adio, G., Ebijuwa, A., Oyetola, S., Akinola J. (2012). Factors influencing the high rate of commercial motorcycle accidents in Nigeria. *American International Journal of Contemporary Research*, 2, pp. 130–140.
- Oluwole, A., Rani, M., Rohani, J. (2015). Commercial bus accident analysis through accident database. *Journal of Transport System Engineering*, 2(1), pp. 7–14.
- Ooshaksaraie, L., Basri, N., Bakar, A., Maulud, K. (2012). RP3CA: An expert system app the lied in the stormwater management plan for construction sites in Malaysia. *Expert Systems with Applications, 39(3)*, pp. 3692–3701.
- Ooshaksaraie, L. and Basri, N. (2011). An expert system applied in construction water quality monitoring. American Journal of Environmental Sciences. *Science Publications*, 7(1), pp. 75–81.
- Osuagwu, C., Okafor, E. (2010). Framework for Eliciting Knowledge for a Medical Laboratory Diagnostic Expert System. *Expert Systems with Applications* 37(7), pp. 5009-5016.
- Organization, W. (2013). Global status report on road safety z: supporting a decade of action: summary. World Health Organization.
- Organization, W. (2015). *World report on aging and health*. World Health Organization.
- Osayomi, T. (2013). Regional determinants of road traffic accidents in Nigeria: identifying risk areas in need of intervention. *African geographical review*, 32(1), pp. 88–99.
- Oviedo-Trespalacios O., Mazharul, H., Mark, K., Simon, W. (2017). Effects of road infrastructure and traffic complexity in speed adaptation behavior of distracted drivers. *Accident Analysis and Prevention*, *101*, pp. 67–77
- Öz, B., Özkan, T., Lajunen, T. (2010). Professional and non-professional drivers' stress reactions and risky driving. *Transportation Research Part F: Traffic Psychology Behavior 13 (1)*, pp. 32–40.
- Pai C., Jou, R. (2014). Cyclists' red-light running behaviors: An examination of risktaking, opportunistic, and law-obeying behaviors. Accident Analysis and Prevention, 62, pp. 191–198.
- Panagiotis, P., Eleonora, P., George, Y. (2017). Review of driving performance parameters critical for distracted driving research. *Transportation Research Procedia*, 25, pp. 1796–1805.

- Park, J., Song, J., Lee, T., Lee, K. (2010). Implementation of the expert system on the estimation of fatigue properties from monotonic mechanical properties including hardness. *Procedia Engineering*, 2(1), pp. 1263–1272.
- Parkhill, M., Sooklall, R., and Bahar, G. (2007). Updated guidelines for the design and application of speed humps. *In ITE 2007 Annual Meeting and Exhibit*. Pittsburgh, Institute of Transportation Engineers.
- Paul, A., Chelsie, H., Sean, L. (2012). Stuck in the 70s: The role of social norms in distracted driving. Accident Analysis and Prevention, 48, pp. 279–284.
- Pietrantonio, H., Bornsztein, L. (2015). Evaluating road safety audit procedures: some questions and a new method of study. *Transportation Planning and Technology*, 38(8), pp.909-934.
- Poul, Greibe. (2003). Accident prediction models for urban roads. Accident Analysis and Prevention 35, pp.273–285.
- Přibyl, O. (2010). FESOLE–fuzzy expert system for determining the optimal level of enforcement. *IET Intelligent Transportation System*, *4*(*1*), pp. 76–81.
- Qazi, H., Sascha, K., Karsten, B. (2019). Safe and Efficient Navigation of an Autonomous Shuttle in a Pedestrian Zone. In International Conference on Robotics in Alpe-Adria Danube Region, Springer, Cham, pp. 267-274.
- Qian, Y., Zheng, M., Li, X., Lin, L. (2005). Implementation of knowledge maintenance modules in an expert system for fault diagnosis of chemical process operation. *Expert Systems with Applications*, 28(2), pp.249-257.
- Qingchao, L., Bochen, W., Yuquan, Z. (2018). Short-term traffic speed forecasting based on attention convolutional neural network for arterials. *Computer-Aided Civil and Infrastructure Engineering*, *33*, pp. 999-1016.
- Quddus, A., Chao, W., Stephen, G. (2010). Road traffic congestion and crash severity: Econometric analysis using ordered response models. *Journal of Transportation Engineering*, 136 (5), pp. 424-435.
- Ramesh, A., Kumar, M. (2011). Road accident models for Hyderabad metropolitan city of India. *Indian Highways*, 39(7).
- Razmpa, E., Niat, K., Saedi, B. (2011). Urban bus drivers' sleep problems and crash accidents. Indian Journal of Otolaryngology and Head & Neck Surgery, 63(3), pp. 269–273.

- Reinhard, W., Andreas, F., Claus, A. (2018). A combined approach for correcting tire hardness and temperature influence on tire/road noise. *Applied Acoustics*, 134, pp. 110–118.
- Regan, M., Hallett, C., Gordon, C. (2011). Driver distraction and driver inattention: definition, relationship, and taxonomy. *Accident Analysis and Prevention*, 43 (5), pp. 1771–1781.
- Richer, I., Bergeron, J. (2012). Differentiating risky and aggressive driving: further support of the internal validity of the Dula Dangerous Driving Index. Accident Analysis and Prevention, 45, pp. 620–627.
- Robert, B., Nolan, D., Eric, J., Charles, B. (2015). Costs and benefits of a road diet conversion. *Case Studies on Transport Policy*, 3, pp. 449-458
- Ruiz-Mezcua, B., Garcia-Crespo, A., Lopez-Cuadrado, J., Gonzalez-Carrasco, I. (2011). An expert system development tool for non AI experts. *Expert Systems with Applications*, 38(1), pp. 597–609.
- Rupp, M., Gentzler, M., Smither, J. (2016). Driving under the influence of distraction: Examining dissociations between risk perception and engagement in distracted driving. Accident Analysis and Prevention, 97, pp. 220–230.
- Sadeghniiat-Haghighi, K., Yazdi, Z., Moradinia, M., Aminian, O., Esmaili, A. (2015).
 Traffic crash accidents in Tehran, Iran: It is relative on with the circadian rhythm of sleepiness. *Chinese Journal of Traumatology*, *18(1)*, pp. 13–17.
- Salleh, B., Rahmat, A., Ismail A. (2015). Expert System on Selection of Mobility Management Strategies towards Implementing Active Transport. *Procedia-Social Behaviour Science*, 195, pp. 2896–2904.
- Saltan, M., Terzi, S., Küçüksille, E. (2011). Backcalculation of pavement layer moduli and Poisson's ratio using data mining. *Expert Systems with Applications*, 38(3), pp. 2600–2608.
- Salvatore, C., Alessandro, D., Grazia, B. (2010). Development of comprehensive model for two-lane rural highways using exposure, geometry, consistency and context variables. *Accident Analysis and Prevention*, pp. 1052-10.
- Sami, M., Florence, R., Régis, L. (2017). The effects of lane width, shoulder width, and road cross-sectional reallocation on drivers' behavioral adaptations. *Accident Analysis and Prevention*, 104, pp. 65–73.

- Sandhyavitri, A., Wiyono, S. (2017). Three strategies reducing accident rates at black spots and black sites road in Riau Province, Indonesia. *Transportation research procedia*, 25, pp. 2153–2166.
- Scialfa, C., Borkenhagena, D., Lyona, J., Deschênesa, M. (2012). The effects of driving experience on responses to a static hazard perception test. Accident Analysis and Prevention, 45, pp. 547–553.
- Seva, R., Flores, G., Gotohio, M. (2012). Logit model of motorcycle accidents in the Philippines considering personal and environmental factors. *International Journal for Traffic and Transport Engineering*, 3(2), pp. 173-184.
- Simons-Morton, B., Ouimet, M., Chen, R., Klauer, S., Lee, S., Wang, J., Dingus, T. (2012). Peer influence predicts speeding prevalence among teenage drivers. *Journal of Safety Research*, 43(5–6), pp. 397–403.
- Silva, F., Santos, J., Meireles, A. (2014). Road accident: driver behavior, learning and driving task. *Procedia-Social, and Behavioral Sciences, 162*, pp. 300–309.
- Shah, Y., Jain, J., Parida, M. (2014). Evaluation of prioritization methods for effective pavement maintenance of urban roads. *International Journal of Pavement Engineering*, 15(3), pp. 238–250.
- Shi, J., Bai, Y., Ying, X., Atchley, P. (2010). Aberrant driving behaviors: a study of drivers in Beijing. Accident Analysis and Prevention, 42, pp.1031–1040.
- Shi, Q., Abdel Aty, M., Yu, R. (2016). Multi-level Bayesian safety analysis with unprocessed automatic vehicle identification data for an urban expressway. *Accident Analysis Prevention*, 88, pp. 68–76.
- Singh, S. (2012). The neglected epidemic: road traffic crashes in India', Metamorphosis. SAGE Publications Sage India: New Delhi, India, 11(2), pp. 27–49.
- Singh, S. (2017). Road traffic accidents in India: issues and challenges. *Transportation research procedia*, 25, pp. 4708–4719.
- Smolensky, M., Di Milia, L., Ohayon, M., Philip, P. (2011). Sleep disorders, medical conditions, and road accident risk. *Accident Analysis Prevention* 43 (2), pp. 533–548.
- Soehodho, S. (2017). Public transportation development and traffic accident prevention in Indonesia. *IATSS research*, *40*(2), pp. 76–80.

- Sravani, V., Erdoong, C., Washington, S. (2011). Identifying large truck hot spots using crash counts and PDOE. *Journal of Transportation Engineering*, 137(1), pp. 11-20.
- Srinivasan, R., Colety, M., Bahar, G., Crowther, B., Farmen, M. (2016). Estimation of calibration functions for predicting crashes on rural two-lane roads in Arizona. *Transportation Research Record: Journal of Transportation Research Board*, 2583, pp. 17–24.
- Špundak, M., Bogunović, N., Fertalj, K. (2010). Webshop user error detection based on the rule-based expert system. *Proceedings of the 33rd International Convention*, in MIPRO, pp. 603–608.
- Stević, Ž., Pamučar, D., Subotić, M., Antuchevičiene, J., Zavadskas, E. (2018). The Location Selection for Roundabout Construction Using Rough BWM-Rough WASPAS Approach Based on a New Rough Hamy Aggregator. *Sustainability*, 10(8), pp. 2817.
- Suliman, A., Mostafa, H., Karim, B., James, C. (2018). Available sight distance on existing highways: Meeting stopping sight distance requirements of an aging population. Accident Analysis and Prevention, 112, pp. 56–68.
- Surenchen, F. (2010). Simulation-based assessment of vehicle safety behavior under hazardous driving conditions. *Accident Analysis and Prevention*, *136*, 4, pp.304-315.
- Syamsunur, D., Ismail, A., Atiq, R., Karim, O. (2011). Knowledge-based expert system for route selection of road alignment. *Australian Journal of Basic and Applied Sciences*, 5(5), pp. 208–213.
- Tan, K. (2010). Knowledge elicitation for validation of a neonatal ventilation expert system utilizing modified Delphi and focus group techniques. *International Journal of Human-Computer Study*, 68(6), pp. 344–354.
- Thomas, R., Stephan, R., Jörg, O., Emmanuel, B. (2017). Causes, consequences and countermeasures of overtaking accidents on two-lane rural roads. *Transportation Research Procedia*, 25, pp. 1989–2001.
- Tina, W. (2010). Regional traffic impacts of logistics-related land use. *Transportation Policy*, *17*, pp. 224-229. يضاف بدل Ewing, 1996.
- Tingru, Z., Alan, H., Wei, Z. (2015). Dimensions of driving anger and their relationships with aberrant driving. Accident Analysis and Prevention, 81, pp.124–133

- Tingru, Z., Alan, H. (2016). The association between driving anger and driving outcomes: A meta-analysis of evidence from the past twenty years. Accident Analysis and Prevention, 90, pp.50–62.
- Tseng, C. (2012). Social demographics, driving experience, and yearly driving distance in relation to a tour bus driver's at-fault accident risk. *Tourism Management*, 33, pp.910–915.
- Turkish Statistical Institute. (2013). *Road Traffic Accident Statistics for 2012*. Türkiye İstatistik Kurumu (TUİK)- In English, Ankara.
- Veldstra, J., Brookhuis, K., deWaard, D. (2012). Effects of alcohol (BAC 0.5%) and ecstasy (MDMA 100 mg) on simulated driving performance and traffic safety. *Psychopharmacology*, 222, pp.377-390.
- Vayalamkuzhi, P., Amirthalingam, V. (2016). Influence of geometric design characteristics on safety under heterogeneous traffic flow. *Journal of traffic* and transportation engineering, 3(6), pp. 559–570.
- Vatanavongs, R., Sonnarong, S. (2014). Impacts of accident severity factors and loss values of crashes on expressways in Thailand. *IATSS Research*, 37, pp.130– 136.
- Voas, R., Fell, J. (2011). Preventing impaired driving opportunities and problems. Alcohol Research Health, 34 (2), pp. 225–235.
- Wafaa, S., Monika, G., Samia, E. (2020). Pedestrian Road Crossing at Uncontrolled Mid-Block Locations: Does the Refuge Island Increase Risk. Sustainability, 12(4891), pp. 1-16.
- Waleed, M., Abdul-Sahib, M., Al-Ghabban, S. (2013). Risk factors and pattern of injuries in motorcycle accidents in Holy Karbala. *Kerbala Journal of Medicine*, *Kerbala University*, 6(1), pp. 1552–1560.
- Wang, Y., Bao, S., Du, W., Ye, Z., Sayer, J. (2017). Examining drivers' eye glance patterns during distracted driving: Insights from scanning randomness and glance transition matrix. *Journal of safety research*, 63, pp. 149–155.
- Wang, C., (2011). Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model. *Accident Analysis and Prevention*, 43, pp. 1979–1990.
- Wanyan, Y., Abdallah, I., Nazarian, S., Puppala, A. (2010). Expert system for design of low-volume roads over expansive soils. *Transportation Research Board of the National Academies*, (2154), pp. 81–90.

- Washington, S., Haque, M., Oh, J., Lee, D. (2014). Applying quantile regression for modeling equivalent property damage only crashes to identify accident blackspots. Accident Analysis and Prevention, 66, pp.136-146.
- Wedagama, D., Dissanayake, D. (2010). The influence of accident-related factors onroad fatalities considering Bali province in Indonesia as a case study. *Journal* of Eastern Asia Society for Transportation Studies, 8, pp. 1905-1917.
- Widyastuti, H., Thompson, R., Tay, R., Huda, M., Widiywati, F., Prabawati, A. (2016) Evaluation of Indonesia road safety campaigns (RUNK). *Procedia-Social and Behavioral Sciences*, 227, pp. 81–86.
- Wood, A., Mountain, L., Connors, R., Maher, M., Ropkins, K. (2013). Updating outdated predictive accident models. *Accident Analysis and Prevention*, 55, pp. 54–66.
- Wood, J., Donnell, E. (2014). Stopping sight distance and horizontal sight line offsets at horizontal curves. *Journal of Transportation Research Board*, 2436, pp. 43– 50.
- Wolshon, B., Pande, A. (2016). *Traffic engineering handbook*. John Wiley and Sons.
- World Health Organization. (2018). Global status report on road safety 2018: Summary (No. WHO/NMH/NVI/18.20).
- World Health Organization. (2015). Global status report on road safety 2015.
- Workman, J., Lee, S. (2011). Vanity and public self-consciousness: a comparison of fashion consumer groups and gender. *International Journal of Consumer Studies*, 35(3), pp. 307–315.
- Wu, C., Liu, Y., Zhang, K. (2012). The red-light running behavior of electric bike riders and cyclists at urban intersections in China: An observational study. *Accident Analysis and Prevention*, 49, pp.186–192.
- Wu, Z., Sharma, A., Mannering, F., Wang, S. (2013). Safety impacts of signal-warning flashers and speed control at high-speed signalized intersections. *Accident Analysis and Prevention*, 54, pp. 90–98.
- Xiaomeng, L., Xuedong, Y., Wong, S. (2015). Effects of fog, driver experience and gender on driving behavior on S-curved road segments. *Accident Analysis and Prevention*, 77, pp. 91–104.
- Xiong, H., Bao, S., Sayer, J., Kato, K. (2015). Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data. *Journal of safety research*, 54, pp. 89-e29.

- Xiugang, L., Dominique, L., Yunlong, Z., (2011). Development of accident modification factors for rural frontage road segments in Texas using Generalized Additive Models. *Journal of Transportation Engineering*, 137, pp. 74-83.
- Xu, Y., Li, Y., Zhang, F. (2013). Pedestrians' intention to jaywalk: automatic or planned? A study based on a dual-process model in China. Accident Analysis and Prevention, 50, pp. 811–819
- Xu, G., Bai, L., Sun, Z., Nowaczyk, T., Shive, C. and Wilcoxson, J. (2015). Pavement deterioration prediction model and project selection for Kentucky highways. *In 9th International Conference on Managing Pavement Assets.*
- Yamin, H., Qin, X. (2012). Traffic calming measures applicability research. In ICTE 2011, pp. 560-565.
- Yannis, G., John, G., Elonora, P. (2010). Modeling crossing behavior and accident risk of pedestrians. *Journal of Transportation Engineering*, *133*, pp. 634-644.
- Yannis, G., Papadimitriou, E., Karekla, X., Kontodima, F. (2010). Mobile phone use by young drivers: effects on traffic speed and headways. *Transportation Planning and Technology*, 4(33), pp.385-394.
- Yannis, G., Dragomanovits, A., Laiou, A., La Torre, F., Domenichini, L., Richter, T., Ruhl, S., Graham, D., Karathodorou, N. (2017). Road traffic accident prediction modeling: a literature review. Proceedings of the Institution of Civil Engineers – Transport, 170(5), pp. 245–254.
- Yannis, G., Dragomanovits, A., Laiou, A., La Torre, F., Domenichini, L., Richter, T., Ruhl, S., Graham, D., Karathodorou, N. (2016b). Development of an online repository of accident prediction models and crash modification factors. 1st European Road Infrastructure Congress.
- Yaotian, Z., Andrew, P. (2016). An insight into the performance of road barriers redistribution of barrier-relevant crashes. Accident Analysis and Prevention, 96, pp. 152–161.
- Yohan, U., Nagendra, R., Velaga, A. (2016). Cross-sectional study of road accidents and related law enforcement efficiency for 10 countries: a gap coherence analysis. *Traffic injury prevention*, 17(7), pp.686-691.
- Young, K., Lenné, M. (2010). Driver engagement in distracting activities and the strategies used to minimize risk. *Safety Science*, *48*(*3*), pp. 326–332.

- Young, K., Salmon, P., Cornelissen, M. (2012). Distraction-induced driving error: an on-road examination of the errors made by distracted and undistracted drivers. *Accident Analysis and Prevention*, 58, pp. 218–225.
- Yuan, Z., Yulei, W., Geyong, M., Laizhong, C. (2019). Learning-based network path planning for traffic engineering. *Future Generation Computer Systems*, 92, pp. 59-67.
- Yu-Wen, H., Pei-Chun, L., Jenhung, W. (2018). The influence of bus and taxi drivers' public self-consciousness and social anxiety on aberrant driving behaviors', *Accident Analysis and Prevention*, 117, pp. 145–153.
- Yusof, M., Nor, N., Mohamad, N. (2013). Malaysian value of statistical life for fatal injury in a road accident: A conjoint analysis approach. Journal of Society for Transportation and Traffic Studies, 2(2), pp. 30–40.
- Zhang, G., Thai, V. (2016). Expert elicitation and Bayesian Network modeling for shipping accidents: A literature review. *Safety Science*, 87, pp. 53–62.
- Zhang, Y., Wu JC. (2013). The effects of sun shields on red-light running behavior of cyclists and electric bike riders. Accident Analysis and Prevention, 52, pp. 210– 218.
- Zhang, G., Yau, K., Gong, X. (2014). Traffic violations in Guangdong Province of China: Speeding and drunk driving. Accident Analysis and Prevention, 64, pp.30–40.
- Zhang, G., Yau, K., Chen G. (2013). Risk factors associated with traffic violations and accident severity in China. *Accident Analysis and Prevention*, *59*, 18–25.
- Zhen, S., Qian, H., Michael Z. (2013). Full Closure or Partial Closure? Evaluation of Construction Plans for the I-5 Closure in Downtown Sacramento. *Journal of transportation engineering*, 139(3), pp. 273-286.
- Zhuoyun, J., Yuanbiao, Z., Minglang, C., Zhiqiang, G. (2012). Traffic Circle Administration Based on Circuit Marginal Benefit Theory. *Energy Procedia*, (17), pp. 340 – 348.
- Zeng, Q., Huat, H. (2014). Bayesian spatial joint modeling of traffic crashes on an urban road network. *Accident Analysis Prevention*, 67, pp. 105-112.
- Zuriaga, A., Garcia, A., Camacho, T., Attoma, P. (2010). Modeling operating speed and deceleration on two-lane rural roads with global positioning system data. *Transportation Research Record*, 2171, pp. 11–20.