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ABSTRACT 

Testing is essential in software engineering due to the huge size and complexity of 

everyday software systems. Generation of effective test cases becomes a crucial task 

due to the increment in the source code size and rapid change of requirements. New 

test cases are generated and added to a test suite to exercise the latest modification to 

software. Therefore, it is not easy to select effective test cases due to their 

redundancy and having common requirements. Thus, new challenges arise in 

reducing redundant test cases and finding common requirements that would decrease 

the cost and maintenance of a software testing process. Given a test suite and a set of 

requirements covered by test suite, Test Case Reduction or Minimization aims to 

select a subset of test cases that covers the same requirements. Several techniques 

have been proposed by researchers based on reduction parameter such as Test Suite 

Reduction, Fault Capability Detection and Processing Time Reduction. Nonetheless, 

these techniques are unable to tackle all parameters simultaneously, for example, 

some techniques may perform well in reducing the size of test cases but less 

considered on fault detection ability. To address this issue, this study proposed a 

technique that is able to minimize the size of test cases and common requirement 

attributes without compromising on fault detection capability. The proposed 

technique uses Similarity Relation to reduce the size of the test cases and Conditional 

Entropy to reduce the number of common requirements. The experimental results 

show a test case reduction that is smaller in size without affecting the decision of the 

testing. The proposed technique was able to reduce up to 50% of the reduction rate 

compared to base-line techniques such as MFTS Algorithm, FLOWER, RZOLTAR 

and Weighted Greedy Algorithm. 
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ABSTRAK 

Saiz dan kerumitan sistem perisian yang semakin meningkat dalam kehidupan 

seharian menjadikan pengujian penting dalam kejuruteraan perisian. Keberkesanan 

kes ujian (test case) yang dihasilkan adalah penting disebabkan oleh peningkatan saiz 

kod sumber dan perubahan pesat keperluan. Kes ujian baharu dihasilkan dan 

ditambah ke suite ujian (test suite) untuk menjalankan pengubahsuaian terkini 

kepada perisian. Proses untuk memilih kes ujian yang berkesan adalah tidak mudah 

disebabkan oleh kes ujian yang lewah dan jenis keperluan yang serupa. Oleh itu, 

timbul cabaran baharu untuk mengurangkan kes ujian yang tidak perlu dan mencari 

keperluan serupa yang akan mengurangkan kos dan memudahkan proses 

penyelenggaraan ujian perisian. Untuk suite ujian dan set keperluan yang diliputi 

oleh suite ujian, Pengurangan Kes Ujian (Test Case Reduction or Minimization) 

bertujuan untuk memilih subset kes ujian yang memenuhi keperluan yang sama. 

Beberapa teknik telah dicadangkan oleh para penyelidik berdasarkan parameter 

pengurangan seperti Ujian Pengurangan Suite, Pengesanan Kemampuan Kesalahan 

dan Pengurangan Masa Pemprosesan. Walau bagaimanapun, teknik tersebut tidak 

dapat menangani semua parameter secara serentak, contohnya beberapa teknik 

tersebut dapat mengurangkan kes ujian dengan berkesan namun kurang 

mempertimbangkan keupayaan untuk mengesan kesalahan. Untuk menangani isu ini, 

kajian ini mencadangkan sebuah teknik yang berupaya meminimumkan saiz kes 

ujian dan sifat keperluan tanpa mengorbankan keupayaan pengesanan kesalahan. 

Teknik yang dicadangkan menggunakan Hubungan Kesamaan (Similarity Relation) 

untuk mengurangkan saiz kes ujian dan Entropy Bersyarat (Conditional Entropy) 

untuk mendapatkan subset keperluan serupa. Hasil eksperimen menunjukkan 

pengurangan kes ujian yang lebih kecil tanpa mempengaruhi keputusan ujian. Teknik 

yang dicadangkan telah berupaya mengurangkan sehingga 50% kadar pengurangan 

kes ujian, berbanding teknik biasa seperti Algoritma MFTS, FLOWER, RZOLTAR 

dan Algoritma Serat Berat (Weighted Greedy Algorithm). 
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1CHAPTER 1 

INTRODUCTION 

 

 

 

 

Software development process is not limited solely to the code writing process. The 

requirements of the software must be defined so that the specifications of the 

software can be created, codes can be written and tests can be performed to ensure 

that the software developed matches with the intended specifications, defects are 

eliminated and the software can be maintained over time (Hooda & Chhillar, 2014). 

All these stages are known as software development lifecycle (SDLC). Furthermore, 

the developed software will also change over time due to the different strategies 

employed by software developers in carrying out the SDLC process. Consequently, 

software testing becomes an important stage and is needed throughout SDLC.  

Software testing is an activity conducted by software testers to validate 

whether a system is working correctly or not. Nowadays, with the evolution in 

software system, it is a challenge for software testing mechanisms to determine 

whether the system has passed or failed a test, which is also a subject of interest for 

many researchers (Barr et al., 2015). In software testing, the testing requirements are 

gathered from software requirement and specification (SRS) and once a set of 

requirements is found, a set of test cases (test suite) are generated to fulfill the 

requirements (DeMilli & Offutt, 1991). The development team usually has a well-

specified set of test cases that should be run within minimal time. According to IEEE 

definition (Binkley, 1997), test case is a simple medium containing the inputs and 

expected result developed to test the program with the requirements given. Test suite 

is a collection of test cases that are grouped and run together. The generated test 

cases are used to ensure that the requirements gathered from SRS are satisfied by the 
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system (Gupta & Soffa, 1993). It is important to produce good quality test cases. A 

quality test case should have the properties of its overall running time, size and its 

expected fault detection capability or a combination of those (Khalilian & Parsa, 

2009; Rothermel et al., 2002). 

However, during SDLC, some modifications in maintenance phase may lead 

to growth in software size and results to an increment in test suite size. Over time, 

test cases designed specifically for one requirement may satisfy additional 

requirement as well. Two test cases are redundant if they satisfy the same 

requirements (Mohapatra & Prasad, 2015; Chen & Lau, 1998). Thus, the created test 

suite may contain redundancy because some of its proper subsets may still satisfy the 

set of requirements. In some cases, some requirements are also common, with respect 

to any test case. For example, in a web application, 1000 test cases in a test suite are 

used to test 500 requirements. Some of the test cases are redundant when a specific 

requirement exercised by a test case is also exercised by another test case in the test 

suite. All these issues create the motivation to create a good technique on selecting 

the minimal subset of test cases that covers all requirements without hampering the 

decision of pass or fail of the system. 

It is advantageous to have the smallest possible set of test cases because tests 

must be run repeatedly for every change done in the software due to the removal of 

redundant test cases (Mohapatra & Prasad, 2015; Chen & Lau, 1998). This process is 

known as test suite reduction or test suite minimization (Harris & Raju, 2015; 

Khalilian & Parsa, 2009; Lin & Huang, 2009; Harrold et al., 1993). Both terms will 

be used interchangeably throughout this research. Test case reduction is a technique 

that will decrease the size of the test cases and time needed for test suite execution 

while providing the same software coverage as the original test suite (Alian et al., 

2016). In this technique, only necessary subsets of test cases are selected to be the 

representative test suite (Harrold et al., 1993). In order to solve this problem, several 

reduction techniques have been introduced. They can be classified into:  

(1) Requirement Base that satisfies all the optimized requirements with minimum 

number of test cases; (2) Genetic Algorithm that uses computational intelligence 

based approach to cater the problem of evolutionary computation in test case 

reduction; (3) Fuzzy Logic that is used in the communications, bioinformatics and 

expert systems. This type of technique attempts to reduce test cases based on 

objectives function and is quite similar to human judgment; (4) Coverage Based that 
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ensures the majority of the execution paths of the software are exercised;  

(5) Program Slicing that helps to show the control flow of a software and specify 

which statements are invoked with that test cases; (6) Greedy Algorithm or heuristic 

for code-based reduction which selects the test cases with the maximum number of 

unsatisfied requirements and arbitrary choice for the tie situation; (7) Hybrid 

Algorithm which is a combination of several genetic algorithms that provides 

significant reduction of test cases and multi-objectives optimization; and  

(8) Clustering that uses the clustering technique to run the test with clustered test 

cases rather than with the entire test suite (Alian et al., 2016).  

 Research Motivation 

Test case generation is the most challenging part in software testing (Singh, 2014; 

Zeng & Tan, 2012). As software evolves, new test cases are generated and added to a 

test suite to exercise the latest modifications to the software. Due to  many versions 

of the software developed, the possibility to generate redundant test cases in the test 

suite will increase (Singh et al., 2011). Apart from that, the redundant test cases must 

exercise software requirements for which they were generated. There are some 

requirements that are common in any test case. These common requirements can be 

reduced without affecting system performance. All these issues create the motivation 

to create a good technique for selecting a minimal subset of test cases that covers all 

requirements without hampering the decision of pass or fail of the system. This is a 

NP-complete problem and can be easily proven using a polynomial time reduction 

from the minimum set-cover problem (Garey MR, 1979). The set cover problem 

consists of finite set of test cases, T and m subsets of requirements R1, R2, Rm of these 

test cases. The minimum set-cover problem is used to find the fewest number of test 

cases subsets and requirements. Therefore, the heuristics part of solving this problem 

is important in order to keep the test suite as small as possible while preserving the 

test suite quality.  

Many researchers (Harris & Raju, 2015; Gotlieb & Marijan, 2014; Campos & 

Abreu, 2013; Xu et al., 2012) have proposed various test case reduction techniques 

to approximate a minimal subset of test cases. MFTS Algorithm (Harris & Raju, 

2015) solves this problem by optimizing the test suite based on related testing 
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objective. (Gotlieb & Marijan, 2014) introduced FLOWER that computes a 

minimum-sized test suite while preserving the coverage of requirements. RZOLTAR 

heuristic approach (Campos & Abreu, 2013) attempts to obtain an optimal 

representative set of test cases. Another research (Xu et al., 2012) presents a 

modified greedy algorithm solution by means of Weighted Set Covering (WSC). 

However, the researchers aim was to reduce the number of test suite, but less 

attention was given to maintain the method’s fault capability. Hence, there is a need 

for a technique that produces the minimal subset of test cases and common 

requirements, while simultaneously maintains the ability to detect faults. At the same 

time, the test cases and common requirements size can be reduced, thus reducing the 

time needed to run the test. 

Rough Set Theory has been used for attribute selection in Incomplete 

Information Systems with significant success (Deris et al., 2015; Wang, 2002). This 

method gives minimal reduction in incomplete decision system. Capitalizing on its 

advantage in handling flexible and precise data selection in Information System (IS), 

Rough Set Theory was utilized for Software Testing (ST). While IS focuses on 

finding the attribute which is low in similarity and certainty relation, ST needs 

minimal similarity relation among the test cases to minimize the redundancy between 

the test cases. This further motivates the researcher as it seemed to be a very 

attractive solution for the test case reduction issue.  

This research applies similarity relation to classify the test cases in order to 

eliminate the redundant test cases. The Rough Set Theory provides the ability to find 

similarity relation among the test cases and reduce redundant test cases without 

compromising the fault detection capability of the test. Conditional Entropy is 

introduced to the similarity relation approach to reduce a certain number of the 

common requirement attributes. The goal of integrating Rough Set Theory and 

information theory in software testing is to seek a practical approach in software 

testing. However, this approach is less used by researchers in ST, especially in test 

cases reduction. Further research should be done to provide better results in test cases 

reduction.  

 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

 

 

5 

 Research Objectives  

Objectives of the research are as follows: 

(i) To develop Test Case Reduction technique using Similarity Relation and 

Conditional Entropy. 

(ii) To validate and compare the proposed technique with other techniques 

namely MFTS Algorithm, FLOWER, RZOLTAR and Weighted Greedy 

Algorithm. 

 Scope and Limitation 

This research focused only on reducing the test cases and common requirements in 

Test Case-Requirement (TCR) Matrix table. The relationship between test cases and 

associated requirements will be represented as a Test Case-Requirement (TCR) 

Matrix table. Similarity relation will be used to reduce the test cases while 

Conditional Entropy will be used to find the minimum subset of requirements. The 

test cases and common requirements in TCR table will be reduced without affecting 

the fault detection capability of the system. The performances of the proposed 

algorithm and the existing algorithm were compared in terms of reduction rate while 

preserving the fault detection capability. This research does not cover the processing 

time for reduction and the complexity for the algorithm.  

Data set used in this research is from the Test Log of Automatic Teller 

Machine System Independent Verification and Validation Project (ATMS IV & V) 

by Malaysian Software Testing Board (MSTB Lecturer Aid (Student)) as in Appendix 

A. ATMS IV & V project scope of testing is only limited to black-box functional 

testing for features developed in the test object. This test only addresses system level 

test which excludes unit test, static test, integration test, regression test and 

confirmation test.  
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 Significance of Study 

At the end of this research, the proposed technique produced a minimal subset of test 

cases and requirements. Minimize the subset of test cases and requirements without 

affecting the decision of the testing is very important to get the quality test cases. 

Ultimately it is beneficial to optimize time and effort spent on testing and it is also 

helpful during regression testing (Rothermel et al., 2002). The method to select 

minimum test case and requirement can be used to design a good and beneficial tool 

to reduce the size of test cases in every changes of the software. Consequently, this 

research is conducted to prove that rough set theory and conditional entropy is 

suitable for one-step-ahead test cases reduction method.  

 Thesis Organization 

The remaining part of this thesis is broken up into the following chapters. Chapter 2 

discusses the relevant background information regarding previous approaches used in 

test cases reduction in the following order: (1) overview of software testing concept, 

(2) test case redundancy and its disadvantages in software testing, (3) brief idea on 

Rough Set Theory and (4) Conditional Entropy used in software testing and (5) 

several techniques that have been employed in test case reduction .This chapter also 

elaborates the virtues and limitations of these methods. Chapter 3 describes the 

methodology used to come out with the proposed test cases reduction method. This 

chapter provides a clear picture on the research framework. The implementation of 

similarity relation in Rough Set Theory and Conditional Entropy are also discussed 

in details. The rationale for integrating Rough Set Theory with Conditional Entropy 

is presented. Then, the process flow is transferred to formalize the algorithm in 

Chapter 4. Individual sections detail up the process, starting from creating the Test 

Cases-Requirement (TCR) Matrix table, and evaluating the performance of the 

proposed method. The rules and algorithm of the approach will also be discussed in 

this chapter. The last chapter, Chapter 5, concludes the work done and several 

recommendations are suggested in order to improve the performance of the proposed 

approach.  
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2CHAPTER 2 

LITERATURE REVIEW 

 

This chapter provides the literature review for this study. General overview on 

software testing is given in Section 2.1. Section 2.2 discusses the fundamental of 

Rough Set Theory which is Similarity Relation and Section 2.3 discusses on 

Conditional Entropy. Test Cases Reduction techniques are discusses in Section 2.4 

while comparative analysis of existing test case reduction techniques is presented in 

Section 2.5. Section 2.6 summarizes the whole Chapter 2.  

 Software Testing 

Over the decades, as the pervasiveness of software development has increased, 

testing becomes a critical part of SDLC. Software testing occurs continuously during 

the SDLC and is considered as part of software quality assurance (SQA) processes. It 

is done to validate and verify that software meets the needed requirement and to 

discover any error. The IEEE Software Engineering Body of Knowledge (SWEBOK) 

states that software testing is a dynamic process and requires selected test cases to 

verify the behavior of the program (Abran et al., 2004). It is important to find and 

remove existing faults in the program and preserve its overall quality. In software 

testing, once a set of requirements is established, a set of test cases (test suite) is 

generated to fulfill the requirements.  

Test cases are always known as one of the challenging tasks in software 

testing (Singh, 2014; Zeng & Tan, 2012). Test cases are important and need to be 

provided earlier so that the entire system requirement can be tested. Test case is a set 

of test input, condition and expected result running to the software to verify the 
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quality specification of the system (Myers et al., 2011). Results from the test will 

determine whether or not the system meets user and system specifications. IEEE 

(Committee, 1983) standard defines a set of test case as “A set of test inputs, 

execution and expected results developed for a particular objective, such as to 

exercise a particular program path or to verify compliance with a specific 

requirements”. For example, a test case answers the question: “What am I going to 

test?” Test cases are developed to define the things that need to be validated to 

ensure that the system is working properly and is built with high level of quality. The 

combination of test cases is called a test suite where it contains detailed instruction or 

goals for each collection of test case to be used during testing (Pomeranz & Reddy, 

1997). A test suite consists of all the test cases that satisfy some system 

requirements. Test cases can be generated automatically using testing tools or 

manually created by a tester. There are two fundamental approaches in generating 

test cases, known as functional and structural testing. Functional testing or also 

called as static or black-box test is based on the view that any component or system 

can be tested at requirement or implementation level without looking at the internal 

code structure and knowledge of internal path of the software. In contrast, structural 

testing or white-box test involves the execution of the software. There are various 

techniques used to generate test cases for example finite state machine (Soo-In et al., 

2000), neural network (Zhao & Lv, 2007), genetic algorithm (Rajappa et al., 2008), 

soft computing (Mitra & Hayashi, 2000) and many others (Hooda & Chhillar, 2014). 

There are some techniques that generate test cases based on system requirements. 

This system produced test data based on requirement of the program. They are also 

techniques that generate test cases which test the system using some input and the 

expected output will be derived from condition like UML diagram, critical path, code 

based test generation technique, GUI based test generation technique, dynamic path 

testing and evolutionary technique, graph traversal algorithm and genetic algorithm.  

Any software contains a set of requirements that should be fulfilled. A test 

suite consists of all test cases that satisfy all system requirements. Table 2.1 

(Mohapatra & Prasad, 2015)  is an example that shows test cases in a test suite that 

satisfies system requirements. Consider a program P written to meet a set of 

requirements R; P and R are denoted as (P,R). Let T be a test set containing ti test 

cases to test P to determine whether it meets all requirements in R. The test cases 
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