
PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

TEST CASES REDUCTION USING SIMILARITY RELATION AND

CONDITIONAL ENTROPY

NOOR FARDZILAWATI BINTI MD NASIR

A thesis submitted in

fulfillment of the requirement for the award of the

Degree of Master of Information Technology

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

DECEMBER, 2017

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iii

DEDICATION

In the name of Allah, Most Gracious, The Most Merciful.

Special dedicated to my parent, Md Nasir Bin Md Isa and Jamaliah Binti Abdul

Majid, my husband Shaid Bin Jaffar, my son Hallaj Fansuri Bin Shaid, my siblings

and all my friends. Thanks you for your love, prayers, sopport and encouragement

since this journey started until the final stages. Without you, I would not be able to

go so far as where I am now. Hopefully, Allah will bless us all. Ameen.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iv

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude and appreciation to

my supervisor Dr. Noraini Binti Ibrahim who gave me the opportunity to be her

student. Her guidance helps me in all the time of research and writing of this thesis.

My sincere thanks also goes to all postgraduate members, fellow experts,

researchers and staff in Faculty of Computer Science and Information Technology,

UTHM for their encouragement and motivation in making me take my first step into

Master thesis.

I owe my loving thanks to my husband Shaid Bin Jaffar and my kid Hallaj

Fansuri. Thanks to my loving parents Md Nasir Bin Md Isa and Jamaliah Binti Abdul

Majid. Without their encouragement and understanding, it would have been

impossible for me to finish this work. My special gratitude is due to my brothers and

my sisters for their loving support.

Lastly, I also wish to thank all members that I cannot specify here for their

support, cooperation and contribution along the way. Thank you to Ministry of

Higher Education for sponsoring this research through Fundamental Research Grant

Scheme (FRGS) vote number 1610 and Universiti Tun Hussein Onn Malaysia

(UTHM).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

 v

ABSTRACT

Testing is essential in software engineering due to the huge size and complexity of

everyday software systems. Generation of effective test cases becomes a crucial task

due to the increment in the source code size and rapid change of requirements. New

test cases are generated and added to a test suite to exercise the latest modification to

software. Therefore, it is not easy to select effective test cases due to their

redundancy and having common requirements. Thus, new challenges arise in

reducing redundant test cases and finding common requirements that would decrease

the cost and maintenance of a software testing process. Given a test suite and a set of

requirements covered by test suite, Test Case Reduction or Minimization aims to

select a subset of test cases that covers the same requirements. Several techniques

have been proposed by researchers based on reduction parameter such as Test Suite

Reduction, Fault Capability Detection and Processing Time Reduction. Nonetheless,

these techniques are unable to tackle all parameters simultaneously, for example,

some techniques may perform well in reducing the size of test cases but less

considered on fault detection ability. To address this issue, this study proposed a

technique that is able to minimize the size of test cases and common requirement

attributes without compromising on fault detection capability. The proposed

technique uses Similarity Relation to reduce the size of the test cases and Conditional

Entropy to reduce the number of common requirements. The experimental results

show a test case reduction that is smaller in size without affecting the decision of the

testing. The proposed technique was able to reduce up to 50% of the reduction rate

compared to base-line techniques such as MFTS Algorithm, FLOWER, RZOLTAR

and Weighted Greedy Algorithm.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vi

ABSTRAK

Saiz dan kerumitan sistem perisian yang semakin meningkat dalam kehidupan

seharian menjadikan pengujian penting dalam kejuruteraan perisian. Keberkesanan

kes ujian (test case) yang dihasilkan adalah penting disebabkan oleh peningkatan saiz

kod sumber dan perubahan pesat keperluan. Kes ujian baharu dihasilkan dan

ditambah ke suite ujian (test suite) untuk menjalankan pengubahsuaian terkini

kepada perisian. Proses untuk memilih kes ujian yang berkesan adalah tidak mudah

disebabkan oleh kes ujian yang lewah dan jenis keperluan yang serupa. Oleh itu,

timbul cabaran baharu untuk mengurangkan kes ujian yang tidak perlu dan mencari

keperluan serupa yang akan mengurangkan kos dan memudahkan proses

penyelenggaraan ujian perisian. Untuk suite ujian dan set keperluan yang diliputi

oleh suite ujian, Pengurangan Kes Ujian (Test Case Reduction or Minimization)

bertujuan untuk memilih subset kes ujian yang memenuhi keperluan yang sama.

Beberapa teknik telah dicadangkan oleh para penyelidik berdasarkan parameter

pengurangan seperti Ujian Pengurangan Suite, Pengesanan Kemampuan Kesalahan

dan Pengurangan Masa Pemprosesan. Walau bagaimanapun, teknik tersebut tidak

dapat menangani semua parameter secara serentak, contohnya beberapa teknik

tersebut dapat mengurangkan kes ujian dengan berkesan namun kurang

mempertimbangkan keupayaan untuk mengesan kesalahan. Untuk menangani isu ini,

kajian ini mencadangkan sebuah teknik yang berupaya meminimumkan saiz kes

ujian dan sifat keperluan tanpa mengorbankan keupayaan pengesanan kesalahan.

Teknik yang dicadangkan menggunakan Hubungan Kesamaan (Similarity Relation)

untuk mengurangkan saiz kes ujian dan Entropy Bersyarat (Conditional Entropy)

untuk mendapatkan subset keperluan serupa. Hasil eksperimen menunjukkan

pengurangan kes ujian yang lebih kecil tanpa mempengaruhi keputusan ujian. Teknik

yang dicadangkan telah berupaya mengurangkan sehingga 50% kadar pengurangan

kes ujian, berbanding teknik biasa seperti Algoritma MFTS, FLOWER, RZOLTAR

dan Algoritma Serat Berat (Weighted Greedy Algorithm).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vii

TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ALGORITHMS xiii

LIST OF SYMBOLS AND ABBREVIATIONS xiv

LIST OF APPENDICES xvi

LIST OF PUBLICATIONS xvii

CHAPTER 1 INTRODUCTION 1

 Research Motivation 3

 Research Objectives 5

 Scope and Limitation 5

 Significance of Study 6

 Thesis Organization 6

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

viii

CHAPTER 2 LITERATURE REVIEW 7

 Software Testing 7

 Rough Set Theory 11

 Rough Set Theory in Information System 11

 Similarity relation 12

 Conditional Entropy 12

 Test Case Reduction Techniques 13

 Comparative Analysis of Existing Test Case

Reduction Techniques 22

 Chapter Summary 27

CHAPTER 3 RESEARCH METHODOLOGY 28

 Basic Concept 28

 Similarity Relation 28

 Conditional Entropy 30

 Research Framework 31

 Classification of Test Cases 32

 Selection of Requirements 35

 Calculation of Reduction Rate 42

 Chapter summary 42

CHAPTER 4 RESULTS AND DISCUSSION 42

 Data Set 42

 Test Cases Classification using Similarity Relation 46

 Requirements Selection using Conditional Entropy 48

 Comparative Analysis of Test Cases Reduction

Using Similarity Relation and Conditional Entropy

with Other Techniques 52

 Evaluation Analysis of Test Cases Reduction using

Similarity Relation and Conditional Entropy

with Other Techniques 57

 Chapter Summary 59

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

ix

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 61

 Achievements of Objectives 61

 Contributions 62

 Recommendation for Future Works 63

 Summary 63

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

x

LIST OF TABLES

2.1 The subset of test cases and requirements

(Mohapatra & Prasad, 2015) 9

2.2 Example of test case in a test suite

(Harrold et al., 1993) 10

2.3 Heuristic algorithm (Chvatal, 1979) 15

2.4 Example of test cases using HGS

(Tallam & Gupta, 2005; Harrold et al., 1993) 16

2.5 Example of test case in GE and GRE

(Chen and Lau, 1998) 17

2.6 Summary of test case reduction techniques 23

3.1 The example of similar class 33

3.2 The comparison of algorithm for tolerance

relation with test cases classification 34

3.3 The comparison of algorithm for attribute

selection with requirements selection 38

4.1 Test Case-Requirement Matrix 43

4.2 Test cases in the test log 44

4.3 Requirements in test log 45

4.4 A complete Test Case-Requirement

(TCR) Matrix 46

4.5 The new Test Case-Requirement (TCR’)

Matrix table 52

4.6 Comparison to Dataset 1 (12 test cases) 53

4.7 Comparison to Dataset 2 (10 test cases) 54

4.8 Comparison to Dataset 3 (6 test cases) 55

4.9 Comparison to Dataset 4 (27 test cases) 56

4.10 Evaluation to Dataset 1 (12 test cases) 57

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xi

4.11 Evaluation to Dataset 2 (10 test cases) 58

4.12 Evaluation to Dataset 3 (6 test cases) 58

4.13 Evaluation to Dataset 4 (27 test cases) 59

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xii

LIST OF FIGURES

3.1 The research framework 32

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiii

LIST OF ALGORITHMS

1 Breath-first search for requirements selection 37

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

SDLC - Software Development Life Cycle

NP - Non deterministic Polynomial time

IS - Information System

ST - Software Testing

TCR - Test Case Requirement Matrix

UML - Unified Modeling Language

GUI - Graphic User Interface

HGS - Harrold, Gupta & Soffa algorithm

ILP - Integer Linear Programming

ATMS - Automatic Teller Machine System Independent

 Verification and Validation Project

MSTB - Malaysian Software Testing Board

GE - Greedy Heuristic

GRE - Greedy Heuristic Essential

MFTS - Maximal Frequent Test Set

FDC - Fault Detection Capability

TSR - Test Suite Reduction

TS - Test Suite

MC/DC - Modified Condition/ Decision Coverage

WS - Weighted Set

WSC - Weighted Set Coverage

STS - Set of Test Suite

RTB - Reduction with tie breaking

SUT - System under test

BOG - Bi objective Greedy Algorithm

TSSR - Test Suite Reduction Rate

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xv

TCSR - Test case size reduction

CRR - Common Requirement Reduction

RSR - Reduce with selective redundancy

CRSR - Common Requirement Size Reduction

TCSR - Test Case Size Reduction

SRS - Software Requirement and Specification

IEEE - Institute of Electrical and Electronic

SQA - Software Quality Assurance

SWEBOK - Software Engineering Body of Knowledge

TS - Test Suite

STS - Set of Test Suite

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A Test Log of (ATMS IV & V) 71

 B Requirements Specification (ATMS_SRS_1.0) 73

 C Test Case Specification (ATMS_TCS_1.0.0) 76

 D Test Log (ATMS_TL_2_1.0.0) 83

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvii

 LIST OF PUBLICATIONS

Proceedings:

(i) Noor Fardzilawati Md Nasir, Noraini Ibrahim, Tutut Herawan (2016).

“Detection of Redundancy in CFG-Based Test Cases Using Entropy”. The

Second International Conference on Soft Computing and Data Mining

(SCDM-2016) (pp. 244-252). SCOPUS indexed.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

1CHAPTER 1

INTRODUCTION

Software development process is not limited solely to the code writing process. The

requirements of the software must be defined so that the specifications of the

software can be created, codes can be written and tests can be performed to ensure

that the software developed matches with the intended specifications, defects are

eliminated and the software can be maintained over time (Hooda & Chhillar, 2014).

All these stages are known as software development lifecycle (SDLC). Furthermore,

the developed software will also change over time due to the different strategies

employed by software developers in carrying out the SDLC process. Consequently,

software testing becomes an important stage and is needed throughout SDLC.

Software testing is an activity conducted by software testers to validate

whether a system is working correctly or not. Nowadays, with the evolution in

software system, it is a challenge for software testing mechanisms to determine

whether the system has passed or failed a test, which is also a subject of interest for

many researchers (Barr et al., 2015). In software testing, the testing requirements are

gathered from software requirement and specification (SRS) and once a set of

requirements is found, a set of test cases (test suite) are generated to fulfill the

requirements (DeMilli & Offutt, 1991). The development team usually has a well-

specified set of test cases that should be run within minimal time. According to IEEE

definition (Binkley, 1997), test case is a simple medium containing the inputs and

expected result developed to test the program with the requirements given. Test suite

is a collection of test cases that are grouped and run together. The generated test

cases are used to ensure that the requirements gathered from SRS are satisfied by the

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2

system (Gupta & Soffa, 1993). It is important to produce good quality test cases. A

quality test case should have the properties of its overall running time, size and its

expected fault detection capability or a combination of those (Khalilian & Parsa,

2009; Rothermel et al., 2002).

However, during SDLC, some modifications in maintenance phase may lead

to growth in software size and results to an increment in test suite size. Over time,

test cases designed specifically for one requirement may satisfy additional

requirement as well. Two test cases are redundant if they satisfy the same

requirements (Mohapatra & Prasad, 2015; Chen & Lau, 1998). Thus, the created test

suite may contain redundancy because some of its proper subsets may still satisfy the

set of requirements. In some cases, some requirements are also common, with respect

to any test case. For example, in a web application, 1000 test cases in a test suite are

used to test 500 requirements. Some of the test cases are redundant when a specific

requirement exercised by a test case is also exercised by another test case in the test

suite. All these issues create the motivation to create a good technique on selecting

the minimal subset of test cases that covers all requirements without hampering the

decision of pass or fail of the system.

It is advantageous to have the smallest possible set of test cases because tests

must be run repeatedly for every change done in the software due to the removal of

redundant test cases (Mohapatra & Prasad, 2015; Chen & Lau, 1998). This process is

known as test suite reduction or test suite minimization (Harris & Raju, 2015;

Khalilian & Parsa, 2009; Lin & Huang, 2009; Harrold et al., 1993). Both terms will

be used interchangeably throughout this research. Test case reduction is a technique

that will decrease the size of the test cases and time needed for test suite execution

while providing the same software coverage as the original test suite (Alian et al.,

2016). In this technique, only necessary subsets of test cases are selected to be the

representative test suite (Harrold et al., 1993). In order to solve this problem, several

reduction techniques have been introduced. They can be classified into:

(1) Requirement Base that satisfies all the optimized requirements with minimum

number of test cases; (2) Genetic Algorithm that uses computational intelligence

based approach to cater the problem of evolutionary computation in test case

reduction; (3) Fuzzy Logic that is used in the communications, bioinformatics and

expert systems. This type of technique attempts to reduce test cases based on

objectives function and is quite similar to human judgment; (4) Coverage Based that

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

3

ensures the majority of the execution paths of the software are exercised;

(5) Program Slicing that helps to show the control flow of a software and specify

which statements are invoked with that test cases; (6) Greedy Algorithm or heuristic

for code-based reduction which selects the test cases with the maximum number of

unsatisfied requirements and arbitrary choice for the tie situation; (7) Hybrid

Algorithm which is a combination of several genetic algorithms that provides

significant reduction of test cases and multi-objectives optimization; and

(8) Clustering that uses the clustering technique to run the test with clustered test

cases rather than with the entire test suite (Alian et al., 2016).

 Research Motivation

Test case generation is the most challenging part in software testing (Singh, 2014;

Zeng & Tan, 2012). As software evolves, new test cases are generated and added to a

test suite to exercise the latest modifications to the software. Due to many versions

of the software developed, the possibility to generate redundant test cases in the test

suite will increase (Singh et al., 2011). Apart from that, the redundant test cases must

exercise software requirements for which they were generated. There are some

requirements that are common in any test case. These common requirements can be

reduced without affecting system performance. All these issues create the motivation

to create a good technique for selecting a minimal subset of test cases that covers all

requirements without hampering the decision of pass or fail of the system. This is a

NP-complete problem and can be easily proven using a polynomial time reduction

from the minimum set-cover problem (Garey MR, 1979). The set cover problem

consists of finite set of test cases, T and m subsets of requirements R1, R2, Rm of these

test cases. The minimum set-cover problem is used to find the fewest number of test

cases subsets and requirements. Therefore, the heuristics part of solving this problem

is important in order to keep the test suite as small as possible while preserving the

test suite quality.

Many researchers (Harris & Raju, 2015; Gotlieb & Marijan, 2014; Campos &

Abreu, 2013; Xu et al., 2012) have proposed various test case reduction techniques

to approximate a minimal subset of test cases. MFTS Algorithm (Harris & Raju,

2015) solves this problem by optimizing the test suite based on related testing

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

4

objective. (Gotlieb & Marijan, 2014) introduced FLOWER that computes a

minimum-sized test suite while preserving the coverage of requirements. RZOLTAR

heuristic approach (Campos & Abreu, 2013) attempts to obtain an optimal

representative set of test cases. Another research (Xu et al., 2012) presents a

modified greedy algorithm solution by means of Weighted Set Covering (WSC).

However, the researchers aim was to reduce the number of test suite, but less

attention was given to maintain the method’s fault capability. Hence, there is a need

for a technique that produces the minimal subset of test cases and common

requirements, while simultaneously maintains the ability to detect faults. At the same

time, the test cases and common requirements size can be reduced, thus reducing the

time needed to run the test.

Rough Set Theory has been used for attribute selection in Incomplete

Information Systems with significant success (Deris et al., 2015; Wang, 2002). This

method gives minimal reduction in incomplete decision system. Capitalizing on its

advantage in handling flexible and precise data selection in Information System (IS),

Rough Set Theory was utilized for Software Testing (ST). While IS focuses on

finding the attribute which is low in similarity and certainty relation, ST needs

minimal similarity relation among the test cases to minimize the redundancy between

the test cases. This further motivates the researcher as it seemed to be a very

attractive solution for the test case reduction issue.

This research applies similarity relation to classify the test cases in order to

eliminate the redundant test cases. The Rough Set Theory provides the ability to find

similarity relation among the test cases and reduce redundant test cases without

compromising the fault detection capability of the test. Conditional Entropy is

introduced to the similarity relation approach to reduce a certain number of the

common requirement attributes. The goal of integrating Rough Set Theory and

information theory in software testing is to seek a practical approach in software

testing. However, this approach is less used by researchers in ST, especially in test

cases reduction. Further research should be done to provide better results in test cases

reduction.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

5

 Research Objectives

Objectives of the research are as follows:

(i) To develop Test Case Reduction technique using Similarity Relation and

Conditional Entropy.

(ii) To validate and compare the proposed technique with other techniques

namely MFTS Algorithm, FLOWER, RZOLTAR and Weighted Greedy

Algorithm.

 Scope and Limitation

This research focused only on reducing the test cases and common requirements in

Test Case-Requirement (TCR) Matrix table. The relationship between test cases and

associated requirements will be represented as a Test Case-Requirement (TCR)

Matrix table. Similarity relation will be used to reduce the test cases while

Conditional Entropy will be used to find the minimum subset of requirements. The

test cases and common requirements in TCR table will be reduced without affecting

the fault detection capability of the system. The performances of the proposed

algorithm and the existing algorithm were compared in terms of reduction rate while

preserving the fault detection capability. This research does not cover the processing

time for reduction and the complexity for the algorithm.

Data set used in this research is from the Test Log of Automatic Teller

Machine System Independent Verification and Validation Project (ATMS IV & V)

by Malaysian Software Testing Board (MSTB Lecturer Aid (Student)) as in Appendix

A. ATMS IV & V project scope of testing is only limited to black-box functional

testing for features developed in the test object. This test only addresses system level

test which excludes unit test, static test, integration test, regression test and

confirmation test.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

 Significance of Study

At the end of this research, the proposed technique produced a minimal subset of test

cases and requirements. Minimize the subset of test cases and requirements without

affecting the decision of the testing is very important to get the quality test cases.

Ultimately it is beneficial to optimize time and effort spent on testing and it is also

helpful during regression testing (Rothermel et al., 2002). The method to select

minimum test case and requirement can be used to design a good and beneficial tool

to reduce the size of test cases in every changes of the software. Consequently, this

research is conducted to prove that rough set theory and conditional entropy is

suitable for one-step-ahead test cases reduction method.

 Thesis Organization

The remaining part of this thesis is broken up into the following chapters. Chapter 2

discusses the relevant background information regarding previous approaches used in

test cases reduction in the following order: (1) overview of software testing concept,

(2) test case redundancy and its disadvantages in software testing, (3) brief idea on

Rough Set Theory and (4) Conditional Entropy used in software testing and (5)

several techniques that have been employed in test case reduction .This chapter also

elaborates the virtues and limitations of these methods. Chapter 3 describes the

methodology used to come out with the proposed test cases reduction method. This

chapter provides a clear picture on the research framework. The implementation of

similarity relation in Rough Set Theory and Conditional Entropy are also discussed

in details. The rationale for integrating Rough Set Theory with Conditional Entropy

is presented. Then, the process flow is transferred to formalize the algorithm in

Chapter 4. Individual sections detail up the process, starting from creating the Test

Cases-Requirement (TCR) Matrix table, and evaluating the performance of the

proposed method. The rules and algorithm of the approach will also be discussed in

this chapter. The last chapter, Chapter 5, concludes the work done and several

recommendations are suggested in order to improve the performance of the proposed

approach.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2CHAPTER 2

LITERATURE REVIEW

This chapter provides the literature review for this study. General overview on

software testing is given in Section 2.1. Section 2.2 discusses the fundamental of

Rough Set Theory which is Similarity Relation and Section 2.3 discusses on

Conditional Entropy. Test Cases Reduction techniques are discusses in Section 2.4

while comparative analysis of existing test case reduction techniques is presented in

Section 2.5. Section 2.6 summarizes the whole Chapter 2.

 Software Testing

Over the decades, as the pervasiveness of software development has increased,

testing becomes a critical part of SDLC. Software testing occurs continuously during

the SDLC and is considered as part of software quality assurance (SQA) processes. It

is done to validate and verify that software meets the needed requirement and to

discover any error. The IEEE Software Engineering Body of Knowledge (SWEBOK)

states that software testing is a dynamic process and requires selected test cases to

verify the behavior of the program (Abran et al., 2004). It is important to find and

remove existing faults in the program and preserve its overall quality. In software

testing, once a set of requirements is established, a set of test cases (test suite) is

generated to fulfill the requirements.

Test cases are always known as one of the challenging tasks in software

testing (Singh, 2014; Zeng & Tan, 2012). Test cases are important and need to be

provided earlier so that the entire system requirement can be tested. Test case is a set

of test input, condition and expected result running to the software to verify the

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

8

quality specification of the system (Myers et al., 2011). Results from the test will

determine whether or not the system meets user and system specifications. IEEE

(Committee, 1983) standard defines a set of test case as “A set of test inputs,

execution and expected results developed for a particular objective, such as to

exercise a particular program path or to verify compliance with a specific

requirements”. For example, a test case answers the question: “What am I going to

test?” Test cases are developed to define the things that need to be validated to

ensure that the system is working properly and is built with high level of quality. The

combination of test cases is called a test suite where it contains detailed instruction or

goals for each collection of test case to be used during testing (Pomeranz & Reddy,

1997). A test suite consists of all the test cases that satisfy some system

requirements. Test cases can be generated automatically using testing tools or

manually created by a tester. There are two fundamental approaches in generating

test cases, known as functional and structural testing. Functional testing or also

called as static or black-box test is based on the view that any component or system

can be tested at requirement or implementation level without looking at the internal

code structure and knowledge of internal path of the software. In contrast, structural

testing or white-box test involves the execution of the software. There are various

techniques used to generate test cases for example finite state machine (Soo-In et al.,

2000), neural network (Zhao & Lv, 2007), genetic algorithm (Rajappa et al., 2008),

soft computing (Mitra & Hayashi, 2000) and many others (Hooda & Chhillar, 2014).

There are some techniques that generate test cases based on system requirements.

This system produced test data based on requirement of the program. They are also

techniques that generate test cases which test the system using some input and the

expected output will be derived from condition like UML diagram, critical path, code

based test generation technique, GUI based test generation technique, dynamic path

testing and evolutionary technique, graph traversal algorithm and genetic algorithm.

Any software contains a set of requirements that should be fulfilled. A test

suite consists of all test cases that satisfy all system requirements. Table 2.1

(Mohapatra & Prasad, 2015) is an example that shows test cases in a test suite that

satisfies system requirements. Consider a program P written to meet a set of

requirements R; P and R are denoted as (P,R). Let T be a test set containing ti test

cases to test P to determine whether it meets all requirements in R. The test cases

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

REFERENCES

Abran, A., Moore, J. W., Bourque, P., Dupuis, R., & Tripp, L. (2004). Software

Engineering body of knowledge. IEEE Computer Society, Angela Burgess,

pp. 8.

Alian, M., Suleiman, D., & Shaout, A. (2016). Test Case Reduction Techniques-

Survey. International Journal of Advanced Computer Science &

Applications, 1 (7), pp. 264-275.

Anwar, Z., & Ahsan, A. (2013). Multi-objective regression test suite optimization

with fuzzy logic. Proceedings of the Multi Topic Conference (INMIC), 2013

16th International. IEEE. pp. 95-100.

Barr, E., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S.-I. (2015). The oracle

problem in software testing: A survey. pp. 507-525.

Binkley, D. (1997). Semantics guided regression test cost reduction. IEEE

Transactions on Software Engineering, 23 (8), pp. 498-516.

Black, J., Melachrinoudis, E., & Kaeli, D. (2004). Bi-criteria models for all-uses test

suite reduction. Proceedings of the Proceedings of the 26th International

Conference on Software Engineering. IEEE Computer Society. pp. 106-115.

Campos, J., & Abreu, R. (2013). Leveraging a Constraint Solver for Minimizing Test

Suites. Proceedings of the 2013 13th International Conference on Quality

Software. pp. 253-259.

Chen, S., Chen, Z., Zhao, Z., Xu, B., & Feng, Y. (2011). Using semi-supervised

clustering to improve regression test selection techniques. Proceedings of the

2011 Fourth IEEE International Conference on Software Testing,

Verification and Validation. IEEE. pp. 1-10.

Chen, T. Y., & Lau, M. F. (1998). A new heuristic for test suite reduction.

Information and Software Technology, 40 (5), pp. 347-354.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

66

Chen, X., Li, J., Ma, J., Tang, Q., & Lou, W. (2014). New algorithms for secure

outsourcing of modular exponentiations. IEEE Transactions on Parallel and

Distributed Systems, 25 (9), pp. 2386-2396.

Chen, X., Li, J., Weng, J., Ma, J., & Lou, W. (2016). Verifiable computation over

large database with incremental updates. IEEE transactions on Computers, 65

(10), pp. 3184-3195.

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of

operations research, 4 (3), pp. 233-235.

DeMilli, R., & Offutt, A. J. (1991). Constraint-based automatic test data generation.

IEEE Transactions on Software Engineering, 17 (9), pp. 900-910.

Deris, M. M., Abdullah, Z., Mamat, R., & Yuan, Y. (2015). A new limited tolerance

relation for attribute selection in incomplete information systems.

Proceedings of the Fuzzy Systems and Knowledge Discovery (FSKD), 2015

12th International Conference on. IEEE. pp. 964-970.

Fraser, G., & Wotawa, F. (2007). Redundancy based test-suite reduction.

Proceedings of the International Conference on Fundamental Approaches to

Software Engineering. Springer. pp. 291-305.

Galeebathullah, B., & Indumathi, C. (2010). A novel approach for controlling a size

of a test suite with simple technique. Int. J. Comput. Sci. Eng, 2 pp. 614-618.

Garey MR, J. D. (1979). Computers and Intractability: A guide to the theory of NP-

Completeness. New York, NY: W. H. Freeman and Company.

Gotlieb, A., & Marijan, D. (2014). FLOWER: optimal test suite reduction as a

network maximum flow. Proceedings of the Proceedings of the 2014

International Symposium on Software Testing and Analysis. ACM. pp. 171-

180.

Gupta, A., Mishra, N., & Kushwaha, D. S. (2014). Rule based test case reduction

technique using decision table. Proceedings of the Advance Computing

Conference (IACC), 2014 IEEE International. IEEE. pp. 1398-1405.

Gupta, R., & Soffa, M. L. (1993). Employing static information in the generation of

test cases. Software Testing, Verification and Reliability, 3 (1), pp. 29-48.

Haider, A. A., Nadeem, A., & Rafiq, S. (2013). On the Fly Test Suite Optimization

with FuzzyOptimizer. Proceedings of the Frontiers of Information

Technology (FIT), 2013 11th International Conference on. IEEE. pp. 101-

106.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

67

Harris, P., & Raju, N. (2015). Towards test suite reduction using maximal frequent

data mining concept. International Journal of Computer Applications in

Technology, 52 (1), pp. 48-58.

Harrold, M. J., Gupta, R., & Soffa, M. L. (1993). A methodology for controlling the

size of a test suite. ACM Transactions on Software Engineering and

Methodology (TOSEM), 2 (3), pp. 270-285.

Herawan, T., Deris, M. M., & Abawajy, J. H. (2010). A rough set approach for

selecting clustering attribute. Knowledge-Based Systems, 23 (3), pp. 220-231.

Hirsh, J. B., Mar, R. A., & Peterson, J. B. (2012). Psychological entropy: a

framework for understanding uncertainty-related anxiety. Psychological

review, 119 (2), pp. 304.

Hooda, I., & Chhillar, R. (2014). A Review: Study of Test Case Generation

Techniques. International Journal of Computer Applications, 107 (16), pp.

105-156.

Huang, C.-Y., Chen, C.-S., & Lai, C.-E. (2016). Evaluation and analysis of

incorporating Fuzzy Expert System approach into test suite reduction.

Information and Software Technology, 79 pp. 79-105.

Jeffrey, D., & Gupta, N. (2007). Improving fault detection capability by selectively

retaining test cases during test suite reduction. IEEE Transactions on

software Engineering, 33 (2), pp. 108-123.

Jones, J., & Harrold, M. J. (2003). Test-suite reduction and prioritization for

modified condition/decision coverage. Software Engineering, IEEE

Transactions on, 29 (3), pp. 195-209.

Khalilian, A., & Parsa, S. (2009). Bi-criteria test suite reduction by cluster analysis of

execution profiles. Proceedings of the IFIP Central and East European

Conference on Software Engineering Techniques. Springer. pp. 243-256.

Lin, J.-W., & Huang, C.-Y. (2009). Analysis of test suite reduction with enhanced

tie-breaking techniques. Information and Software Technology, 51 (4), pp.

679-690.

Mitra, S., & Hayashi, Y. (2000). Neuro-fuzzy rule generation: survey in soft

computing framework. IEEE transactions on neural networks, 11 (3), pp.

748-768.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

68

Mohammadian, A., & Arasteh, B. (2013). Using Program Slicing Technique to

Reduce the Cost of Software Testing. Journal of Artificial Intelligence in

Electrical Engineering, 2 (7), pp. 24-33.

Mohapatra, S. K., & Prasad, S. (2015). Finding Representative Test Case for Test

Case Reduction in Regression Testing. International Journal of Intelligent

Systems and Applications, 7 (11), pp. 60.

MSTB Lecturer Aid (Student). Malaysia Software Testing Board.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing. John

Wiley & Sons.

Nachiyappan, S., Vimaladevi, A., & SelvaLakshmi, C. (2010). An evolutionary

algorithm for regression test suite reduction. Proceedings of the

Communication and Computational Intelligence (INCOCCI), 2010

International Conference on. IEEE. pp. 503-508.

Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information

Sciences, 11 (5), pp. 341-356.

Pomeranz, I., & Reddy, S. M. (1997). On the compaction of test sets produced by

genetic optimization. Proceedings of the Test Symposium, 1997.(ATS'97)

Proceedings., Sixth Asian. IEEE. pp. 4-9.

Qin, H., Ma, X., Zain, J. M., Sulaiman, N., & Herawan, T. (2011). A Mean Mutual

Information Based Approach for Selecting Clustering Attribute. Proceedings

of the International Conference on Software Engineering and Computer

Systems. Springer. pp. 1-15.

Rajappa, V., Biradar, A., & Panda, S. (2008). Efficient Software Test Case

Generation Using Genetic Algorithm Based Graph Theory. Proceedings of

the 2008 First International Conference on Emerging Trends in Engineering

and Technology. pp. 298-303.

Roongruangsuwan, S., & Daengdej, J. (2010). Test case reduction methods by using

CBR. Proceedings of the International Workshop on Design, Evaluation and

Refinement of Intelligent Systems (DERIS2010). pp. 75.

Rothermel, G., Harrold, M. J., Ostrin, J., & Hong, C. (1998). An empirical study of

the effects of minimization on the fault detection capabilities of test suites.

Proceedings of the Software Maintenance, 1998. Proceedings., International

Conference on. pp. 34-43.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

69

Rothermel, G., Harrold, M. J., Von Ronne, J., & Hong, C. (2002). Empirical studies

of test‐suite reduction. Software Testing, Verification and Reliability, 12 (4),

pp. 219-249.

Saif-ur-Rehman, K., Nadeem, A., & Awais, A. (2006). TestFilter: A Statement-

Coverage Based Test Case Reduction Technique. Proceedings of the

Multitopic Conference, 2006. INMIC '06. IEEE. pp. 275-280.

Sampath, S., Bryce, R., & Memon, A. M. (2013). A uniform representation of hybrid

criteria for regression testing. IEEE Transactions on Software Engineering,

39 (10), pp. 1326-1344.

Sampath, S., & Bryce, R. C. (2012). Improving the effectiveness of test suite

reduction for user-session-based testing of web applications. Information and

Software Technology, 54 (7), pp. 724-738.

Shen, Q., Jiang, Y., & Lou, J. (2017). A new test suite reduction method for wearable

embedded software. Computers & Electrical Engineering, 61 pp. 116-125.

Singh, N. P., Mishra, R., & Yadav, R. R. (2011). Analytical review of test

redundancy detection techniques. Int J Comput Appl, pp. 0975-8887.

Singh, R. (2014). Test Case Generation for Object-Oriented Systems: A Review.

Proceedings of the Communication Systems and Network Technologies

(CSNT), 2014 Fourth International Conference on. pp. 981-989.

Software Engineering Technical Committee (1983). IEEE Standard for Software

Test Documentation. Institute of Electrical and Electronic Engineers

Computer Society (ANSI/IEEE Standard 829-1983).

Soo-In, L., Yongbum, P., Myungchul, K., Hee Yong, Y., & Ben, L. (2000).

Automatic test case generation using multi-protocol test method. Proceedings

of the Computer Communications and Networks, 2000. Proceedings. Ninth

International Conference on. pp. 360-366.

Suri, B., Mangal, I., & Srivastava, V. (2011). Regression test suite reduction using an

hybrid technique based on BCO and genetic algorithm. Special Issue of

International Journal of Computer Science & Informatics (IJCSI), ISSN

(PRINT), pp. 2231-5292.

Tallam, S., & Gupta, N. (2005). A concept analysis inspired greedy algorithm for test

suite minimization. Proceedings of the ACM SIGSOFT Software Engineering

Notes. ACM. pp. 35-42.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

70

Wang, G. (2002). Extension of rough set under incomplete information systems.

Proceedings of the Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the

2002 IEEE International Conference on. IEEE. pp. 1098-1103.

Wong, W. E., Horgan, J. R., London, S., & Mathur, A. P. (1995). Effect of test set

minimization on fault detection effectiveness. Proceedings of the

Proceedings of the 17th international conference on Software engineering.

ACM. pp. 41-50.

Xu, S., Miao, H., & Gao, H. (2012). Test suite reduction using weighted set covering

techniques. Proceedings of the Software Engineering, Artificial Intelligence,

Networking and Parallel & Distributed Computing (SNPD), 2012 13th ACIS

International Conference on. IEEE. pp. 307-312.

Yan, T., & Han, C. Z. (2014). A Novel Approach Based on Rough Conditional

Entropy for Attribute Reduction. Proceedings of the Applied Mechanics and

Materials. Trans Tech Publ. pp. 1607-1619.

Yoo, S., & Harman, M. (2010). Using hybrid algorithm for pareto efficient multi-

objective test suite minimisation. Journal of Systems and Software, 83 (4), pp.

689-701.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and

prioritization: a survey. Software Testing, Verification and Reliability, 22 (2),

pp. 67-120.

You, L., & Lu, Y. (2012). A genetic algorithm for the time-aware regression testing

reduction problem. Proceedings of the Natural Computation (ICNC), 2012

Eighth International Conference on. IEEE. pp. 596-599.

Zeng, B., & Tan, L. (2012). Test criteria for model-checking-assisted test case

generation: a computational study. Proceedings of the Information Reuse and

Integration (IRI), 2012 IEEE 13th International Conference on. IEEE. pp.

600-607.

Zhao, R., & Lv, S. (2007). Neural-Network Based Test Cases Generation Using

Genetic Algorithm. Proceedings of the Dependable Computing, 2007. PRDC

2007. 13th Pacific Rim International Symposium on. pp. 97-100.

