PA12 NYLON DUST REDUCTION OF SELECTIVE LASER SINTERING PRE-PROCESSING BY OPTIMIZATION OF REFRESH RATE AND POWDER HANDLING

AMIR ABDULLAH MUHAMAD DAMANHURI

A dissertation submitted in fulfilment of the requirement for the award of the Doctor Philosophy of Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

NOVEMBER 2021

This thesis is dedicated to my parent, who taught me that the best kind of knowledge to have is learned for its own sake. It is also dedicated to my wife, and children who taught me that even the largest task can be accomplished if it is done one step at a time

> Haji Muhamad Damanhuri bin Ahmad, Hajjah Rohaiyah binti Hj Sulaiman, Nur Afiqah binti Khairul Azhar Nur Aina Nabilah binti Amir Abdullah Muhammad Haziq bin Amir Abdullah

"Thank you for your patience and support"

ACKNOWLEDGEMENT

First and foremost, all praise is to Allah S.W.T for giving me the deen, iman, health, patience, and perseverance to complete this study. I would not have been able to reach this stage without His guidance, grace, and mercy.

I wish to express my warmest gratitude to my supervisor, Ts. Dr. Azian binti Hariri and my co-supervisors, Ir. Dr. Sharin bin Ghani for valuable suggestions, guidance, patience, and assistance during this study. It has been honoured to work with and learn valuable lesson from them. In addition, I am graciously acknowledged technical support provided by Mr. Mohd Azizi bin Mohd Afandi from UTHM, Mohd Idain Fahmy bin Rosley, and Zahirulza'im bin Samin from UTeM.

I am eternally grateful to my amazing wife, Nur Afiqah binti Khairul Azhar for true support and understanding during my hard days. To my lovely kids, Nur Aina Nabilah and Muhammad Haziq, thank you for your love and understanding during my busiest time upon completing this study. My mother, Rohaiyah binti Hj Sulaiman, my father Muhammad Damanhuri bin Ahmad, mother-in-law and father-in-law, siblings thank you so much for endless pray and support.

Special gratitude also goes to my teachers (Prof. Dr. Abdul Mutalib Leman and Mr. Chang Choo Khean), fellow postgraduate's friends, colleagues, best friends (Dr. Riduan Jamaluddin, Dr. Siti Khadijah, Dr. Paran Gani, Ts. Mohd Syafiq Syazwan, Dr. Yusri Ismail, and Nuur Azreen Paiman) and others who I could not possibly mention all of them here for their valuable help, meaningful discussions, moral supports, motivation, and technical support during this journey.

ABSTRACT

Despite advantages of selective laser sintering (SLS) to print complex and highvolume products, major concern in SLS process are exposures during handling especially during pre-processing. This study aims to formulate percentage of refresh rate with powder handling settings with the introduction of enclosure during preprocessing stages to reduces dust exposures using response surface methodology (RSM) of central composites design (CCD) techniques. This research divides into three phases, as the first phase involves a pilot study to select pre-processing as the main contribution of emission. Analysis of variance and 95% confidence interval were used to identify factors and responses that significantly contributed to the IAQ in SLS workplaces involving 56 set of screening experiments using factorial design. Next, second phase involves series of experiments to formulate refresh rate, collecting powder from mixing machines and transferring activities due to enclosures settings using RSM techniques. Finally, the third phase involves assessing gravimetric based on personal sampling (based on NIOSH 0500 and 0600) for using enhanced model suggested by the RSM. Through screening analysis, it was obtained that refresh rate give significant percentage of contribution (72.73%) to the emission followed by collecting powder from mixing machine and transferring activity. From CCD analysis with 0.816 desirability suggested 100% refresh rate, 32.8% enclosure for collecting powder from mixing machine, and full enclosure for transferring process to reduce PM2.5, PM10, UFP and TSP. The confirmation experiment was also conducted to verify the prediction result using percentage of absolute error (%) with 4.33,3.57, 4.56 and 2.38 for PM2.5, PM10, UFP and TSP. Based on the enhanced model from RSM, performance experiments show acceptable percentage of reduction for 40.6 and 28.8 % of reduction for NIOSH 0500, and 22.7 and 27.3% for NIOSH 0600, respectively. The mathematical model from RSM shows promising strategy in term of control measures in protecting operators in SLS manufacturing industry from occupational exposures.

ABSTRAK

Walaupun "selective laser sintering" (SLS) mempunyai kelebihan dalam mencetak produk yang kompleks dan banyak, tumpuan utama ialah serakan habuk ketika praproses. Kajian ini bertujuan meramal peratusan kadar serbuk penyegaran dan tetapan pengendalian dengan penggunaan kepungan ketika pra-proses untuk mengurangkan dedahan habuk dengan menggunakan teknik kaedah respon permukaan (RSM) iaitu reka bentuk komposit tengah (CCD). Penyelidikan ini terbahagi kepada tiga fasa iaitu fasa pertama ialah kajian rintis bagi pemilihan pra-proses sebagai pelepasan utama. Analisis varians dan selang keyakinan 95% digunakan untuk menentukan faktor dan respon yang signifikan kepada kualiti udara dalaman (IAQ) di dalam ruang kerja SLS melibatkan 56 set eksperimen dengan menggunakan reka bentuk faktorial. Fasa kedua ialah eksperimen untuk meramal peratusan serbuk penyegaran, pengumpulan serbuk dari mesin pencampuran dan aktiviti pemindahan oleh tetapan kepungan menggunakan teknik RSM. Fasa ketiga ialah penilaian gravitian untuk model yang telah dipertingkatkan menggunakan cara persendirian (NIOSH 0500 dan 0600). Dengan analisis saringan, didapati serbuk penyegaran memberi kadar peratusan pelepasan yang signifikan dengan 72.73%, diikuti pengumpulan serbuk dari mesin pencampuran dan aktiviti pemindahan. Dengan peratusan kehendak 0.816, habuk saiz PM2.5,PM10, UFP dan TSP, dapat dikurangkan dengan menggunakan 100% serbuk penyegaran, 32.8% kepungan ketika pengumpulan dari mesin pencampuran dan kepungan penuh ketika proses pemindahan. Ekperimen pengesahan di jalankan untuk menilai hasil ramalan dengan menggunakan kadar peratusan kesilapan mutlak (%) dengan 4.33, 3.57, 4.56 dan 2.38 untuk PM2.5, PM10, UFP dan TSP. Dengan model yang dipertingkatkan oleh RSM, eksperimen penilaian prestasi menunjukkan kadar pengurangan habuk yang diterima iaitu 40.6 dan 28.8% untuk NIOSH 0500, dan 22.7 dan 27.3% untuk NIOSH 0600. Model matematik dari RSM ini boleh menunjukkan strategi yang baik dalam mengawal ukur bagi melindungi pengendali SLS di industri dari pendedahan pekerjaan ketika menggunakan serbuk penyegaran.

TABLE OF CONTENTS

	DECL	ARATION	ii
	DEDI	CATION	iii
	ACKN	iv	
	ABST	v	
	ABST	vi	
	TABL	E OF CONTENTS	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xiii
	LIST	OF SYMBOLS AND ABBREVIATIONS	xvi
	LIST	OF APPENDICES	xix
CHAPTER 1	INTR	ODUCTION	1
	1.1	Overview	1
	1.2	Background of Research	1
	1.3	Problem Statement	6
	1.4	Objectives of Study	7
	1.5	Scopes of Study	8
	1.6	Significance of Study	9
	1.7	Organisation of thesis	9
CHAPTER 2	LITEF	RATURE REVIEWS	11
	2.1	Overview	11
	2.2	Indoor air quality (IAQ)	11

		2.2.1	Sources and factors of poor IAQ	12
		2.2.2	IAQ parameters	13
		2.2.3	Particulate matter (PM)	15
		2.2.4	IAQ in workplaces	18
		2.2.5	Air pollutant limit at workplace	19
	2.3	Test m	nethod for indoor air pollutant exposure	21
	2.4	Polluta	ant Control	24
	2.5	Expos	ure from powder-based material and	
		handli	ng issues in workplaces	26
	2.6	Additi	ve Manufacturing (AM)	30
		2.6.1	Selective laser sintering and process	32
		2.6.2	Material for SLS	34
		2.6.3	Effect of recycling SLS powders to the	
			product quality	35
	2.7	Studie	es related to AM process and exposure.	38
		2.7.1	Powder-based type AM and environmental	
			exposures.	38
		2.7.2	Health impact from AM exposure	40
	2.8	Overv	iew of Design of the experiment (DoE)	43
		2.8.1	Description of Full- Factorial design	45
		2.8.2	Explanation of Response surface	
			methodology (RSM)	46
		2.8.3	Application of RSM in emission	
			reduction field	49
	2.9	Resear	rch Gap	51
	2.10	Summ	ary of Chapter 2	52
CHAPTER 3	6 METI	HODO	LOGY	53
	3.1	Introd	uction	53
	3.2	Prepar	ration and experimental setup	55
	3.3	Phase	1: Determination of factors contributing	
		to the	air pollutant in SLS workplace using	
		factori	ial design method.	57
		3.3.1	Sample preparation	59

		3.3.2	Pilot study	59
		3.3.3	Characterization of virgin and recycled	
			powder.	61
		3.3.4	Factorial and experimental design	62
	3.4	Phase	2: Evaluation of refresh rate and powder	
		handli	ing settings and enclosure using response	
		surfac	e methodology (RSM)	66
		3.4.1	Experimental setup	67
		3.4.2	Factor and response determination	68
		3.4.3	Model confirmation	70
	3.5	Phase	3: Analysing personal sampling by	
		gravir	netric analysis of the enhanced model.	70
		3.5.1	Preparation of personal sampling	71
		3.5.2	Filter analysis procedure	75
	3.6	Summ	hary of Chapter 3	75 77 78
		TT TC A	ND DISCUSSIONS	70
CHAPIE				
	1 1	1.4440.0	an at i a m	70
	4.1		uction	78
	4.1 4.2	Phase	1: Determination of factors contributing	78
		Phase to the	1: Determination of factors contributing air pollutant in SLS workplace using	
		Phase to the factor	1: Determination of factors contributing air pollutant in SLS workplace using ial design method.	78
		Phase to the factor 4.2.1	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis	78 79
		Phase to the factor 4.2.1 4.2.2	1: Determination of factors contributing air pollutant in SLS workplace using ial design method.Pilot study analysisMorphology and particle size analysis	78
		Phase to the factor 4.2.1	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and	78 79 82
		Phase to the factor 4.2.1 4.2.2 4.2.3	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and significance factors	78 79 82 84
		Phase to the factor 4.2.1 4.2.2 4.2.3 4.2.4	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and significance factors Normal probability plot	78 79 82 84 88
		Phase to the factor 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.2.5	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and significance factors Normal probability plot Summary of Analysis of variance	78 79 82 84 88 90
	4.2	Phase to the factor 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.2.5 4.2.6	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and significance factors Normal probability plot Summary of Analysis of variance Summary of Phase 1 Findings	78 79 82 84 88
		Phase to the factor 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.2.5 4.2.6 Phase	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and significance factors Normal probability plot Summary of Analysis of variance Summary of Phase 1 Findings 2: Evaluation of refresh rate and	78 79 82 84 88 90
	4.2	Phase to the factor 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.2.5 4.2.6 Phase powde	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and significance factors Normal probability plot Summary of Analysis of variance Summary of Phase 1 Findings 2: Evaluation of refresh rate and er handling settings and enclosure using	78 79 82 84 88 90 90
	4.2	 Phase to the factor 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 Phase powde respon 	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and significance factors Normal probability plot Summary of Analysis of variance Summary of Phase 1 Findings 2: Evaluation of refresh rate and er handling settings and enclosure using	78 79 82 84 88 90 90 90
	4.2	Phase to the factor 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.2.5 4.2.6 Phase powde	1: Determination of factors contributing air pollutant in SLS workplace using ial design method. Pilot study analysis Morphology and particle size analysis Percentage of contribution and significance factors Normal probability plot Summary of Analysis of variance Summary of Phase 1 Findings 2: Evaluation of refresh rate and er handling settings and enclosure using	78 79 82 84 88 90 90

		4.3.3	Analysis of factors towards ultrafine	
			particles (UFP)	98
		4.3.4	Analysis of factors towards Total	
			suspended particles (TSP)	101
		4.3.5	Optimization in reducing dust	104
		4.3.6	Confirmation of test result	106
		4.3.7	Summary of Phase 2 Findings	106
	4.4	Phase	3: Analysing personal sampling by	
		gravin	netric analysis of the enhanced model.	107
		4.4.1	Mean particulate concentration of NIOSH	
			0500 of the enhanced model.	107
		4.4.2	Mean particulate concentration of NIOSH	
			0600 of the enhanced model.	108
		4.4.3	Short term exposure limit (STEL)	109
		4.4.4	Summary of Phase 3 Findings	110
	4.5	Summ	ary of Chapter 4	111
CHAPTER 5	CON			113
CHAI IER .	5.1	Introd		113
	5.2		Works	115
	5.3		bution	116
	<u> </u>	Contri	oution	110
	REFE	ERENC	ES	118

VITA

LIST OF TABLES

2.1	Sources and factors of contaminants in building	
	[50]–[53]	13
2.2	List of biological and chemical contaminants	
	[59], [60]	14
2.3	Type of dust, PM and sources [56], [72].	16
2.4	Types and size of particulate matter.	16
2.5	Summarised on workplace exposure and parameter	
	involves.	19
2.6	Acceptable range for physical parameter	20
2.7	Acceptable limit for indoor contaminants	20
2.8	Acceptable limits from various organization	
	for selected	21
2.9	Summary of AM type and process	32
2.10	Process and materials used in AM process [193].	35
2.11	Summary of powder-based material past studies.	40
2.12	Basic terminologies for DoE [213], [216]	44
2.13	List of literature relates to PBF exposures and specific research areas.	54
3.1	Pilot study details experimental setup	59
3.2	Uncoded and coded levels for each level of	
	Factor A-E	63
3.3	Factorial design matrix for the screening process	63
3.4	Value of responses for the factorial experiment.	64
3.5	Factors and input variables for the experiment	
	design	67
4.1	Temperature, RH, and TVOC sampling during the	
	SLS process.	81

4.2	Summary of percentage contribution and <i>p</i> -valu	
	e for responses.	86
4.3	Summarize analysis of variance of all responses.	90
4.4	Summarize analysis of variance for PM2.5,	
	PM10, UFP, and TSP	91
4.5	Analysis of variance for PM 2.5	93
4.6	Analysis of variance for PM 10	96
4.7	Analysis of variance for UFP	99
4.8	Analysis of variance of TSP	102
4.9	Optimization criteria of factors and responses	105
4.10	Confirmation test result	106
4.11	Comparison of NIOSH 0500 mean concentration	
	from recycle powder and enhanced model	108
4.12	Comparison of NIOSH 0600 mean concentration	109
4.13	Comparison of time-weighted average for	AMINAH
	mean total concentration for specific activities of	
	pre-processing SLS process.	110
5.1	Mathematical models of dust exposures for	
	PM 2.5, PM 10, UFP and TSP from RSM.	115
	PM 2.5, PM 10, UFP and TSP from RSM.	

xii

LIST OF FIGURES

1.1	General SLS process.	3
1.2	Radar chart of old industrial methods and	
	selective laser sintering points adopted from	
	Tofail et al. [13].	4
2.1	Typical size distribution and formation mechanism	
	for PM in atmospheric environments [93]	17
2.2	Elements in controlling pollutant exposures.	24
2.3	Labconco Xpert Bulk Powder Enclosure	25
2.4	Dust generation from falling stream [156].	23
2.5	The application of AM in various industry	31
2.6	Process of SLS	33
2.7	Selective laser sintering illustration [184].	33
2.8	Chemical structure of nylon PA12 [187].	35
2.9	SEM images of (a) virgin and (b) recycle	
	PA12 powders [186]	36
2.10	Texture of orange peel from recycled powder	
	(a) Orange peel texture and (b) Zoom images	
	of orange peel texture.	36
2.11	Typical SLS powder recycling process by	
	EOS and 3D System [10].	37
2.12	General criteria for experimental DoE	43
2.13	Classification of DoE [23].	44
2.14	Full factorial experimental design (a) two level,	
	two factors (2^2) , (b) two level, three-factor and (2^3)	
	and (c) three level, two factors (3^3) [23].	45
2.15	Profiles or surface response generated from	
	quadratic model [216].	48

3.1	Research flowchart	54
3.2	SLS 3D printer.	56
3.3	Layout of the SLS 3D printing process workplace.	
	The dotted box in Room 2 indicates the sampling	
	zone during the powder handling process.	56
3.4	SLS experimental chamber for indoor sampling Flow	57
3.5	chart of research activities for Phase 1. Overall	58
3.6	process of SLS printing	60
3.7	SEM Model TM3000, Hitachi	61
3.8	Particles size analyzer with zeta potential	61
3.9	Flow Chart of Phase 2	66
3.10	Activities during the pre-processing activities	
	of SLS: (a) collecting powder from the mixing	
	machine and (b) transferring to the feeder chamber	67
3.11	Flowchart activities of Phase 3	71
3.12	Details of the air sampling tools fastened to	71 AMINAH
	the operator's body according to the (a) NIOSH 0500	
	and (b) NIOSH 0600 methods.	72
3.13	Personal sampling procedure	73
3.14	Cassette and filter for personal sampling	74
3.15	Calibrate sampling pump for NIOSH 0500	75
3.16	Calibrate sampling pump for NIOSH 0600 Particulate	75
4.1	matter size 2.5 μ m (PM 2.5) exposures Carbon	80
4.2	dioxide (CO ₂) exposures	80
4.3	SEM image 500× resolution of a) virgin powder	
	and b) recycled powder	83
4.4	Particle size analysis for virgin and recycle PA12	
	nylon powders	83
4.5	Normal probability plot for residual for (a) PM 2.5,	
	(b) PM 10, (c) UFP, (d) TSP, (e) TVOC and (f) CO_2	89
4.6	Normal probability plot of residuals for PM 2.5	94
4.7	Interactive plot for PM 2.5 at different ratio of	
	refresh rate and enclosure from collecting powder	
	from mixing machine (a) contour plot and (b) 3D	95

xiv

4.8	Normal probability plot of residuals for PM 10	97
4.9	Interactive plot for PM 10 at different ratio	
	of refresh rate and enclosure from collecting	
	powder from mixing machine (a) contour plot	
	and (b) 3D plot	98
4.10	Normal probability plot of residuals for UFP	100
4.11	Interactive plot for UFP at different ratio of	
	refresh rate and enclosure from collection powder	
	from mixing machine (a) contour and (b) 3D plot	101
4.12	Normal probability plot of residuals for TSP 103	
4.13	Interactive plot for TSP at different ratio of	
	refresh rate and enclosure from collecting powder	
	from mixing machine (a) contour plot and	
	(b) 3D plot	104
4.14	Prediction for the optimization of dust exposure	
	to specific powder handling settings during SLS	
	pre-processing	105
4.15	Summary of comparison before and enhanced	
	model for NIOSH 0500, NIOSH 0600, and STEL.	111
	model for NIOSH 0500, NIOSH 0600, and STEL.	

xv

LIST OF SYMBOLS AND ABBREVIATIONS

CO_2	-	Carbon dioxide
СО	-	Carbon monoxide
<i>O</i> ₃	-	Ozone
SO_2	-	Sulphur oxide
$^{\circ}C$	-	Degree Celsius
g	-	Gram
kg	-	Kilogram
t	-	Time (min)
%	-	%
Т	-	Time (min) % Temperature milligram per metre cubic
mg/m3	-	milligram per metre cubic
m/s	-	metre per second
ppm	-	part per million
cfu/m3		colony forming units per cubic metre
μg/m3	<u>p</u> U-	micron gram per cubic metre
pt/cc	-	particles per cubic centimetre
h	-	hour
т	-	metre
μm	-	micron metre
nm	-	nano metre
AM	-	Additive manufacturing
PBF	-	Powder bed fusion
AM	-	Additive manufacturing
IR4.0	-	Industrial revolution 4.0
FDM	-	Fused deposition modelling
CAD	-	Computer assisted design
3D	-	Three dimensional

Standard tessellation language
Indoor air quality
Indoor air pollution
Selective laser sintering
Stereolithography
Selective laser melting
Polylactic acid
Acrylonitrile Butadiene Styrene
Polyamide nylon 12
Design of Experiment
Response surface methodology
Central composites design
Scanning electron microscopy
Particle size analysis
Department if Occupational Safety and Health
Department if Occupational Safety and Health World Health Organization
National Institute Occupational Safety and Health
Social Security Organization
American Society of Heating, Refrigerating and Air Conditioning
Engineers
American Society for Testing and Materials
Environmental Protection Agency
Health and Safety Executive
Health and Safety Executive
United States

xvii

stl.

IAQ

IAP

SLS

SLA

SLM

PLA

ABS

PA12

DoE

RSM

CCD

SEM

PSA

DOSH

WHO

NIOSH

-

_

_

-

_

_

-

_

-

_

_

-

_

_

_

_

-

SOCSO	-	Social Security Organization
ASHRAE	-	American Society of Heating, Refrigerating and Air Conditioni
		Engineers
ASTM	-19	American Society for Testing and Materials
EPA	<u>P</u> U	Environmental Protection Agency
HSE	-	Health and Safety Executive
HSE	-	Health and Safety Executive
US	-	United States
UK	-	United Kingdom
USECHH	-	Use and Standard Exposure Chemical Hazardous to Health
ACGIH	-	American Conference of Governmental Industrial Hygienists
AAS	-	Active air sampling
PAS	-	Passive air sampling
HVAC	-	Heating, ventilation, and air conditioning
TTE	-	Total time exposure
STEL	-	Short term exposure limit

TWA	-	Time weighted average
OEL	-	Occupational exposure limit
PPE	-	Personal protective equipment
RH	-	Relative humidity
VOC	-	Volatile organic compound
TVOC	-	Total volatile organic compound
PM	-	Particulate matter
PM 2.5	-	Particulate matter size 2.5 µm
PM 10	-	Particulate matter size 10 µm
UFP	-	Ultrafine particle
TSP	-	Total suspended particle
Avg	-	Average
Min	-	Minimum
Max	-	Maximum
Std.Dev	-	Standard deviation
SBS	-	Sick building syndrome
LLVM	-	Standard deviation Sick building syndrome Linear ventilation model
ANN	-	Artificial neural network
CB	-	Control banding
LEV	-	Local exhaust ventilation
ANOVA	-19	Analysis of variance
FCCD	<u>P</u> O '	Face centred central composites design
CCRD	-	Central composite rotatable desing
POAE	-	percentage of absolute error

ICOP Industry code of practice _

LIST OF APPENDICES

APPENDI	X TITLE	PAGE
A.1	Sampling procedure and strategy according to ICOP DOSH 2010	138
A.2	SLS workplace	140
A.3	Data sheet for PA12 Nylon	141
A.4	Specific activities/factor setup	142
A.5	Calibration certificate for instrument	148
B .1	Tabulated data for pilot study	151
B.2	SEM images for virgin and recycled PA12	154
B.3	Raw data for particle size analysis	158
B.4	Raw data for factorial design experiment	161
B.5	Raw data for RSM experiment	171
B.6	Raw data for confirmation test	174
B.7	Raw data for gravimetric and STEL	175
CE	List of publications/awards	177

CHAPTER 1

INTRODUCTION

1.1 Overview

The research background will be thoroughly discussed in this chapter. Then, the issue related to indoor air quality and exposure from additive manufacturing (AM) process and health effect is discussed. Subsequently, in the problem statements, objectives, scopes, and significance of the study, the main issue of IAQ related to the powder bed fusion (PBF) type of AM, specifically for selective laser sintering (SLS), exposure from the powder PA12 feedstock, and development of response surface modelling (RSM) is discussed.

1.2 Background of Research

Over the last few decades, the manufacturing industry has been ambitious to pursue high-demand, diverse, and complicated items. The rapid advancement of technology has shifted from subtractive to additive manufacturing due to industrialisation [1]. In 2018, Malaysia launched Industry 4WRD: National Policy on Industry Revolution 4.0 (IR4.0) and put AM as one pillar among the other nine pillars to drive Malaysia forward [2]. The technology of AM offers an alternative to fill the void of conventional manufacturing, making it cost and time efficient. The ideas of AM is to help engineers to realise what they have in mind from design [3]. AM have been used widely in automotive, aerospace, biomedical, energy, consumer goods and others. The process

of AM is the process of building an object or prototype by joining material layer by layer at a time [4].

Unlike the other subtractive processing method, the material block is subtracted by milling, grinding, or drilling. Meanwhile, contrary to traditional manufacturing technologies such as machining and stamping, which manufacture things by removing components from enormous stock or sheet metal, AM generates the final shape by merging layer by layer material. As a result, it can efficiently use raw materials and produce minimal waste while reaching satisfactory geometric accuracy [5]. As a result, when a business uses AM to build products, it can save 50% of the time required to produce products.

There are several types of AM technology presented worldwide. The most commonly used AM technology is the fused deposition modelling type (FDM) which used filament for the material. Despite the popularity of FDM, the powder bed fusion (PBF) type stand out as AM technology to meet the demand of printing complex design and geometries. According to Ngo et al. [6], the key advantages of SLS are its satisfactory resolution and excellent printing quality, making it appropriate for complicated structures. SLS is frequently employed in high-tech applications such as tissue engineering, aircraft, electronics and automobiles. SLS divided into several categories, and the difference between SLS technology is sintering technology and material/powder used as feedstock. SLS uses nylon powder and is suitable for producing parts and prototypes from small to medium-sized complex geometries [7].

SLS uses powder as a feedstock for the production of prototypes and end products. This technology used carbon dioxide (CO₂) laser beams that heated to the near melting point of the powder, and the laser was sintered and bound to the powder layer by layer. This process will be replicated layer by layer until the component is fully processed. SLS could use a range of materials such as plastics, nylon, metal, polymers and ceramics. The significant benefits of SLS were that the powder could be recycled and used back for the next printing [8].

Based on Figure 1.1, building products using SLS technology starts from the CAD model or design stage. First, the CAD model is converted to stl. format and transferred to the SLS machine. Pre-processing stages start when activity such as weighing, pouring, mixing and transferring process is the process to prepare powder before printing or sintering. After printing complete, post-processing includes

housekeeping, powder cake breakage are done. The un-sintered powder then goes to the powder recycling and storage process.

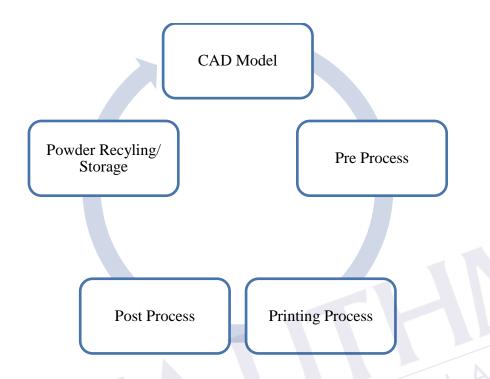


Figure 1.1: General SLS process [9].

During the SLS process, pre-processing and post-processing are done manually by workers [10], [11]. The powdered material heated before drawing each of the slices using a CO₂ laser controlled by a scanning system, selectively fusing the powder particles to produce a solid part. The residual volume from the binding envelope was then either loosen or left un-sintered. The remaining volume of the binding envelope is loose or un-sintered powder. The PA12-based powders decay due to the SLS processing conditions (heat, building time, cooling time, etc.) and must be refreshed or mixed with new material for subsequent use, known as the refresh rate. The sintered pieces may have a rough surface (orange peel) and poor quality if the percentage of fresh powder is insufficient. In addition, the utilisation of virgin powder could increase operating and manufacturing cost. Therefore, operators and manufacturers usually will mix virgin and recycle powder for SLS printing. In contrast, its recycling and refresh rate (mixing powder) could be harmful to the operators that are handling the powders [12], [13].

Due to powders handling during the SLS process, there is possible high indoor concentration and exposure at the SLS workplace, especially during pre-processing and post-processing activities [14]. Therefore, indoor air quality (IAQ) will result from exposure to the SLS process. Thus, SLS operators will affect by SLS operation, which reflects their health and productivity. Although SLS could significantly benefit the industrial application, the concerns regarding the potential impact of the SLS process and activities have been the primary concern recently. Since SLS demand is high, indoor air exposure is highly reflected in the working environment and working practices [15]. Figure 1.2 shows a radar chart adopted from Tofail et al. [16] that illustrates the economic and non-economic impacts of SLS with traditional manufacturing (subtractive manufacturing). It is shown that in the SLS process, industrial needs show SLS is needed in production for manufacturing demands. In contrast to that, two main issues highlighted are handling issues and the overall safety issue of the SLS process. Therefore, the studies related to indoor air exposure is crucial, especially in SLS of AM fields [17], [18].

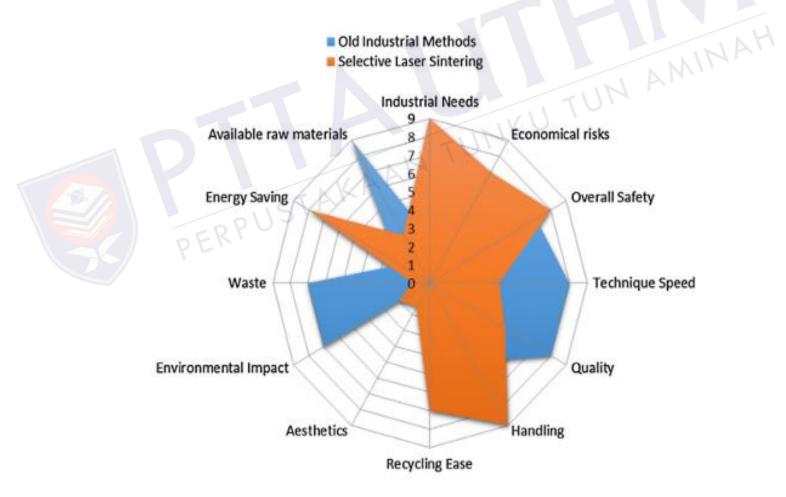


Figure 1.2: Radar chart of old industrial methods and selective laser sintering points adopted from Tofail et al. [13].

Commonly, several factors have been highlighted as the main factors contributing to poor health and productivity: poor IAQ, ergonomics, noise quality, lighting quality, thermal comfort, and ventilation effectiveness. Workers' safety and health will suffer as a result of an unfavourable working environment. Social Security Organization (SOCSO) Malaysia categorised three working environments: outdoor, indoor, and underground [19]. Therefore, pollutant such as respirable and inhalable particulates matter (PM), the volatile organic compound (VOC), and gaseous pollutant identify as the contribution from the SLS printing process in indoor spaces. Figure 1.3 shows deposition potential for PM from varying sizes which can affect human health. PM approximately $5 - 10 \,\mu$ m will be deposited in the tracheobronchial tree, while PM size $1-5 \,\mu$ m will be deposited in the respiratory bronchioles. Critically, these kinds of PM can affect and penetrate the lung and enter the bloodstream. PM size smaller than 1 μ m have similar behaviour to gas molecules and penetrate down to alveoli, and can further into the cell tissue or circulation systems [20]–[22].

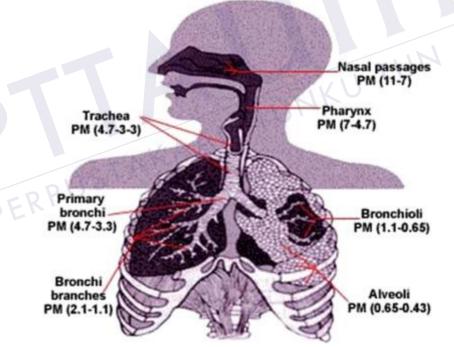


Figure 1.3: Deposition potential of PM and effect on human [23]

Statistical design and analysis of experiments is an effective and commonly used tool in engineering or science investigations. The experiment is performed to understand or improve the system, process or products. In typical methods, one-factorat-a-time (OFAT) employed to monitor the influence of factor and response [24]. Therefore, an increasing number of experiments are needed, leading to high consumption of materials, cost, and time. Multivariate methods such as the Design of Experiment (DoE) have been introduced in recent years to decrease time, effort, and materials. This instrument also allows for collecting a massive quantity of data to reduce the number of tests. DoE also allows the evaluation of several factors at many levels for any experiments. The steps of DoE can be divided into two steps which screening and optimisation design. Screening designs often make use of Plackett-Burman, full or fractional factorial. Subsequently, using RSM, the ideal levels of the most significant parameters picked from the screening design are optimised [25].

1.3 Problem Statement

Selective laser sintering (SLS) technology uses metal or polymer powder to rapidly print complex and high-volume products. In addition, SLS also offers waste material saving up to 90% by using recycled powder or refresh rate [1], [26]. The usage of powder as feedstock materials in SLS processes that generally small size particles (25 to 150 µm) had significantly impacted the environments and operators' health. Particles of this size may be inhaled by the respiratory system and enter the body via the eyes and skin. Later, the worker had a chronic hypersensitivity pneumonitis which reflects directly to SLS working condition [27]. As the SLS process's feedstock, evidence shows that polymers could emit significant amounts of particles and volatile organic compound [28], [29]. However, there is a significant knowledge deficit concerning the risk from inhalation exposure to hazardous substances released into the air during the SLS process, especially in virgin or recycled material [21]. Small particles from SLS powders will stay in the air, but bigger particles will gravitate toward the ground. Additionally, fine particles from the SLS process diminished exceptionally slow, taking at least 2.5 hours to degrade in confined spaces [30]. The process is high-risk, and it includes pre-and post-processing activities such as loading raw material into the machine, pouring, transferring, component removal, and machine cleaning [10].

Even though the SLS sintering process is performed in a closed chamber, operators are still exposed to aerosol and dust during pre- and post-processing phases [31]. According to Chen et al. [30], PM sourced from virgin, recycled and refresh rate powders may be released into the workplace and environments during the manual

REFERENCES

- K. S. Prakash, T. Nancharaih, and V. V. S. Rao, "Additive Manufacturing Techniques in Manufacturing -An Overview," *Mater. Today Proc.*, vol. 5, no. 2, pp. 3873–3882, 2018.
- [2] Ministry of International Trade and Industry, "Industry 4wrd, National Policy on Industry 4.0, Ministry of International Trade and Industry," 2018.
- [3] D. R. Eyers and A. T. Potter, "Industrial Additive Manufacturing: A manufacturing systems perspective," *Comput. Ind.*, vol. 92–93, pp. 208–218, 2017.
- Y. Huang, M. C. Leu, J. Mazumder, and A. Donmez, "Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations," *J. Manuf. Sci. Eng.*, vol. 137, no. 1, p. 014001, 2015.
- [5] S. H. Huang, P. Liu, A. Mokasdar, and L. Hou, "Additive manufacturing and its societal impact: A literature review," *Int. J. Adv. Manuf. Technol.*, vol. 67, no. 5–8, pp. 1191–1203, 2013.
- [6] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges," *Compos. Part B Eng.*, vol. 143, no. February, pp. 172–196, 2018.
- S. K. Tiwari, S. Pande, S. Agrawal, and S. M. Bobade, "Selection of selective laser sintering materials for different applications," *Rapid Prototyp. J.*, vol. 21, no. 6, pp. 630–648, 2015.
- [8] K. S. Prakash, T. Nancharaih, and V. V. S. Rao, "Additive Manufacturing Techniques in Manufacturing -An Overview," in *Materials Today: Proceedings*, 2018, vol. 5, no. 2, pp. 3873–3882.
- [9] J. Butler, "Using selective laser sintering for manufacturing," Assem. Autom., vol. 31, no. 3, pp. 212–219, 2011.
- [10] J. Walter, A. Baumgärtel, M. Hustedt, R. Hebisch, and S. Kaierle, "Inhalation

exposure to hazardous substances during powder-bed processes," in *Procedia CIRP*, 2018, vol. 74, pp. 295–299.

- [11] C. Möhlmann, J. Welter, M. Klenke, and J. Sander, "Workplace exposure at nanomaterial production processes," *J. Phys. Conf. Ser.*, vol. 170, 2009.
- [12] K. Dotchev and W. Yusoff, "Recycling of polyamide 12 based powders in the laser sintering process," *Rapid Prototyp. J.*, vol. 15, no. 3, pp. 192–203, 2009.
- [13] Y. Way, D. T. Pham, and K. D. Dotchev, "Investigation of the Thermal Properties of Different Grades Polyamide 12 (PA12) in Improving Laser Sintering Process (SLS)," *Appl. Mech. Mater.*, vol. 548–549, pp. 294–296, 2014.
- [14] S. Du Preez, A. Johnson, R. F. LeBouf, S. J. L. Linde, A. B. Stefaniak, and J. Du Plessis, "Exposures during industrial 3-D printing and post-processing tasks," *Rapid Prototyp. J.*, vol. 24, no. 5, pp. 865–871, 2018.
- [15] J. Yi *et al.*, "Emission of particulate matter from a desktop three-dimensional (3D) printer," *J. Toxicol. Environ. Heal. Part A Curr. Issues*, vol. 79, no. 11, pp. 453–465, 2016.
- [16] S. A. M. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, and C. Charitidis, "Additive manufacturing: scientific and technological challenges, market uptake and opportunities," *Mater. Today*, vol. 21, no. 1, pp. 22–37, 2018.
- [17] L. A.M, Y. M.Z.M, O. A.R, and J. W., "Environmental quality index (EQI) for industrial ventilation and occupational safety and health evaluation," *Asian J. Qual.*, vol. 11, no. 3, pp. 210–222, 2010.
- [18] J. Gu, M. Wensing, E. Uhde, and T. Salthammer, "Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer," *Environ. Int.*, vol. 123, no. January, pp. 476–485, 2019.
- [19] SOCSO, "Laporan Tahunan 2017, Pertubuhan Keselamatan Sosial," 2017.
- [20] D. Schwela, "Pollution, Indoor Air," in *Encyclopedia of Toxicology: Third Edition*, Third Edit., vol. 3, Elsevier, 2014, pp. 1003–1017.
- [21] S. Anthony, T. Lang, A. Robert, and D. Kenneth, "Nanoparticles, human health hazard and regulation," *J. R. Soc. Interface*, vol. 7, no. suppl_1, pp. S119–S129, 2010.
- [22] J.-Z. Wu, D.-D. Ge, L.-F. Zhou, L.-Y. Hou, Y. Zhou, and Q.-Y. Li, "Effects of particulate matter on allergic respiratory diseases," *Chronic Dis. Transl. Med.*,

vol. 4, no. 2, pp. 95–102, 2018.

- [23] K.-H. Kim, E. Kabir, and S. Kabir, "A review on the human health impact of airborne particulate matter," *Environ. Int.*, vol. 74, pp. 136–143, Jan. 2015.
- [24] S. W. Cheng and C. F. J. Wu, "Factor screening and response surface exploration," *Stat. Sin.*, vol. 11, no. 3, pp. 553–604, 2001.
- [25] A. L. H. Müller, J. A. De Oliveira, O. D. Prestes, M. B. Adaime, and R. Zanella,
 "Design of experiments and method development," *Solid-Phase Extr.*, pp. 589–608, 2019.
- [26] J. I. Arrizubieta, O. Ukar, M. Ostolaza, and A. Mugica, "Study of the environmental implications of using metal powder in additive manufacturing and its handling," *Metals (Basel).*, vol. 10, no. 2, 2020.
- [27] J. Johannes, T. Rezayat, W. D. Wallace, and J. P. Lynch, "Chronic Hypersensitivity Pneumonitis Associated With Inhaled Exposure To Nylon Powder For 3-D Printing: A Variant Of Nylon Flock Worker's Lung Disease?," *Am J Respir Crit Care Med*, no. 193, p. A7071, 2016.
- [28] A. J. K. Väisänen, M. Hyttinen, S. Ylönen, and L. Alonen, "Occupational exposure to gaseous and particulate contaminants originating from additive manufacturing of liquid, powdered, and filament plastic materials and related post-processes," J. Occup. Environ. Hyg., vol. 16, no. 3, pp. 258–271, 2018.
- [29] O. Kwon *et al.*, "Characterization and Control of Nanoparticle Emission during 3D Printing," *Environ. Sci. Technol.*, vol. 51, no. 18, pp. 10357–10368, 2017.
- [30] R. Chen *et al.*, "Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: A review," *Chemosphere*, vol. 259, no. 55, p. 127452, 2020.
- [31] S. Du Preez, D. J. de Beer, and J. L. Du Plessis, "Titanium powders used in powder bed fusion: Their relevance to respiratory health," *South African J. Ind. Eng.*, vol. 29, no. 4, pp. 94–102, 2018.
- [32] T. Kolb, T. Kolb, P. Schmidt, R. Beisser, J. Tremel, and M. Schmidt, "Safety in additive manufacturing: Fine dust measurements for a process chain in Laser beam melting of metals," *RTeJournal - Fachforum für Rapid Technol.*, vol. 2017, 2017.
- [33] Health and Safety Executive, *Controlling airborne contaminants at work- A Guide to Local Exhaust Ventilation (LEV).* 2017.
- [34] J. Bours, B. Adzima, S. Gladwin, J. Cabral, and S. Mau, "Addressing Hazardous

Implications of Additive Manufacturing: Complementing Life Cycle Assessment with a Framework for Evaluating Direct Human Health and Environmental Impacts," *J. Ind. Ecol.*, vol. 21, pp. S25–S36, 2017.

- [35] R. E. Zisook *et al.*, "Emissions associated with operations of four different additive manufacturing or 3D printing technologies," *J. Occup. Environ. Hyg.*, vol. 10, pp. 464–479, 2020.
- [36] S. J. Tsai, E. Ada, J. A. Isaacs, and M. J. Ellenbecker, "Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods," *J. Nanoparticle Res.*, vol. 11, no. 1, pp. 147–161, 2009.
- [37] P. Graff, B. Ståhlbom, E. Nordenberg, A. Graichen, P. Johansson, and H. Karlsson, "Evaluating Measuring Techniques for Occupational Exposure during Additive Manufacturing of Metals: A Pilot Study," *J. Ind. Ecol.*, vol. 21, pp. 120–129, 2017.
- [38] M. of H. R. M. Department of Occupational Safety and Health, "INDUSTRY CODE OF PRACTICE ON INDOOR AIR QUALITY 2010," JKKP DP 127/379/4-39, 2010.
- [39] NIOSH 0500, "Particulates not otherwise regulated, total," *NIOSH Man. Anal. Methods, 4th Ed.*, no. 2, pp. 1–3, 1994.
- [40] NIOSH, "NIOSH manual of analytical methods (NMAM) 0600, fourth edition: Respirable particulates not otherwise regulated gravimetric, Issue 3," *NIOSH Man. Anal. Methods, 4th Ed.*, no. 3, pp. 1–6, 1998.
- [41] US Environmental Protection Agency, "USEPA. Introduction to Indoor Air Quality." [Online]. Available: https://www.epa.gov/indoor-air-quality-iaq/ introduction-indoor-air-quality.
- [42] V. Van Tran, D. Park, and Y. C. Lee, "Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality," *Int. J. Environ. Res. Public Health*, vol. 17, no. 8, 2020.
- [43] J. Kim and R. de Dear, "Nonlinear relationships between individual IEQ factors and overall workspace satisfaction," *Build. Environ.*, vol. 49, no. 1, pp. 33–40, 2012.
- [44] World Health organization, "WHO-Household Air Pollution and Health."
 [Online]. Available: https://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health. [Accessed: 02-Feb-2021].
- [45] A. K. Melikov and J. Kaczmarczyk, "Air movement and perceived air quality,"

Build. Environ., vol. 47, no. 1, pp. 400–409, 2012.

- [46] F. P. Babatsikou, "The Sick Building Syndrome (SBS)," *Heal. Sci. J.*, vol. 5, no. 2, pp. 72–73, 2011.
- [47] S. J. Cao and C. Ren, "Ventilation control strategy using low-dimensional linear ventilation models and artificial neural network," *Build. Environ.*, vol. 144, no. July, pp. 316–333, 2018.
- [48] S. Hormigos-Jimenez, M. Á. Padilla-Marcos, A. Meiss, R. A. Gonzalez-Lezcano, and J. Feijó-Muñoz, "Ventilation rate determination method for residential buildings according to TVOC emissions from building materials," *Build. Environ.*, vol. 123, pp. 555–563, 2017.
- [49] E. J. J. Bardana and A. Montanaro, *Indoor Air Pollution and Health*. New York: Marcek Dekker Inc., 1997.
- [50] M. L. Harris and M. J. Sapko, "Floor dust erosion during early stages of coal dust explosion development," *Int. J. Min. Sci. Technol.*, vol. 29, no. 6, pp. 825– 830, 2019.
- [51] J. Zhang, Z. Bai, V. W. C. Chang, and X. Ding, "Balancing BEC and IAQ in civil buildings during rapid urbanization in China: Regulation, interplay and collaboration," *Energy Policy*, vol. 39, no. 10, pp. 5778–5790, Oct. 2011.
- [52] B. A. Tichenor, L. A. Sparks, J. B. White, and M. D. Jackson, "Evaluating Sources of Indoor Air Pollution," *J. Air Waste Manag. Assoc.*, vol. 40, no. 4, pp. 487–492, 1990.
- [53] Work Safe BC, Indoor Air Quality: A Guide for Building Owners, Managers, and Occupants. 2005.
- [54] N. Y. Yang Razali, M. T. Latif, D. Dominick, N. Mohamad, F. R. Sulaiman, and T. Srithawirat, "Concentration of particulate matter, CO and CO2 in selected schools inMalaysia," *Build. Environ.*, vol. 87, pp. 108–116, 2015.
- [55] B.-J. Lee, B. Kim, and K. Lee, "Air pollution exposure and cardiovascular disease.," *Toxicol. Res.*, vol. 30, no. 2, pp. 71–5, 2014.
- [56] S. Armenta and M. de la Guardia, *Pollutants and Air Pollution*, vol. 73. Elsevier Ltd, 2016.
- [57] N. A. Rosário Filho *et al.*, "Air pollution and indoor settings," *World Allergy Organ. J.*, vol. 14, no. 1, p. 100499, 2021.
- [58] US Environmental Protection Agency, "Indoor Air Quality (IAQ)." [Online].
 Available: https://www.epa.gov/indoor-air-quality-iaq/indoor-particulate-

matter. [Accessed: 26-Jan-2020].

- [59] DOSH Malaysia, "Industry Code of Practice on Indoor Air Quality 2010, JKKP
 DP (S) 127/379/4-39," *Minist. Hum. Resour. Dep. Occup. Saf. Heal.*, pp. 1–50, 2010.
- [60] P. Wolkoff, C. K. Wilkins, P. a Clausen, and G. D. Nielsen, "Organic compounds in office environments - sensory irritation, odor, measurements and the role of reactive chemistry.," *Indoor Air*, vol. 16, no. 1, pp. 7–19, Feb. 2005.
- [61] World Health organization, WHO Guidelines for Indoor Air Quality: Selected Pollutants. 2010.
- [62] S. M. Saad *et al.*, "Development of indoor environmental index: Air quality index and thermal comfort index," *AIP Conf. Proc.*, vol. 1808, no. August, 2017.
- [63] M. O. Fadeyi, K. W. Tham, and W. Y. Wu, "Impact of asthma, exposure period, and filters on human responses during exposures to ozone and its initiated chemistry products," *Indoor Air*, vol. 25, no. 5, pp. 512–522, 2015.
- [64] P. Vida, "Formaldehyde Risk Assessment: proposal of exposure limits," University of Milan, 2009.
- [65] T. Salthammer, S. Mentese, and R. Marutzky, "Formaldehyde in the indoor environment.," *Chem. Rev.*, vol. 110, no. 4, pp. 2536–72, Apr. 2010.
- [66] E. Höllbacher, C. Rieder-Gradinger, D. Stratev, and E. Srebotnik, "A largescale test set-up for measuring VOC emissions from wood products under laboratory conditions in simulated real rooms," *Holzforschung*, vol. 69, no. 4, pp. 457–462, 2015.
- [67] A. P. Jones, "Indoor air quality and health," *Atmos. Environ.*, vol. 33, no. 28, pp. 4535–4564, 1999.
- [68] T. Salthammer, "Release of Organic Compounds and Particulate Matter from Products, Materials, and Electrical Devices in the Indoor Environment," *Indoor Air Pollut.*, vol. 2nd Editio, 2014.
- [69] C. Teodosiu, V. Ilie, and R. Teodosiu, "Modelling of volatile organic compounds concentrations in rooms due to electronic devices," *Process Saf. Environ. Prot.*, vol. 108, pp. 89–98, 2017.
- [70] V. G. Mihucz and G. Záray, "Indoor Air Pollution," *Compr. Anal. Chem.*, vol. 73, pp. 45–71, 2016.
- [71] I. K. Koponen, A. J. Koivisto, and K. A. Jensen, "Worker exposure and high

time-resolution analyses of process-related submicrometre particle concentrations at mixing stations in two paint factories," *Ann. Occup. Hyg.*, vol. 59, no. 6, pp. 749–763, 2015.

- [72] W. World Health organization, *Dust: Definitions and Concepts*. 1999.
- [73] P. Wolkoff, "Indoor air humidity, air quality, and health An overview," *Int. J. Hyg. Environ. Health*, vol. 221, no. 3, pp. 376–390, 2018.
- [74] E. J. Esswein, M. Breitenstein, J. Snawder, M. Kiefer, and W. K. Sieber, "Occupational exposures to respirable crystalline silica during hydraulic fracturing," *J. Occup. Environ. Hyg.*, vol. 10, no. 7, pp. 347–356, 2013.
- [75] G. León-Mejía, M. Q. Sosa, P. Rohr, K. Kvitko, J. A. P. Henriques, and J. da Silva, "Occupational Exposure to Coal, Genotoxicity, and Cancer Risk," *Environ. Heal. Risk - Hazard. Factors to Living Species*, vol. 7, no. June, 2016.
- [76] A. H. Rahmani, A. Almatroudi, A. Y. Babiker, A. A. Khan, and M. A. Alsahly,
 "Effect of exposure to cement dust among the workers: An evaluation of health related complications," *Open Access Maced. J. Med. Sci.*, vol. 6, no. 6, pp. 1159–1162, 2018.
- [77] W. Steiling *et al.*, "Principles for the safety evaluation of cosmetic powders," *Toxicol. Lett.*, vol. 297, no. August, pp. 8–18, 2018.
- [78] P. Sripaiboonkij, W. Phanprasit, and M. S. Jaakkola, "Respiratory effects of occupational exposures in a milk powder factory," *Eur. Respir. J.*, vol. 31, no. 4, pp. 807–814, 2008.
- [79] M. G. Holland and D. Cawthon, "Workplace lead exposure," J. Occup. Environ. Med., vol. 58, no. 12, pp. e371–e374, 2016.
- [80] L. Tavakkoli and N. Khanjani, "Environmental and occupational exposure to cadmium in Iran: A systematic review," *Rev. Environ. Health*, vol. 31, no. 4, pp. 457–463, 2016.
- [81] A. M. Boran, Z. Al-hourani, A. Al-balwi, A. A. Bello, and A. Adamu, "Occupational Exposure To Nickel, Cadmium and Copper Among Workers in Jewelery Manufacturing," *Eur. Sci. J.*, vol. 10, no. 15, pp. 159–169, 2014.
- [82] M. P. Hamm and I. Burstyn, "Estimating occupational beryllium exposure from compliance monitoring data," *Arch. Environ. Occup. Heal.*, vol. 66, no. 2, pp. 75–86, 2011.
- [83] L. Melymuk, H. Demirtepe, and S. R. Jílková, "Indoor dust and associated chemical exposures," *Curr. Opin. Environ. Sci. Heal.*, vol. 15, pp. 1–6, 2020.

- [84] A. A. Khan, M. A. Shah, and S. U. Rahman, "Occupational Exposure to Pesticides and Its Effects on Health Status of Workers in Swat, Khyber Pakhtunkhwa, Pakistan," J. Biol. Life Sci., vol. 4, no. 2, 2013.
- [85] M. Ye, J. Beach, J. W. Martin, and A. Senthilselvan, "Occupational pesticide exposures and respiratory health," *Int. J. Environ. Res. Public Health*, vol. 10, no. 12, pp. 6442–6471, 2013.
- [86] P. Ielpo, C. M. Placentino, A. Genga, V. Ancona, V. F. Uricchio, and P. Fermo, "PM2.5 in indoor air of a bakery: Chemical characterization and size distribution," *Atmosphere (Basel).*, vol. 11, no. 4, 2020.
- [87] J. Gu, I. Kirsch, T. Schripp, F. Froning-Ponndorf, D. Berthold, and T. Salthammer, "Human exposure to airborne particles during wood processing," *Atmos. Environ.*, vol. 193, no. August, pp. 101–108, 2018.
- [88] S. Daba Wami *et al.*, "Cotton dust exposure and self-reported respiratory symptoms among textile factory workers in Northwest Ethiopia: A comparative cross-sectional study," *J. Occup. Med. Toxicol.*, vol. 13, no. 1, 2018.
- [89] X. Si, L. Huo, and S. Zhang, "Relationship between tea dust exposure and lung function: A systemic literature review," *J. Med. Coll. PLA*, vol. 28, no. 4, pp. 228–241, 2013.
- [90] J. Singh, "Occupational exposure to moulds in buildings," *Indoor Built Environ.*, vol. 10, no. 3–4, pp. 172–178, 2001.
- [91] W. Eduard, Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting Fungal spore W. Eduard, vol. 39, no. 10. 2009.
- [92] W. World Health organization, WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, no. 2. 2005.
- [93] D. D. Massey, M. Habil, and A. Taneja, "Particles in different indoor microenvironments-its implications on occupants," *Build. Environ.*, vol. 106, pp. 237–244, 2016.
- [94] Z. Fan *et al.*, "Personal exposure to fine particles (PM2.5) and respiratory inflammation of common residents in Hong Kong," *Environ. Res.*, vol. 164, no. January, pp. 24–31, 2018.
- [95] The Royal Society of Chemistry, Airborne Particulate Matter- Source, Atmospheric Processes and Health. CPI Group (UK) Ltd, Croydon, CR0 4YY, UK, 2016.

- [96] A. Eštoková, N. Števulová, and L. Kubincová, "Particulate matter investigation in indoor environment," *Glob. Nest J.*, vol. 12, no. 1, pp. 20–26, 2010.
- [97] W. World Health Organization, "Hazard prevention and control in the work environment: airborne dust," *Who/Sde/Oeh/99.14*. pp. 1–96, 1999.
- [98] S. Biegalski et al., Airborne Particulate Matter The Handbook of Environmental Chemistry. Springer Berlin Heidelberg, 1995.
- [99] S. Shi, Y. Li, and B. Zhao, "Deposition velocity of fine and ultrafine particles onto manikin surfaces in indoor environments of different facial air speeds," *Build. Environ.*, vol. 81, pp. 388–395, 2014.
- [100] ASHRAE-62.1, ASHRAE STANDARD Ventilation for Acceptable Indoor Air Quality, vol. 2019. 2019.
- [101] R. M. Tuggle, "The relationship between TLV-TWA compliance and TLV-STEL compliance," *Appl. Occup. Environ. Hyg.*, vol. 15, no. 4, pp. 380–386, 2000.
- [102] J. Burton, "WHO Healthy Workplace Framework and Model : Background and Supporting Literature and Practice," 2010.
- [103] C. M. A. Iwegbue *et al.*, "Distribution, sources and risk of exposure to polycyclic aromatic hydrocarbons in indoor dusts from electronic repair workshops in southern Nigeria," vol. 5, pp. 23–30, 2019.
- [104] C. M. A. Iwegbue *et al.*, "Characterization of metals in indoor dusts from electronic workshops, cybercafés and offices in southern Nigeria: Implications for on-site human exposure," *Ecotoxicol. Environ. Saf.*, vol. 159, no. May, pp. 342–353, 2018.
- [105] A. Hariri, A. M. Leman, M. Z. M. Yusof, N. A. Paiman, and N. M. Noor, "Preliminary Measurement of Welding Fumes in Automotive Plants," *Int. J. Environ. Sci. Dev.*, vol. 3, no. 2, pp. 146–151, 2012.
- [106] A. M. Leman and N. H. Abdul, "Occupational Safety and Health : Workers and Industrial Safety Monitoring For Sustainable Work Environment Development," *Heal. Saf.*, no. May, pp. 34–36, 2013.
- [107] S. F. Z. Bakri, A. Hariri, M. Ismail, and A. A. M. Damanhuri, "Evaluation of industrial workplace exposure to metal fumes using toenail as bio-indicator," *Int. J. Integr. Eng.*, vol. 11, no. 5 Special Issue, 2019.
- [108] K. Schmid, B. Danuser, and M. Riediker, "Nanoparticle usage and protection measures in the manufacturing industry—a representative survey," J. Occup.

Environ. Hyg., vol. 7, no. 4, pp. 224–232, 2010.

- [109] E. Osman and K. Pala, "Occupational exposure to wood dust and health effects on the respiratory system in a minor industrial estate in Bursa/Turkey," *Int. J. Occup. Med. Environ. Health*, vol. 22, no. 1, pp. 43–50, 2009.
- [110] Y. Al Horr, M. Arif, A. Kaushik, A. Mazroei, M. Katafygiotou, and E. Elsarrag, "Occupant productivity and office indoor environment quality: A review of the literature," *Build. Environ.*, vol. 105, pp. 369–389, 2016.
- [111] A. M. Mokhtar, "A comparison of the approaches in the implementation of good indoor air quality practices in Malaysia," *10th Int. Conf. Heal. Build. 2012*, vol. 1, pp. 453–458, 2012.
- [112] L. T. Wong and K. W. Mui, "An energy performance assessment for indoor environmental quality (IEQ) acceptance in air-conditioned offices," *Energy Convers. Manag.*, vol. 50, no. 5, pp. 1362–1367, May 2009.
- [113] W. Chen, Y. Liu, X. Huang, and Y. Rong, "Respiratory Diseases Among Dust Exposed Workers," *Respir. Dis.*, no. October 2014, 2012.
- [114] X. Chen, C. Guo, J. Song, X. Wang, and J. Cheng, "Occupational health risk assessment based on actual dust exposure in a tunnel construction adopting roadheader in Chongqing, China," *Build. Environ.*, vol. 165, no. May, p. 106415, 2019.
- [115] H. Kakooei, A. Gholami, M. Ghasemkhani, M. Hosseini, D. Panahi, and G. Pouryaghoub, "Dust exposure and respiratory health effects in cement production," *Acta Med. Iran.*, vol. 50, no. 2, pp. 122–126, 2012.
- [116] P. C. Albuquerque, J. F. Gomes, C. A. Pereira, and R. M. Miranda, "Assessment and control of nanoparticles exposure in welding operations by use of a Control Banding Tool," *J. Clean. Prod.*, vol. 89, pp. 296–300, 2015.
- [117] A. Hariri, "The development of welding fumes health risk assessment tool for automotive component related industries," 2015.
- [118] M. Santamouris *et al.*, "Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation," *Energy Build.*, vol. 40, no. 10, pp. 1833–1843, Jan. 2008.
- [119] M. Puteh, M. H. Ibrahim, M. Adnan, C. N. Che'Ahmad, and N. M. Noh, "Thermal Comfort in Classroom: Constraints and Issues," *Procedia - Soc. Behav. Sci.*, vol. 46, no. December, pp. 1834–1838, 2012.
- [120] J. Jiang, D. Wang, Y. Liu, Y. Xu, and J. Liu, "A study on pupils' learning

performance and thermal comfort of primary schools in China," *Build. Environ.*, vol. 134, no. February, pp. 102–113, 2018.

- [121] T. Mihai and V. Iordache, "Determining the Indoor Environment Quality for an Educational Building," *Energy Procedia*, vol. 85, no. November 2015, pp. 566– 574, 2016.
- [122] P. Wolkoff, C. K. Wilkins, P. A. Clausen, and K. Larsen, "Comparison of Volatile Organic Compounds h m Processed Paper and Toners h m Office Copiers and Printers: Methods, Emission Rates, and Modeled Concentrations," vol. 3, no. February, pp. 113–123, 1993.
- [123] S.K Brown, "Assessment of Pollutant Emissions from Dry-Process," Indoor Air, vol. 9, pp. 259–267, 1999.
- [124] M. Sarkhosh, A. H. Mahvi, M. R. Zare, Y. Fakhri, and H. R. Shamsolahi, "Indoor contaminants from Hardcopy Devices: Characteristics of VOCs in photocopy centers," *Atmos. Environ.*, vol. 63, pp. 307–312, Dec. 2012.
- [125] D.-J. Hsu, H.-L. Huang, C.-H. Chien, and T.-S. Lin, "Potential exposure to VOCs caused by dry process photocopiers: results from a chamber study.," *Bull. Environ. Contam. Toxicol.*, vol. 75, no. 6, pp. 1150–5, Dec. 2005.
- [126] B. P. Singh, A. Kumar, D. Singh, M. Punia, K. Kumar, and V. K. Jain, "An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation.," *J. Hazard. Mater.*, vol. 275, pp. 55–62, Jun. 2014.
- [127] K. S. Jelena, K. S. Vesna, O. B. Ivana, and R. G. Jonjaua, "Ammonia Release during Photocopying Operations," *J. Environ. Ecol. Geol. Min. Eng.*, vol. 8, no. 4, pp. 246–250, 2014.
- [128] K. Jelena, A. Dragan, O. Ivana, K. Jelena, A. Savka, and M. Mirjana, "Correlation between Ozone and Total VOCs in Printing Environment," J. Chem. Eng., vol. 5, pp. 423–428, 2011.
- [129] J. Kiurski *et al.*, "Register of hazardous materials in printing industry as a tool for sustainable development management," *Renew. Sustain. Energy Rev.*, vol. 16, no. 1, pp. 660–667, Jan. 2012.
- [130] K. Savolainen *et al.*, "Nanotechnologies, engineered nanomaterials and occupational health and safety - A review," *Saf. Sci.*, vol. 48, no. 8, pp. 957– 963, 2010.
- [131] A. J. Koivisto et al., "Occupational exposure during handling and loading of

halloysite nanotubes – A case study of counting nanofibers," *NanoImpact*, vol. 10, no. February, pp. 153–160, 2018.

- [132] F. Silva, P. Arezes, and P. Swuste, "Systematic design analysis and risk management on nanoparticles occupational exposure," J. Clean. Prod., vol. 112, pp. 3331–3341, 2016.
- [133] J. X. Bouillard and A. Vignes, "Nano-Evaluris: An inhalation and explosion risk evaluation method for nanoparticle use. Part I: Description of the methodology," *J. Nanoparticle Res.*, vol. 16, no. 2, 2014.
- [134] A. K. Viitanen, S. Uuksulainen, A. J. Koivisto, K. Hämeri, and T. Kauppinen,
 "Workplace measurements of ultrafine particles-A literature review," *Ann. Work Expo. Heal.*, vol. 61, no. 7, pp. 749–758, 2017.
- [135] S. Lind, "Occupational risks in industrial maintenance," 2008.
- [136] C. K. Chau, W. K. Hui, and M. S. Tse, "Evaluation of health benefits for improving indoor air quality in workplace," *Environ. Int.*, vol. 33, no. 2, pp. 186–198, 2007.
- [137] M. The Commissioner of Law Revision, *Factories and Machinery ACT 1967*, 2006th ed., no. January. Percetakan Nasional Bhd, 2006.
- [138] S. A. Abdul-Wahab, S. Chin Fah En, A. Elkamel, L. Ahmadi, and K. Yetilmezsoy, "A review of standards and guidelines set by international bodies for the parameters of indoor air quality," *Atmos. Pollut. Res.*, vol. 6, no. 5, pp. 751–767, 2015.
- [139] Safe Work Australia, Workplace Exposure Standards for Airborne Contaminants, no. April. 2013.
- [140] H. Health Safety Commission, EH40/2005 Workplace Exposure Limits. The Control of Subtances Hazardous to Health Regulations, Fourth Edition 2020, 20th Editi. Crown, 2020.
- [141] Health and Safety Executive, "Working with substances hazardous to health. A brief guide to COSHH. INDG136(rev5).," pp. 1–10, 2012.
- [142] Health and Safety Executive, "EH40/2005 Workplace exposure limits. Containing the list of workplace exposure limits for use with the Control of Substances Hazardous to Health Regulations 2002 (as amended).," vol. 2002, p. 63, 2018.
- [143] USECHH, Guidelines on Monitoring of Airborne Contaminant for Chemical Hazardous to Health, Under the Occupational Safety and Health (Use and

Standard of Exposure of Chemicals Hazardous to Health) Regulations 2000 (P.U (A) 131, (DOSH Malaysia). Department of Occupational Safety and Health Malaysia, 2000.

- [144] B. Wang, Y. Zhao, Z. Lan, Y. Yao, L. Wang, and H. Sun, "Sampling methods of emerging organic contaminants in indoor air," *Trends Environ. Anal. Chem.*, vol. 12, pp. 13–22, 2016.
- [145] L. T. Wong and K. W. Mui, "Evaluation on four sampling schemes for assessing indoor air quality," *Build. Environ.*, vol. 42, no. 3, pp. 1119–1125, 2007.
- [146] Y. Yang and L. Li, "Total volatile organic compound emission evaluation and control for stereolithography additive manufacturing process," J. Clean. Prod., vol. 170, pp. 1268–1278, 2018.
- [147] A. Spinazzè et al., "Indoor gaseous air pollutants determinants in office buildings—The OFFICAIR project," *Indoor Air*, vol. 30, no. 1, pp. 76–87, 2020.
- [148] S. S. Amaral, J. A. de Carvalho, M. A. M. Costa, and C. Pinheiro, "An overview of particulate matter measurement instruments," *Atmosphere (Basel).*, vol. 6, no. 9, pp. 1327–1345, 2015.
- [149] R. W. He, Y. Z. Li, P. Xiang, C. Li, X. Y. Cui, and L. Q. Ma, "Impact of particle size on distribution and human exposure of flame retardants in indoor dust," *Environ. Res.*, vol. 162, no. November 2017, pp. 166–172, 2018.
- [150] C. for D. C. and P. N. I. for O. S. and H. Department of Health and Human Services, *General Safe Practices for Working with Engineered Nanomaterials in Research Laboratories*. 2012.
- [151] Labconco Corporation, Guide To Ventilated Balance Enclosures. 2011.
- [152] M. Sorbello, W. Rosenblatt, R. Hofmeyr, R. Greif, and F. Urdaneta, "Aerosol boxes and barrier enclosures for airway management in COVID-19 patients: a scoping review and narrative synthesis," *Br. J. Anaesth.*, vol. 125, no. 6, pp. 880–894, 2020.
- [153] S. P. Binks, "Occupational toxicology and the control of exposure to pharmaceutical agents at work," *Occup. Med. (Chic. Ill).*, vol. 53, no. 6, pp. 363–370, 2003.
- [154] A. J. Koivisto *et al.*, "Source specific exposure and risk assessment for indoor aerosols," *Sci. Total Environ.*, vol. 668, no. February, pp. 13–24, 2019.
- [155] A. Stobnicka and R. L. Górny, "Exposure to flour dust in the occupational

environment," Int. J. Occup. Saf. Ergon., vol. 21, no. 3, pp. 241-249, 2015.

- [156] B. Fadeel *et al.*, "Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment," *ACS Nano*, vol. 12, no. 11, pp. 10582– 10620, 2018.
- [157] F. C. Simeone, M. Blosi, S. Ortelli, and A. L. Costa, "Assessing occupational risk in designs of production processes of nano-materials," *NanoImpact*, vol. 14, no. November 2018, p. 100149, 2019.
- [158] P. A. Schulte, E. D. Kuempel, and N. M. Drew, "Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials," *Regul. Toxicol. Pharmacol.*, vol. 95, no. March, pp. 207–219, 2018.
- [159] A. Mostafaei *et al.*, "Binder jet 3D printing Process parameters, materials, properties, and challenges," *Prog. Mater. Sci.*, no. June, p. 100707, 2020.
- [160] R. Ansart, A. de Ryck, J. A. Dodds, M. Roudet, D. Fabre, and F. Charru, "Dust emission by powder handling: Comparison between numerical analysis and experimental results," *Powder Technol.*, vol. 190, no. 1–2, pp. 274–281, 2009.
- [161] R. Ansart, A. de Ryck, and J. A. Dodds, "Dust emission in powder handling: Free falling particle plume characterisation," *Chem. Eng. J.*, vol. 152, no. 2–3, pp. 415–420, 2009.
- [162] WHO, Prevention and Control Exchange Hazard Prevention and Control in the Work Environment : Airborne Dust, no. August. 1999.
- [163] A. L. Lilao, V. S. Forner, G. M. Gasch, and E. M. Gimeno, "Particle size distribution: A key factor in estimating powder dustiness," *J. Occup. Environ. Hyg.*, vol. 14, no. 12, pp. 975–985, 2017.
- [164] I. Iavicoli, L. Fontana, P. Pingue, A. Maria, and C. Asbach, "Science of the Total Environment Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors," *Sci. Total Environ.*, vol. 627, pp. 689–702, 2018.
- [165] M. A. E. Plinke, D. Leith, M. G. Boundy, and F. Löffler, "Dust generation from handling powders in industry," *Am. Ind. Hyg. Assoc. J.*, vol. 56, no. 3, pp. 251– 257, 1995.
- [166] C. Ribalta *et al.*, "On the Relationship between Exposure to Particles and Dustiness during Handling of Powders in Industrial Settings," *Ann. Work Expo. Heal.*, vol. 63, no. 1, pp. 107–123, 2019.

- [167] US Environmental Protection Agency, Guidance on the development, evaluation, and application of environmental models, vol. EPA/100/K-, no. March. Office of the Science Advisor, Council for Regulatory Environmental Modelling, 2009.
- [168] Z. Wang *et al.*, "Critical review and probabilistic health hazard assessment of cleaning product ingredients in all-purpose cleaners, dish care products, and laundry care products," *Environ. Int.*, vol. 125, no. December 2018, pp. 399– 417, 2019.
- [169] H. Marquart *et al.*, "Stoffenmanager', a web-based control banding tool using an exposure process model," *Ann. Occup. Hyg.*, vol. 52, no. 6, pp. 429–441, 2008.
- [170] D. M. Zalk, S. Y. Paik, and P. Swuste, "Evaluating the Control Banding Nanotool: A qualitative risk assessment method for controlling nanoparticle exposures," *J. Nanoparticle Res.*, vol. 11, no. 7, pp. 1685–1704, 2009.
- [171] B. Liguori, S. F. Hansen, A. Baun, and K. A. Jensen, "Control banding tools for occupational exposure assessment of nanomaterials - Ready for use in a regulatory context?," *NanoImpact*, vol. 2, pp. 1–17, 2016.
- [172] M. Riediker *et al.*, "Development of a control banding tool for nanomaterials," *J. Nanomater.*, vol. 2012, 2012.
- [173] P. Baybutt, "Guidelines for designing risk matrices," *Process Saf. Prog.*, vol. 37, no. 1, pp. 49–55, 2017.
- [174] T. Hoppe, N. Jaeger, and J. Terry, "Safe handling of combustible powders during transportation, charging, discharging and storage," *J. Loss Prev. Process Ind.*, vol. 13, no. 3–5, pp. 253–263, 2000.
- [175] P. Wypych, D. Cook, and P. Cooper, "Controlling dust emissions and explosion hazards in powder handling plants," *Chem. Eng. Process. Process Intensif.*, vol. 44, no. 2, pp. 323–326, 2005.
- [176] M. M. Methner, "Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations," J. Occup. Environ. Hyg., vol. 5, no. 6, pp. D63–D69, 2008.
- [177] A. Ramya and S. I. Vanapalli, "3D Printing Technologies in Various Applications," *Int. J. Mech. Eng. Technol.*, vol. 7, no. 3, pp. 396–409, 2016.
- [178] D. Rejeski, F. Zhao, and Y. Huang, "Research needs and recommendations on environmental implications of additive manufacturing," *Addit. Manuf.*, vol. 19,

pp. 21–28, 2018.

- [179] Y. Wang, R. Blache, and X. Xu, "Selection of additive manufacturing processes," *Rapid Prototyp. J.*, vol. 23, no. 2, pp. 434–447, 2017.
- [180] E. Rauch, M. Unterhofer, and P. Dallasega, "Industry Sector Analysis for the Application of Additive Manufacturing in Smart and Distributed Manufacturing Systems," *Manuf. Lett.*, 2017.
- [181] S. Embrey et al., "The Many Dimensions of 3D Printing and Additive Manufacturing," AIG Emerg. Risk Res., pp. 1–13, 2018.
- [182] L. Del Giudice and M. F. Vassiliou, "Mechanical properties of 3D printed material with binder jet technology and potential applications of additive manufacturing in seismic testing of structures," *Addit. Manuf.*, vol. 36, p. 101714, 2020.
- [183] M. Ivey, G. W. Melenka, J. P. Carey, and C. Ayranci, "Characterizing shortfiber-reinforced composites produced using additive manufacturing," Adv. Manuf. Polym. Compos. Sci., vol. 0340, pp. 1–11, 2017.
- [184] N. Shahrubudin, T. C. Lee, and R. Ramlan, "An overview on 3D printing technology: Technological, materials, and applications," *Procedia Manuf.*, vol. 35, pp. 1286–1296, 2019.
- [185] S. Bau, D. Rousset, R. Payet, and F. X. Keller, "Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles," *J. Occup. Environ. Hyg.*, pp. 1–14, 2019.
- [186] P. Mellin *et al.*, "Nano-sized by-products from metal 3D printing, composite manufacturing and fabric production," *J. Clean. Prod.*, vol. 139, pp. 1224– 1233, 2016.
- [187] A. Mokrane, M. Boutaous, and S. Xin, "Process of selective laser sintering of polymer powders: Modeling, simulation, and validation," *Comptes Rendus -Mec.*, vol. 346, pp. 1087–1103, 2018.
- [188] C. R. Deckard, "Method and Apparatus for Producing Parts by Selective Sintering, United States Patent and Trademark Office," 198AD.
- [189] D. L. Bourell, T. J. Watt, D. K. Leigh, and B. Fulcher, "Performance limitations in polymer laser sintering," *Phys. Proceedia*, vol. 56, no. C, pp. 147–156, 2014.
- [190] J. P. Kruth, X. Wang, T. Laoui, and L. Froyen, "Lasers and materials in selective laser sintering," *Assem. Autom.*, vol. 23, no. 4, pp. 357–371, 2003.

- [191] S. Dadbakhsh, L. Verbelen, O. Verkinderen, D. Strobbe, P. Van Puyvelde, and J. P. Kruth, "Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts," *Eur. Polym. J.*, vol. 92, no. May, pp. 250–262, 2017.
- [192] L. McKeen, "The Effects of Sterilization Methods on Plastics and Elastomers (Fourth Edition)," *Plast. Des. Libr.*, pp. 205–234, 2018.
- [193] D. Duncan, "Additive Manufacturing (or 3D Printing)," DSP Journal, vol. October, pp. 3–10, 2015.
- [194] S. Kumar and A. Czekanski, "Development of filaments using selective laser sintering waste powder," J. Clean. Prod., vol. 165, pp. 1188–1196, 2017.
- [195] H. Zarringhalam, N. Hopkinson, N. F. Kamperman, and J. J. De Vlieger, "Effects of processing on microstructure and properties of SLS Nylon 12," vol. 436, pp. 172–180, 2006.
- [196] P. Chen *et al.*, "Systematical mechanism of Polyamide-12 aging and its microstructural evolution during laser sintering," *Polym. Test.*, vol. 67, no. March, pp. 370–379, 2018.
- [197] L. Verbelen, S. Dadbakhsh, M. Van Den Eynde, J. Kruth, B. Goderis, and P. Van Puyvelde, "Characterization of polyamide powders for determination of laser sintering processability," *Eur. Polym. J.*, vol. 75, pp. 163–174, 2016.
- [198] S. A. Ljunggren *et al.*, "Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing)," *Saf. Health Work*, no. xxxx, 2019.
- [199] S. Du Preez *et al.*, "Exposures during industrial 3-D printing and post-processing tasks," 2018.
- [200] S. Bau, R. Payet, D. Rousset, and F. Keller, "Assessing exposure to aerosols emitted from a direct metal deposition additive manufacturing process Assessing exposure to aerosols emitted from a direct metal deposition additive manufacturing process," in *5th Working & Indoor Aerosol Conference*, 2018, no. April, pp. 1–2.
- [201] R. Beisser *et al.*, "Inhalation exposure to metals during additive processes (3D printing)," in *14th Rapid Technology Conference*, *Erfurst, Germany*, 20-22 *June 2017*, 2017, vol. 77, no. 11/12, pp. 487–496.
- [202] N. Afshar-Mohajer, C. Y. Wu, T. Ladun, D. A. Rajon, and Y. Huang, "Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer," *Build. Environ.*, vol. 93, no. P2, pp. 293–301, 2015.

- [203] K. Kellens, R. Mertens, D. Paraskevas, W. Dewulf, and J. R. Duflou, "Environmental Impact of Additive Manufacturing Processes: Does AM Contribute to a More Sustainable Way of Part Manufacturing?," *Procedia CIRP*, vol. 61, no. Section 3, pp. 582–587, 2017.
- [204] C. Matthiessen, S. Lucht, F. Hennig, S. Ohlwein, and H. Jakobs, "Long-term exposure to airborne particulate matter and NO 2 and prevalent and incident metabolic syndrome – Results from the Heinz Nixdorf Recall Study," vol. 116, no. 2, pp. 74–82, 2018.
- [205] M. De Almeida Monteiro Melo Ferraz et al., "Potential Health and Environmental Risks of Three-Dimensional Engineered Polymers," Environ. Sci. Technol. Lett., vol. 5, no. 2, pp. 80–85, 2018.
- [206] Y. Kim *et al.*, "Emissions of Nanoparticles and Gaseous Material from 3D Printer Operation," *Environ. Sci. Technol.*, vol. 49, no. 20, pp. 12044–12053, 2015.
- [207] M. E. Vance, V. Pegues, S. Van Montfrans, W. Leng, and L. C. Marr, "Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments," *Environ. Sci. Technol.*, vol. 51, no. 17, pp. 9516– 9523, 2017.
- [208] F. L. Chan, R. House, I. Kudla, J. C. Lipszyc, N. Rajaram, and S. M. Tarlo, "Health survey of employees regularly using 3D printers," *Occup. Med. (Chic. Ill).*, vol. 68, no. 3, pp. 211–214, 2018.
- [209] A. Dao and D. I. Bernstein, "Occupational exposure and asthma," *Ann. Allergy, Asthma Immunol.*, 2018.
- [210] R. House, N. Rajaram, and S. M. Tarlo, "Case report of asthma associated with 3D printing," *Occup. Med. (Chic. Ill).*, vol. 67, no. 8, pp. 652–654, 2017.
- [211] H. Chuang, T. Su, K. Chuang, T. Hsiao, and C. Lai, "Pulmonary exposure to metal fume particulate matter cause sleep disturbances in shipyard welders *," *Environ. Pollut.*, 2017.
- [212] Z. Zhang *et al.*, "Long-term exposure to ambient particulate matter (PM 2.5) is associated with platelet counts in adults *," *Environ. Pollut.*, vol. 240, pp. 432–439, 2018.
- [213] C. Yuangyai and H. B. Nembhard, "Design of Experiments: A Key to Innovation in Nanotechnology- Chapter 8," in *Emerging Nanotechnologies for Manufacturing*, First Edit., Elsevier Inc., 2010, pp. 207–234.

- [214] G. A. Lujan-moreno, P. R. Howard, O. G. Rojas, and D. C. Montgomery, "Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study," *Expert Syst. Appl.*, vol. 109, pp. 195–205, 2018.
- [215] G. Hanrahan and K. Lu, "Application of factorial and response surface methodology in modern experimental design and optimization," *Crit. Rev. Anal. Chem.*, vol. 36, no. 3–4, pp. 141–151, 2006.
- [216] S. Liu, Chapter 20 Design of experiment. 2020.
- [217] D. C. Montgomery, *Design and analysis of experiment*, 9th ed. Wiley, 2017.
- [218] N. N. Ali, A. Aman, H. Zainuddin, S. A. Ghani, and J. A. Razak, "Two level factorial and optimization studies of Silicon Rubber surface resistivity for high voltage insulation - Effects of raw materials and internal mixer processing parameters," *PECON 2016 - 2016 IEEE 6th Int. Conf. Power Energy, Conf. Proceeding*, pp. 295–300, 2017.
- [219] D. C. Montgomery, Design and Analysis of Experiments, 9th Edition. 2017.
- [220] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, "Response surface methodology (RSM) as a tool for optimization in analytical chemistry," *Talanta*, vol. 76, no. 5, pp. 965–977, 2008.
- [221] A. Asghar, A. A. A. Raman, and W. M. A. W. Daud, "A Comparison of Central Composite Design and Taguchi Method for Optimizing Fenton Process," *Sci. World J.*, vol. 2014, pp. 1–14, 2014.
- [222] S. J. S. Chelladurai, M. K., A. P. Ray, M. Upadhyaya, V. Narasimharaj, and G. S., "Optimization of process parameters using response surface methodology: A review," *Mater. Today Proc.*, no. xxxx, 2020.
- [223] S. K. Behera, H. Meena, S. Chakraborty, and B. C. Meikap, "Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal," *Int. J. Min. Sci. Technol.*, vol. 28, no. 4, pp. 621–629, 2018.
- [224] A. Baby and A. A. Alexander, "A Review on Various Techniques used in Predicting Pollutants," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 396, no. 1, 2018.
- [225] L. Zheng, S. Yu, and M. Yu, "Prediction of nitrogen oxides from coal combustion by using response surface methodology," *Proc. - 2012 Int. Conf. Comput. Distrib. Control Intell. Environ. Monit. CDCIEM 2012*, no. September 2015, pp. 508–511, 2012.

- [226] E. Bernalte, C. Marín Sánchez, and E. Pinilla Gil, "Determination of Mercury in indoor dust samples by ultrasonic probe microextraction and stripping voltammetry on gold nanoparticles-modified screen-printed electrodes," *Talanta*, vol. 97, pp. 187–192, 2012.
- [227] G. Khoobbakht, G. Najafi, M. Karimi, and A. Akram, "Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology," *Appl. Therm. Eng.*, vol. 99, pp. 1006–1017, 2016.
- [228] A. N. Abdalla *et al.*, "Prediction of emissions and performance of a gasoline engine running with fusel oil–gasoline blends using response surface methodology," *Fuel*, vol. 253, no. November 2018, pp. 1–14, 2019.
- [229] R. K. Kamaraj, J. G. Thankachi Raghuvaran, A. F. Panimayam, and H. L. Allasi, "Performance and exhaust emission optimization of a dual fuel engine by response surface methodology," *Energies*, vol. 11, no. 12, 2018.
- [230] I. M. Yusri, R. Mamat, W. H. Azmi, A. I. Omar, M. A. Obed, and A. I. M. Shaiful, "Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine," *Energy Convers. Manag.*, vol. 133, no. 2017, pp. 178–195, 2017.
- [231] P. Thirumal, K. S. Amirthagadeswaran, and S. Jayabal, "Optimization of IAQ characteristics of an air-conditioned car using GRA and RSM," *J. Mech. Sci. Technol.*, vol. 28, no. 5, pp. 1899–1907, 2014.
- [232] A. R. Ismail, M. R. A. Rani, B. Md. Deros, Z. K. M. Makhbul, and M. Y. Mohd Yusof, "Response Surface Method in Modelling the Environmental Factors Toward Workers' Productivity," J. Occup. Saf. Heal., vol. 9, pp. 83–90, 2012.
- [233] S. Du Preez, A. Johnson, R. F. LeBouf, S. J. L. Linde, A. B. Stefaniak, and J. Du Plessis, "Exposures during industrial 3-D printing and post-processing tasks," *Rapid Prototyp. J.*, vol. 24, no. 5, pp. 865–871, 2018.
- [234] Farsoon Technologies, "Metal & Polymer Materials for Additve Manufacturing," 2018.
- [235] Y. Deng, S. J. Cao, A. Chen, and Y. Guo, "The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction," *Build. Environ.*, vol. 104, pp. 311–319, 2016.
- [236] M. J. Foitzik, H. J. Unrau, F. Gauterin, J. Dörnhöfer, and T. Koch,

"Investigation of ultra fine particulate matter emission of rubber tires," *Wear*, vol. 394–395, no. September 2017, pp. 87–95, 2018.

- [237] A. Maragkidou *et al.*, "Science of the Total Environment Occupational health risk assessment and exposure to fl oor dust PAHs inside an educational building," *Sci. Total Environ.*, 2016.
- [238] A. B. Stefaniak *et al.*, "Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional printer," *J. Occup. Environ. Hyg.*, vol. 14, no. 7, pp. 540–550, 2017.
- [239] T. Laumer, T. Stichel, K. Nagulin, and M. Schmidt, "Optical analysis of polymer powder materials for Selective Laser Sintering," *Polym. Test.*, vol. 56, pp. 207–213, 2016.
- [240] S. A. Ghani, Z. A. Noorden, N. A. Muhamad, H. Zainuddin, M. I. H. C. Abdullah, and I. S. Chairul, "Dielectric strength improvement of natural ester insulation oil via mixed antioxidants: Taguchi approach," *Int. J. Electr. Comput. Eng.*, vol. 7, no. 2, pp. 650–658, 2017.
- [241] J. Clayton and R. Deffley, "Optimising metal powders for additive manufacturing," *Met. Powder Rep.*, vol. 69, no. 5, pp. 14–17, 2014.
- [242] (Niosh/DRDS) Clere, J. and (Niosh/DRDS) Hearl, P.E., "Particulates not otherwise regulated, total 0500 definition," *NIOSH Man. Anal. Methods, 4th Ed.*, no. 2, pp. 1–3, 1994.
- [243] NIOSH 0600, "PARTICULATES NOT OTHERWISE REGULATED, RESPIRABLE 0600 DEFINITION: aerosol collected by sampler with 4-μm median cut point CAS: None RTECS: None METHOD: 0600, Issue 3 EVALUATION: FULL Issue 1," no. 3, 1998.
- [244] D. Thompson, S. C. Chen, J. Wang, and D. Y. H. Pui, "Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites," *Ann. Occup. Hyg.*, vol. 59, no. 9, pp. 1135–1151, 2014.
- [245] L. Wallace and W. Ott, "Personal exposure to ultrafine particles," J. Expo. Sci. Environ. Epidemiol., vol. 21, no. 1, pp. 20–30, 2011.
- [246] A. A. M. Damanhuri, A. M. Leman, A. H. Abdullah, and A. Hariri, "Effect of toner coverage percentage and speed of laser printer on total volatile organic compound (TVOC)," *Chem. Eng. Trans.*, vol. 45, no. February 2016, 2015.
- [247] P. Azimi, T. Fazli, and B. Stephens, "Predicting Concentrations of Ultrafine

Particles and Volatile Organic Compounds Resulting from Desktop 3D Printer Operation and the Impact of Potential Control Strategies," *J. Ind. Ecol.*, vol. 21, pp. S107–S119, 2017.

- [248] E. L. Floyd, J. Wang, and J. L. Regens, "Fume emissions from a low-cost 3-D printer with various filaments," *J. Occup. Environ. Hyg.*, vol. 14, no. 7, pp. 523– 533, 2017.
- [249] M. Guillemot, B. Oury, and S. Melin, "Identifying thermal breakdown products of thermoplastics," J. Occup. Environ. Hyg., vol. 14, no. 7, pp. 551–561, 2017.
- [250] S. Dadbakhsh, L. Verbelen, T. Vandeputte, D. Strobbe, P. Van Puyvelde, and J. P. Kruth, "Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer," *Phys. Procedia*, vol. 83, pp. 971– 980, 2016.
- [251] K. Kellens, R. Renaldi, W. Dewulf, J. P. Kruth, and J. R. Duflou, "Environmental impact modeling of selective laser sintering processes," *Rapid Prototyp. J.*, vol. 20, no. 6, pp. 459–470, 2014.
- [252] W. World Health organization, "Hazard Prevention and Control in the Work Environment: Airborne Dust Chapter 7-Control of Dust Transmission-WHO/SDE/OEH/99.14," 1999.

APPENDIX C

LIST OF PUBLICATIONS/AWARDS

[1] **Damanhuri A.A.M**, Hariri A., Alkahari M.R., Fauadi M.H.F, Bakri S.F.Z, Indoor air concentration from selective laser sintering 3D printer using virgin polyamide nylon (PA12) powder: A pilot study, International Journal of Integrated Engineering, Vol 11, No 5, (2019), pp 140-149 (Scopus)

[2] **Damanhuri A.A.M**, Hariri A, Fauadi M.H.F, Alkahari M.R, Omar M.R, Emission of selected environmental exposure from selective laser sintering (SLS) polyamide nylon (PA12) 3D printing process, Journal of Safety, Health and Ergonomics, Vol 1, No 1, (2019), pp 1-6

[3] **Damanhuri A.A.M**, Subki A.S.A, Hariri A, Tee B.T, Fauadi M.H.F, Hussin M.S.F, Mustafa M.S.S., Comparative study of selected indoor concentration from selective laser sintering process using virgin and recycled polyamide nylon (PA12), IOP Conference Series: Earth and Environmental Science, 373, (2019) (Scopus)

[4] **Damanhuri A.A.M**, Subki A.S.A, Hariri A, Fauadi M.H.F.M, Omar M.R., Lubis A.M.H.S., Total volatile organic compound (TVOC) exposure from recycled polyamide nylon powder during selective laser sintering process, Proceedings of Mechanical Engineering Research Day 2019, pp. 10-11, August 2019 (WoS)

[5] **Damanuri A.A.M**, Hariri A, Ghani S.A, Fauadi M.H.F.M, Hussin M.S.F., Two Level Factorial Design of the Pre-Processing Activities of Polyamide Nylon 12 Powder in Selective Laser Sintering Three Dimensional Printing Process, Journal of Advance research in Dynamical & Control Systems, Vol 12, 08-Special Issue, 2020 (Scopus)

[6] **Damanhuri A.A.M**, Hariri A, Ghani S.A., Mustafa M.S.S, Herawan S.G., Paiman N.A., The Effects of Virgin and Recycled PA12 Powders in SLS Processes on Occupational Exposures, International Journal of Environement Science Development (**Scopus**) Production Process

[7] **Damanhri, A.A.M**, Hariri A., Ghani S.A., Latif K., Optimization of the Refresh Rate and Pre-Processing Paramaters for Selective Laser Sintering of PA12 Powder using Response Surface Methodology, Archieves of Environmental & Occupational Health, Taylor and Francis (WoS) IF: 1.18 (Submitted)

[8] **Damanhuri, A.A.M**, Hariri A, Nordin M, Behavior and Impact of Polyamide Nylon to the Indoor Air Quality, Recent Development in Industrial and Indoor Environment Research Studies, Book Chapter, ISBN 978-967-2916-43-7, Series 1, 2020

Conferences:

[1] 2019 Theory & Technique International Aerosol Conference and Malaysia Air Quality Annual Symposium, 7-10 August 2019, Hotel Balik Pulau, Melaka (Best Presenter Award)

[2] 6th Mechanical Engineering Research Day, August 2019, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM)

Awards:

[1] eResearch & Innovation eCRI 2020, Universiti Malaysia Kelantan (UMK), Optimization Tools of Refresh Rate to Reduce Dust Exposure of PA12 Powder Handling Process, **SILVER Medal**

[2] International Research and Innovation Symposium and Exposition RISE 2020, Universiti Tun Hussein Onn Malaysia (UTHM), An Optimization Tools of Refresh Rate Towards Dust Exposure of PA12 SLS Handling Process (OP-Refresh), Gold Medal, First Runner Up

[1] **Copyright Registered,** CRLY00026901, Optimization Tools for Refresh Rate and Handling PA12 Powders for SLS Processing (OP-Refresh)

VITA

The author was born in April 20, 1988 in Melaka. He received his primary education at SK Kem Terendak 1 and SK Ayer Hitam, Johor from 1995 to 2000. He continued his secondary school at SMK Kem Terendak, Melaka from 2001 until 2005. Then, he continues his studies in Kolej Mara Kulim Kedah for foundation studies. In 2007, he further his tertiary education in Bachelor of Engineering Technology in Air Conditioning and Industrial Refrigeration from Universiti Kuala Lumpur, Malaysia France Institute (UniKL-MFI). Upon graduation, he worked as Project Engineer in one of contractor specialized in HVAC installation and maintenance involving hospital air conditioning and ventilation system projects. In 2012, he continues his master's degree in Mechanical Engineering from Universiti Tun Hussein Onn Malaysia (UTHM) and graduated in 2014. In 2018, he pursued his doctorate course UTHM in mechanical engineering. During his doctorate studies, the author published several indexed articles and participated in innovation competition. He manages to be won Silver and Gold Medal for both competitions. The author also registered one copyright with MYIPO Malaysia for his optimized model from this study. The author worked as lecturer in Universiti Teknikal Malaysia Melaka (UTeM) since 2015, and recently active in giving training and seminar for short course specialized in HVAC subjects in various vocational training institution in Malaysia. PERPUSTAKAA

