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ABSTRACT 

Aluminium nitride (AlN) nucleation layer (NL) is a useful nitride semiconductor for 

the growth of Gallium Nitride (GaN) on silicon. Major issues related to the fabrication 

of AlN films are on its crystallographic orientations and high processing temperatures. 

In order to fabricate AlN NL at low temperatures, radio frequency (RF) magnetron 

sputtering is used in this study. The aims are to deposit homogeneous and highly 

crystalline AlN NL with (100) and (002) preferential orientations at low processing 

temperatures. In this study, the homogeneous deposited AlN with highly crystalline 

along the (100) and (002) preferential orientations were successfully controlled using 

sputtering base pressure without any external heating. This will mitigate the presence 

of oxygen that presents during the deposition process. Moreover, the sputtering 

parameters such as target-to-substrate distance, working pressure, deposition times, 

and RF power were optimized. Thus, these highly crystalline AlN along the (100) and 

(002) preferential orientations were used in the Metal-Insulator-Semiconductor (MIS) 

structure to investigate their leakage currents. For the (002) preferential orientations 

of AlN, X-ray diffraction (XRD) showed that the full width at half maximum (FWHM) 

was smaller with low dislocation density and microstrain. Cross-sectional images from 

the field-emission scanning electron microscope (FESEM) showed that its exhibited 

grass-like columnar structures, showing it had a well-aligned structure. Meanwhile, its 

electrical properties showed that the (002)-oriented AlN NL had high electrical 

resistivity due to low dielectric permittivity, high capacitance, and low dielectric 

relaxation. The (100) and (002) preferential orientations leakage currents values in the 

MIS structure were 4.1 x 10-7 A and 2.0 x 10-8 A, respectively, indicating that (002) 

preferential orientations AlN NL displayed the lowest leakage current significantly. 

The effects of oxygen impurity in the layers played a crucial role in the growth of the 

(002) preferential orientations and acted as defects in the MIS structure, which 

increased the leakage current.
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ABSTRAK 

Lapisan penukleusan Aluminium Nitrida (AlN) merupakan semikonduktor nitrida 

yang digunakan untuk pertumbuhan Galium Nitrida di atas silikon. Salah satu isu 

utama yang berkait dengan AlN adalah keutamaan orientasi dan suhu proses yang 

tinggi. Untuk mengendap lapisan penukleusan AlN pada suhu yang rendah, percikan 

magnetron reaktif (RF) digunakan dalam kajian ini. Kajian ini bertujuan untuk 

mengendap lapisan penukleusan yang homogen dan tersangat berhablur berkeutamaan 

kepada orientasi (100) dan (002) pada suhu proses yang rendah. Dalam kajian ini, 

lapisan penukleusan yang homogen dan tersangat berhablur berkeutamaan kepada 

orientasi (100) dan (002) telah berjaya dikawal menggunakan tekanan dasar percikan 

tanpa pemanasan luar. Hal ini akan mengurangkan kehadiran oksigen yang hadir 

ketika proses pengendapan. Tambahan pula, parameter percikan seperti jarak sasaran 

ke substrat, tekanan kerja, masa pengendapan and kuasa RF telah dioptimumkan. Oleh 

itu, AlN yang tersangat berhablur berkeutamaan kepada orientasi (100) dan (002) 

digunakan di struktur logam-penebat-semikonduktor (MIS) untuk menyiasat nilai arus 

bocor. Untuk lapisan penukleusan yang berkeutamaan kepada orientasi (002), belauan 

sinar-X (XRD) menunjukkan nilai lebar lengkap separa maksimum yang kecil dengan 

perkehelan ketumpatan dan mikroterikan yang rendah. Sementara itu, pemerhatian 

bayangan keratan rentas daripada mikroskopi electron imbasan pancaran medan 

(FESEM) mendapati ia mempamerkan garis tegak turus yang mengandungi struktur 

seakan rumput menunujukkan ia mempunyai penjajaran yang lurus. Sementara itu, 

sifat elektrik AlN yang berkeutamaan kepada orientasi (002) menunjukkan 

kerintangan elektrik yang tinggi. Nilai arus bocor pada keutamaan orientasi (100) and 

(002) di dalam struktur MIS adalah masing masing menjadi 4.1 x 10-7 A and 2.0 x 10-

8 A. Lapisan penukleusan AlN yang sangat berhablur pada keutamaan orientasi (002) 

menunjukkan arus bocor yang terendah. Kesan bendasing oksigen di dalam lapisan 

penukluesan memainkan peranan penting dalam pertumbuhan keutamaan orientasi 

(002).  
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CHAPTER 1 

INTRODUCTION 

1.1 Background and motivation 

Aluminium nitride (AlN) is a semiconductor compound from group III and group V 

elements of the periodic table [1]. It is commonly known as group III-nitrides. It has 

two crystal structures, namely wurtzite (hexagonal) and zincblende (cubic) [2][3]. AlN 

is commonly utilised in hexagonal wurtzite structures because it exhibits direct band-

gap energy for all conventional nitrides in the wurtzite phase [4]. The zincblende 

(cubic) form of AlN is rarely found due to its metastable state [5], [6]. AlN has the 

largest direct band-gap (~6.2 eV) among materials in the III-nitride semiconductor 

family [7]–[10]. Due to having the largest band-gap in the nitride semiconductor 

family, AlN is one of the favourable materials to be used in solid-state ultraviolet light 

sources in the form of light-emitting diode (LED) and laser diodes [11]–[15]. AlN has 

been highlighted as a sensing material due to its piezoelectric and piezoresistive 

properties [16]–[19]. In addition, AlN has good dielectric properties, high thermal 

conductivity, and good chemical stability [5], [20]–[24]. AlN is also used in power 

electronics applications, such as high electron mobility transistor (HEMT) [25]–[27].  

In addition, AlN deposition and processing are fully compatible with complementary 

metal-oxide-semiconductor (CMOS) and micro-electro-mechanical system (MEMS) 

processes [28]–[30][31]. 

Crystallographic orientation plays an important role in determining the 

properties of AlN nucleation layers [32]–[34]. The ideal AlN nucleation layers for 

specific applications should be single crystals. However, properly oriented 

polycrystalline layers are usually employed since these can offer high performance and 
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are easier to manufacture. Therefore, the control of crystallographic orientation is key 

to optimise the performance of AlN nucleation layers. Commonly, the preferred 

orientations of (100) and (002) AlN are the most reported planes in applications [35], 

[36]. AlN with different crystallographic orientations have been reported in various 

applications, such as surface acoustic wave (SAW) devices, bulk acoustic wave 

(BAW) devices, light-emitting diodes, and nucleation layer for the growth of gallium 

nitride (GaN) [37]–[39]. AlN uses are becoming more widely attractive, as there is 

great interest in GaN-on-silicon technology [40], [41]. This technology has attracted 

much attention as an alternative to reduce cost. Si substrates are widely used in the 

semiconductor industry. The use of Si substrates offers many advantages, including 

high fabrication flexibility [42]. One of the problems that arise with silicon substrates 

is the lattice constant and thermal expansion coefficient mismatch between GaN and 

Si [43], [44]. This mismatch typically leads to deteriorating the GaN layers properties 

and the formation of cracks. Hence, low-temperature AlN, which act as nucleation 

centres, has been employed [45]. A comparative study by Chen et al. showed that 

sputtered AlN produced lower threading dislocations in GaN than the AlN grown by 

the conventional metal-organic chemical vapour deposition (MOCVD) [46]. Yen et 

al. also showed that GaN-based LED with sputtered AlN improved the output power 

of the LED [47].  A similar trend was also observed by Bessolov et al. when employing 

sputtered AlN as the nucleation layer [48]. 

 With the strong interest in AlN, AlN nucleation layers have been deposited 

using several techniques, such as pulsed laser deposition (PLD) [49], molecular beam 

epitaxy (MBE) [50], metal-organic chemical vapour deposition (MOCVD) [51], and 

also sputtering plasma [52]. AlN nucleation layer also can be deposited on various 

substrates, such as sapphire, silicon, and silicon carbide substrates [53], [54]. 

Conventionally, MOCVD and MBE are the most frequently utilised techniques for III-

nitrides growth as they can readily produce multilayer structures [55]–[57]. However, 

these techniques require a high processing temperature. A high deposition temperature 

has the disadvantage of a large amount of thermal strain in the layers [58]. Therefore, 

the deposition of AlN nucleation layer at low processing temperatures has become 

increasingly important and valuable. In addition, a lower deposition temperature is 

compatible with the back-end-of-line (BEOL) processing. Recently, the use of 

sputtering on the growth of III-nitrides layers has been explored by many researchers 

because of its relatively lower deposition temperature and versatility in terms of 
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