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ABSTRACT 

 

 

 

 

A non-linear activation function is one of the key contributing factors to the success 

of Deep Learning (DL). Since the revival of DL takes place in 2012, Rectified Linear 

Unit (ReLU) has been regarded as a de facto standard for many DL models by the 

community. Despite its popularity, however, ReLU contains several shortcomings that 

could result in inefficient learning of the DL models. These shortcomings are: 1) the 

inherent negative cancellation property in ReLU tends to remove all negative inputs 

and causes massive information lost to the network; 2) the derivative of ReLU 

potentially causes the occurrence of dead neurons problem to the networks; 3) the 

mean activation generated by ReLU is highly positive and lead to bias shift effect in 

the network layers; 4) the inherent multilinear structure of ReLU restricts the non-

linear capability of the networks; 5) the predefined nature of ReLU limits the flexibility 

of the networks. To address these shortcomings, this study proposed a new variant of 

activation function based on the Semi-sigmoidal (Sig) approach. Based on this 

approach, three variants of activation functions are introduced, namely, Shifted Semi-

sigmoidal (SSig), Adaptive Shifted Semi-sigmoidal (ASSig), and Bi-directional 

Adaptive Shifted Semi-sigmoidal (BiASSig). The proposed activation functions were 

tested against the ReLU (baseline) and state-of-the-art methods using eight Deep 

Neural Networks (DNNs) on seven benchmark image datasets. Further, Adaptive 

Moment Estimation (ADAM) and Stochastic Gradient Descent (SGD) were selected 

as optimizers to train the DNNs. The baseline comparison score and mean rank were 

used to consolidate and analyse the experimental results effectively. The experimental 

results in terms of the overall baseline comparison score shown that SSig, ASSig, and 

BiASSig obtained the score of 79, 87, and 86 out of 112, respectively, which achieving 

outstanding performance than ReLU in more than 70% of the cases. In terms of overall 

mean rank (OMR), ReLU ranked at tenth (10th), whereas SSig, ASSig, and BiASSig 

ranked at fifth (5th), first (1st), and second (2nd), showing remarkable performance than 

ReLU and other comparing methods. 
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ABSTRAK 

 

 

 

 

Fungsi pengaktifan tidak linear merupakan salah satu faktor penyumbang utama 

kepada kejayaan Pembelajaran Mendalam (PM). Sejak berlakunya kebangkitan PM 

pada tahun 2012, komuniti PM telah menganggap Rectified Linear Unit (ReLU) 

sebagai standard de facto untuk model-model PM. Namun begitu, ReLU mempunyai 

beberapa kelemahan yang boleh mengakibatkan ketidakcekapan pembelajaran model 

PM. Kelemahan-kelemahannya adalah: 1) sifat pembatalan negatif dalam ReLU 

membuang kesemua input negatif dan menyebabkan kehilangan maklumat yang 

berlebihan; 2) terbitan ReLU menyebabkan masalah neuron mati dalam rangkaian; 3) 

pengaktifan min yang dihasil oleh ReLU sangat positif dan membawa kesan peralihan 

berat sebelah kepada lapisan-lapisan rangkaian; 4) kewujudan struktur multilinear 

ReLU menyekat keupayaan tidak linear; 5) sifat ReLU yang tetap menyekat fleksibiliti 

rangkaian. Untuk mengatasinya, kajian ini mencadangkan varian fungsi pengaktifan 

baharu berdasarkan pendekatan Semi-sigmoidal (Sig). Berdasarkan pendekatan ini, 

tiga varian fungsi pengaktifan diperkenalkan, iaitu, Shifted Semi-sigmoidal (SSig), 

Adaptive Shifted Semi-sigmoidal (ASSig), dan Bi-directional Adaptive Shifted Semi-

sigmoidal (BiASSig). Fungsi pengaktifan yang dicadangkan diuji terhadap ReLU 

(garis dasar) dan kaedah state-of-the-art dengan menggunakan lapan Rangkaian 

Neural Dalam (RND) pada tujuh data gambar penanda aras. Selanjutnya, Adaptive 

Moment Estimation (ADAM) dan Stochastic Gradient Descent (SGD) dipilih sebagai 

pengoptimum untuk melatih RND. Skor perbandingan dasar dan kedudukan min 

digunakan untuk menyatukan dan menganalisis hasil eksperimen dengan berkesan. 

Hasil eksperimen dari segi keseluruhan skor perbandingan dasar menunjukkan bahawa 

SSig, ASSig, dan BiASSig masing-masing mencapai skor 79, 87 dan 86 daripada 112, 

mencapai prestasi cemerlang melebihi 70% kes berbanding ReLU. Dari segi 

kedudukan min keseluruhan, ReLU berada di kedudukan kesepuluh, sedangkan SSig, 

ASSig, dan BiASSig berada di kedudukan kelima, pertama, dan kedua, menunjukkan 

prestasi yang luar biasa daripada ReLU dan kaedah-kaedah lain yang dibandingkan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

In recent years, Deep Learning (DL) has brought a significant advancement to the 

Artificial Intelligence (AI) domain. Such revolutionary change is mainly attributed to 

the improvements made in these four aspects: high-performance graphic processing 

unit (GPU), accessible large-scale datasets, effective learning algorithms, and 

powerful Neural Network (NN) structures (Jiang et al., 2018; Li et al., 2018). Due to 

these advancements, a remarkable success of DL is achieved in diverse real-world 

applications, including autonomous driving (Grigorescu et al., 2020), image 

recognition (Xie et al., 2020), medical diagnostics (Ma et al., 2020), speech 

recognition (Wang et al., 2020), and recommender system (Bobadilla et al., 2020).  

DL is also known as multi-level Representation Learning (RL), where raw 

data features are taken directly as input and transformed into higher levels of 

abstraction to make sense of the machine when performing complex tasks (Nwankpa 

et al., 2018). Meanwhile, RL belongs to Machine Learning (ML), whereas ML is one 

of the AI classes (Goodfellow et al., 2016). Figure 1.1 shows the relationship 

between AI, ML, RL, and DL.  

DL models vary in terms of architecture and size, depending on the type or 

domain of application. Some examples of DL models are as follows: (a) 

Convolutional Neural Networks (CNNs), also known as ConvNets, consist of 

multiple layers and are specifically designed for analyzing visual imagery (LeCun et 

al., 2010); (b) Recurrent Neural Networks (RNNs) are commonly used for Natural 

Language Processing (NLP) (Graves et al., 2013); (c) Generative Adversarial 

Networks (GANs) are invented to deal with modern unsupervised learning problems 
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