
 

 

EXPERIMENTAL AND SIMULATION APPROACHES FOR IMPROVING 

INTEGRATED CIRCUIT IMPEDANCE CHARACTERISATION UNDER 

ELECTROSTATIC DISCHARGE CONDITION  

 

 

 

 

DING LIK SUONG 

 

 

 

 

A thesis submitted in 

fulfillment of the requirement for the award of the 

Doctor of Philosophy in Electrical Engineering 

Faculty of Electrical and Electronic Engineering 

Universiti Tun Hussein Onn Malaysia 

SEPTEMBER 2021

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iii 

To my beloved parents, thank you. 

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iv 

 

ACKNOWLEDGEMENT 

I would like to express my deepest appreciation to my supervisor, Dr. Xavier Ngu for 

his invaluable role, guidance, and endless support given throughout the duration of this 

research.  

I would also like to take this opportunity to thank the director of RF Station 

Sdn. Bhd., Dr. Linus Lau Ngie Ung for sponsoring my study, as well as providing 

technical advice and sharing his experiences.  

My greatest gratitude to my parents, Ding Bee Sin and Wong Yuen Fun, my 

sister, Ding Lik Yi, and my wife, Lee Jia Yi, for their unlimited support, understanding, 

patience, and love, that kept me going through the study.  

Lastly, thanks to all my friends who have supported me in different ways.  

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



v 

 

ABSTRACT 

This study was conducted to produce an accurate macro model of an Integrated Circuit 

(IC) by means of experiment, to be implemented for any application, both in time 

domain and frequency domain analysis. A probe is designed and optimised to measure 

a multipin IC with different pin distance. The multipin IC characteristic impedance 

was experimentally measured using two probes, where the measured combinations of 

S-Parameter are combined using a self-written software to produce a complete S-

Parameter representation of the IC. The S-Parameter file is not suitable for time 

domain analysis, because vector fitting is required for each simulation. The S-

Parameter file is then converted to macro model with controlled accuracy level. The 

macro model is also ensured its passivity and causality by using commercial macro 

modelling software (IdEM). The macro model has shown good correlation between 

time domain and frequency domain analysis. The macro model was then exported as 

a SPICE model, and was implemented on an Advanced Driver Assistance Systems 

(ADAS) printed circuit board (PCB). Co-simulation was then performed on the PCB 

and the results are compared with the measurement results of the fabricated PCB. The 

SPICE model used in this simulation has shown good resonant frequency correlation 

between 91 % to 99 %. Finally, the PCB along with the SPICE model was simulated 

with an Electrostatic Discharge (ESD) gun to observe the current distribution. This 

research has produced a practical and accurate method, to accurately model an IC as a 

SPICE model. The SPICE model will help many engineers to improve the accuracy of 

the virtual prototyping, hence reducing the product’s time to market. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vi 

 

ABSTRAK 

Kajian ini dilakukan untuk menghasilkan model makro litar bersepadu (IC) yang tepat 

secara ujikaji. Model makro ini boleh digunakan pada mana-mana aplikasi, baik dalam 

analisis domain masa ataupun analisis domain frekuensi. Sebuah pengujian frekuensi 

radio (RF) telah dibina dan dioptimumkan untuk mengukur IC berbilang pin dengan 

jarak pin yang berbeza. Dua pengujian RF digunakan untuk mengukur galangan IC 

berbilang pin, di mana kombinasi S-Parameter yang diukur digabungkan mengguna 

perisian tersendiri untuk menghasilkan representasi S-Parameter IC yang lengkap. Fail 

S-Parameter tidak sesuai untuk analisis domain masa, kerana pemasangan vektor 

diperlukan untuk setiap simulasi. Fail S-Parameter kemudian ditukar kepada model 

makro dengan tahap ketepatan yang terkawal. Model makro ini juga dipastikan pasif 

dan kausalitas dengan menggunakan perisian pemodelan makro komersial (IdEM). 

Model makro ini menunjukkan korelasi yang baik antara analisis domain masa dan 

domain frekuensi. Model makro kemudian dieksport sebagai model SPICE, dan 

dilaksanakan pada papan litar bercetak (PCB) Sistem Bantuan Pemandu Termaju 

(ADAS). Kemudian, simulasi bersama dilakukan pada PCB dan hasilnya 

dibandingkan dengan hasil pengukuran PCB. Model SPICE yang digunakan dalam 

simulasi ini telah menunjukkan korelasi resonan yang baik antara 91% hingga 99%. 

Akhirnya, PCB bersama model SPICE disimulasikan dengan penjana elektrostatik 

voltan tinggi untuk memerhatikan pengedaran arus elektrik. Kesimpulannya, 

penyelidikan ini menghasilkan kaedah yang praktikal dan tepat untuk pemodelan IC 

sebagai model SPICE. Model SPICE ini boleh membantu banyak jurutera 

meningkatkan ketepatan prototaip, serta mengurangkan masa pemasaran produk. 
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CHAPTER 1 

1 INTRODUCTION 

 Background of the study 

Currently, private companies and government are pushing for cleaner transportation 

in terms of low carbon emission or even zero emission. Hence more companies are 

introducing electric vehicles (EV) in support of the move. There are various 

combinations of electric vehicles, namely Plug-in Hybrid Electric Vehicle (PHEV), 

Plug-in Electric Vehicle (PEV), and Hybrid Electric Vehicle (HEV). Studies have 

shown that electric vehicles are able to reduce the emission of greenhouse gases from 

the fossil fuel combustion engine. However, better control of the power source is still 

needed to fully benefits from the reduction of the greenhouse gas emission [1]. There 

will be no actual reduction of the emission if the power source is generated from 

burning fossil fuel instead of generating electricity from renewable energy sources 

such as wind, sunlight, geothermal, tides and etc. Therefore it is undeniable that the 

future vehicle will be mostly powered by electric powertrain.    

High power electronics driving the powertrain, coupled with high frequency 

switching devices often produce Electromagnetic Compatibility (EMC) problems and 

a lot of research have been done to measure the electromagnetic interference (EMI) 

from the EV correctly [2], in order to reduce the EMI emission from the electronics 

driving the powertrain.    

Other than the electronics driving the powertrain, the Advanced Driver 

Assistance Systems (ADAS) is also introduced into modern cars. ADAS is equipped 

with different sensors including radars and cameras to capture surrounding information 
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of static and dynamic obstacles [3]. Automotive industry utilizes ADAS for most of 

the safety precaution systems, such as Advanced Emergency Brake System (AEBS), 

Lane Departure Warning (LDW), Blind Spot Monitoring System (BSMS) and many 

more. More advanced vehicles are now using ADAS for their autonomous driving 

system. Most of the electronics system in a modern car can be sighted in Figure 1.1. 

 

Figure 1.1: Electronics system in a car [4] 

ADAS has to be extremely reliable because the safety of the passengers depend 

heavily on the information processed by ADAS. Some of the ADAS systems are 

shown in Figure 1.2 where car manufacturers have implemented ADAS to better 

protect the passenger and to stay competitive in the market. The real-time information 

collected from the various sensors are processed on a reliable and fast processor to be 

useful for the ADAS. One of the commonly used sensor for AEBS is a camera sensor. 

Camera sensors capture and deliver the data, through cables and connectors to the 

ADAS’s Electronic Control Unit (ECU) to be processed by the System On Chip (SOC). 

The Digital Signal Processor (DSP) is running up to 750 MHz [5] to classify the 

detected objects into pedestrian, traffic light, vehicles, and other structures. If the 

ADAS is not functioning as intended, it will not be able to correctly classify objects 

and hence unable to provide essential information, warnings or automatic intervention 

to prevent or reduce the severity of the disastrous circumstances.  
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Figure 1.2: ADAS in modern car [6] 

Strong attention must be paid to ensure reliable operation of the ADAS. ADAS 

comprises of complex electronics system where EMC issues must be addressed, 

among which is the electrostatic discharge (ESD). There are hundreds of 

microcontrollers in a modern vehicle to monitor every essential operations in the 

vehicle, such as ignition, braking, acceleration, and power steering. Therefore it is very 

important to acknowledge that with more electric cars, ESD issue should not be taken 

lightly. A human body can charge up to 3 kV during exiting and entering the car by 

tribocharging and this can damage any of the microcontroller by either touching it 

directly or indirectly [7].  

ESD which has similarity to that of a lightning, but at a much smaller scale is 

often performed in Electromagnetic Compatibility (EMC) testing. However, attention 

to ESD protection is currently not sufficient because of common misconception that it 

is unlikely to happen and that most electronics are enclosed inside a metal case which 

can only offer protection to ESD to some extent. It is also not commercially possible 

to provide ESD protection measures to every components that are accessible by users, 

because these ESD protection measures will increase the cost. Current from ESD can 

penetrate through thin insulating layers and the intense magnetic field resulted from 

the ESD arc has a frequency range from 1 MHz to 1000 MHz [8]. These fields may 
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damage components such as the Metal Oxide Silicon Field Effect Transistor 

(MOSFET) and Complementary Metal Oxide Semiconductor (CMOS) devices.  

In today's fast development cycle, board layout changes and ESD protections 

can add cost to the product and may delay its development schedule [9]. Besides, most 

of the ESD failure can only be detected at the system level, where mitigation 

techniques are often impossible. The signal buses such as Controller Area Network 

(CAN) Bus and Local Interconnect Network (LIN) Bus, are also another important 

design consideration because shielding of every cables would add additional cost to 

the vehicle resulting a less competitive price. 

 Problem Statement 

Recently, the automotive industry has transformed tremendously from mechanical 

centric to electronics centric. More electronics have been introduced into the car, such 

as sensors and systems introduced to the drivetrain to ensure comfortable ride handling, 

and also system to ensure passenger safety. All the electronics has to be controlled by 

micro-controller and micro-processor with high speed interface and communication 

link. There are also multiple devices for high speed connectivity such as Bluetooth, 

Wi-Fi, GPS, and also the upcoming vehicle-to-everything (V2X) application [8-9].  

Besides, in order to improve the safety and comfort of the passenger, modern 

car has also included many safety systems, such as the previously mentioned AEBS, 

BSMS and etc. These systems such as ADAS is responsible as the safety precaution 

system. Moreover, to improve passenger’s ride comfort and operation easiness, many 

other systems were included as well, such as active damper system, adaptive cruise 

control, noise cancelling audio system and etc. [12]. Individual systems are controlled 

by independent ECUs which are connected by buses to provide central information at 

the dash board. In summary, there are hundreds of these ECUs within a car working 

together at the same time sending huge amount of data across very long cables.  

Due to the complex system within the car coupled with high speed signals, as 

well as the digitization of most of the controllers and sensors, EMC issues are 

inevitable [13]. Many research has been done on the EMC of a car, from infotainment 

system, to circuit board level, to cabling system [14-15]. Each of the research poses 

different challenge, as the complexity will greatly increase when more components of 
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