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ABSTRACT 

Corrosion in reinforcing steel is an important mechanism that reduces the service life 

of reinforced concrete (RC) structures exposed to the marine environment. It is 

essential to produce an advanced method that assists in making reliable predictions for 

the service life of RC structures to assist cost-effectiveness in life span of asset 

management. This thesis aims to develop a probabilistic-based model to predict the 

probability of damage in RC structures due to chloride-induced concrete cover 

cracking. The probabilistic model developed in this thesis considers modifying the 

existing crack propagation model previously developed by Mullard and Stewart 

(2011). This research improved the existing crack propagation model by conducting 

two series of accelerated corrosion tests based on bidirectional (two-way) RC slab 

specimens.  The modified crack propagation model is proposed by considering the 

effects of reinforcement confinement and spacing of reinforcing bars. The key 

variables in the crack propagation model are spatial random variables. Partly due to 

the variability in the quality of workmanship, environmental and material. One of the 

required statistical parameter for spatial variables include the scale of fluctuation. 

Since the data for the scale of fluctuation is scarce, the second major finding from this 

study is to propose a new value of the scale of fluctuation for concrete compressive 

strength using the Curve fitting method and the Kriging method. Finally, the modified 

crack propagation model for predicting the crack propagation time was then 

developed, then the most reliable value for the scale of fluctuation of concrete 

compressive strength was determined. The modified crack propagation model and the 

new scale of fluctuation of concrete compressive strength are used to predict the 

service life of RC structures due to chloride-induced cracking. By modelling spatial 

variability and incorporation with the Monte Carlo simulation method, the probability 

of corrosion damage can be measured at any time during the service life of RC 

structures.   
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ABSTRAK 

Proses pengaratan yang berlaku terhadap besi tetulang di dalam struktur konkrit 

bertetulang (RC) adalah mekanisme penting yang dapat mengurangkan hayat 

perkhidmatan struktur konkrit bertetulang apabila terdedah kepada persekitaran laut. 

Adalah penting untuk menghasilkan kaedah yang terkini untuk membantu membuat 

ramalan yang boleh dipercayai untuk mengetahui jangka hayat perkhidmatan sesebuah 

struktur RC untuk mencapai keberkesanan kos dalam pengurusan aset sepanjang 

hayat. Kajian ini dijalankan untuk memperbaiki model penyebaran retak yang sedia 

ada dengan menjalankan ujian kakisan yang dipercepatkan berdasarkan spesimen ‘slab 

RC’ dua hala. Pemboleh ubah dalam model penyebaran retak ialah pemboleh ubah 

rawak ‘spatial’. Ini disebabkan oleh variasi kualiti mutu kerja, alam sekitar dan 

material. Salah satu maklumat statistik yang diperlukan untuk pembolehubah ‘spatial’ 

ialah skala turun naik. Oleh kerana data untuk menentukan skala turun naik adalah 

terhad, kajian ini mencadangkan nilai baru skala turun naik untuk kekuatan mampatan 

konkrit dengan menggunakan kaedah ‘Curve Fitting’ dan kaedah ‘Kriging’. Model 

penyebaran retak yang diubah suai untuk meramalkan masa penyebaran retak 

berdasarkan ujian kakisan kemudian dibangunkan dan nilai yang sesuai untuk skala 

turun naik kekuatan mampatan konkrit dapat ditentukan. Persamaan diubahsuai untuk 

model penyebaran retak dan skala baru turun naik kekuatan mampatan konkrit 

digunakan untuk meramalkan hayat perkhidmatan struktur RC. Kajian ini tertakluk 

kepada retak yang disebabkan oleh serangan ion klorida. Dengan memodelkan 

kebolehubahan ‘spatial’ serta menggabungkan kaedah simulasi ‘Monte Carlo’, 

kemungkinan dan sejauh mana kerosakan kakisan boleh diukur pada bila-bila masa di 

sepanjang hayat perkhidmatan sesebuah struktur konkrit bertetulang. 
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(mm) 

Z - a vector of uncorrelated standard random variables 

α - empirical constant for time variant corrosion rate 

αa - volumetric expansion ratio of  magnetite 

αb - volumetric expansion ratio of goethite 

αc - volumetric expansion ratio of lepidocorcite 

αr - volumetric expansion ratio of rust 

β - empirical constant for time-variant corrosion rate 
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γicorr    - repair efficiency factor for corrosion rate (%) 

Δ - discretised element size (m) 

ΔPf,i   - probability that extent of damage exceeds the repair threshold 

between inspections 

Δt - inspection interval (years) 

ΔTi - repair efficiency factor for corrosion initiation (years) 

θ - scale of fluctuation of random field (m) 

μN - non stationary mean of a random field for concrete compressive 

strength in a RC column (MPa) 

μ - stationary mean of a random field for concrete compressive 

strength in a RC column (MPa) 

ρ(τ) - correlation function for a random field 

ρa - density of aggregate (kg/m3) 

ρc - density of cement (kg/m3) 

ρr - density of rust (kg/m3) 

σ - standard deviation 

τx - distance, in the x-direction, between the centroid of correlated 

elements in a random field 

τy - distance, in the y-direction, between the centroid of correlated 

elements in a random field 

τz - distance, in the z-direction, between the centroid of correlated 

elements in a random field   

νc - Poisson’s ratio of concrete 

φcr    - concrete creep coefficient 

ψcp - cover cracking parameter 
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