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ABSTRACT

The mammography image eccentric area is the breast density percentage
measurement. The technical challenge of quantification in radiology leads to
misinterpretation in screening. Data feedback from society, institutional, and industry
shows that quantification and segmentation frameworks have rapidly become the
primary methodologies for structuring and interpreting mammogram digital images.
Segmentation clustering algorithms have setbacks on overlapping clusters, proportion,
and multidimensional scaling to map and leverage the data. In combination,
mammogram quantification creates a long-standing focus area. The algorithm
proposed must reduce complexity and target data points distributed in iterative, and
boost cluster centroid merged into a single updating process to evade the large storage
requirement. The mammogram database's initial test segment is critical for evaluating
performance and determining the Area Under the Curve (AUC) to alias with medical
policy. In addition, a new image clustering algorithm anticipates the need for large-
scale serial and parallel processing. There is no solution on the market, and it is
necessary to implement communication protocols between devices. Exploiting and
targeting utilization hardware tasks will further extend the prospect of improvement in
the cluster. Benchmarking their resources and performance is required. Finally, the
medical imperatives cluster was objectively validated using qualitative and
quantitative inspection. The proposed method should overcome the technical

challenges that radiologists face.
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ABSTRAK

Kawasan eksentrik imej mamografi ialah ukuran peratusan ketumpatan payudara.
Cabaran teknikal kuantifikasi dalam radiologi membawa kepada salah tafsir dalam
saringan. Maklum balas data daripada komuniti, institusi dan industri menunjukkan
bahawa rangka kerja kuantifikasi dan segmentasi telah menjadi kaedah utama untuk
membina dan mentafsir mamogram digital. Segmen kluster algoritma mempunyai
kemunduran dalam kluster bertindih, perkadaran dan penskalaan berbilang dimensi
untuk memetakan dan memanfaatkan data. Digabungkan, kuantifikasi mammogram
menciptaan kawasan tumpuan fokus yang berterusan. Algoritma yang dicadangkan
mesti mengurangkan kerumitan dan pengedaran berulang titik data sasaran, dan
menambah baik kluster pusat pengelompokan ke dalam proses kemas kini untuk
mengelakkan keperluan storan yang besar. Segmen ujian awal pangkalan data
mamografi adalah penting untuk menilai prestasi dan menentukan kawasan di bawah
lengkung (AUC) mengikut dasar perubatan. Di samping itu, algoritma kluster imej
baharu menjangkakan keperluan untuk pemprosesan bersiri dan selari berskala besar.
Tiada penyelesaian di pasaran dan adalah perlu untuk melaksanakan protokol
komunikasi antara peranti. Mengeksploitasi dan meletakkan penempatan tugas
perkakasan akan mengembangkan lagi prospek penambahbaikan kluster. Sumber dan
prestasinya perlu ditanda aras. Akhir sekali, pemeriksaan kualitatif dan kuantitatif
digunakan untuk mengesahkan kluster imperatif perubatan secara objektif. Kaedah
yang dicadangkan perlu mengatasi cabaran teknikal yang dihadapi oleh pakar

radiologi.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Medical imaging is an essential tool in modern medicine, but it is also one of
the most challenging fields to master, with virtually limitless potential. Computer-
Aided Diagnosis (CAD) is widely used in mammography, but advances in
segmentation and clustering have improved the accuracy of predictions (Qi et al.,
2020). Advances in mammography equipment are always important when it comes to
medical imaging requirements. According to Anton et al. (2021), mammography is a
time-consuming procedure that may require up to eight (8) sessions. Neelam Siddiqui
stated that procedure on the symptoms and treatment plan of breast cancer is essential
for future generations. Meanwhile, the breasts are submerged in water or gel,
bypassing breast pressure, which makes routine mammograms uncomfortable and
even difficult for some women (Dhamija & Khandelwal, 2022; Atiq & Buzdar, 2021;
Dzidzornu et al., 2021). Multiple CAD readers support the sensitivity of calcifications
in their performance, rate of cancer detection rate, and stage of diagnosis, as well as
emerging technologies in this lateral study, bringing out the importance of identifying
micro-calcification (Azam et al., 2021; Hamed, ef al., 2021). Breast cancer research
by Wang et al. (2021) and Carter et al. (2020) shows that with the right information,
the speed and effectiveness of results are expected to improve over time, as the right
information ensures innovation.

Multiple CAD readers support the sensitivity of calcification in its
performance, increase cancer detection rate and stage of diagnosis, as well as the new
technique in this cross-sectional study that highlights the importance of identifying

micro-calcifications. Mammography requires great care in real-time image acquisition



and evaluation. However, most computerized mammography image applications
typically manage large amounts of information. Norsa'adah et al. (2021) revealed an
interesting reality about this problem. This is consistent with data obtained from the
University of Malaya Medical Centre, a mid-sized rehabilitation facility with about
1,050 beds and screening about 30,000 patients annually. For each case, the screener
provided approximately 110 megabytes of information in a digitized simple image
environment and approximately 25 megabytes of data for direct computerized events.
This means that the radiographic measure created per year is 4.05 TB, or
approximately 11 GB per day. Screening is complete within 45 minutes. The
radiologist then interpreted it within seven (7) to ten (10) days of work.

To further highlight the themes and challenges in the healthcare sector in 2020,
there were more than 29,530 cancer deaths in Malaysia in 2020, most of which were
due to breast cancer. According to a poll released by the Global Cancer Observatory,
the number of new cases (men, women, and children) in Malaysia in 2020 showed that
there were 48,639 cases of cancer in Malaysia, with breast cancer accounting for
17.3% (8,418 cases), as shown in Figure 1.1. Polls show that breast cancer ranks first
among 36 specific cancer types and all cancers (CANCER TODAY, 2021). This
hypothesis reveals that they impartially investigate, mediate and assist when all routine
avenues have been exhausting. Genuine attention to this matter is critical for reducing
the risk of death from breast cancer. Then, there is the implication of how the most

effective countermeasures are developed and investigated.

® Breast

= Lung
Colon

= Rectum

= Nasopharynx

Liver
\ m Prostate
= Non-Hodgkin lymphoma
4%

m Leukaemia

0,
4% >% = Other

Figure 1.1: The number of new cases in Malaysia 2020, both sexes, all ages
(CANCER TODAY, 2021).
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Figure 1.2: Breast cancer Statistics (Ghee et al., 2014, CANCER TODAY, 2021).

According to the annual statistics from the Global Cancer Observatory, the risk
of dying from cancer in Malaysia has increased over the past 28 years, as shown in
Figure 1.2. In addition, about 26% of breast cancer patients are under the age of 45,
which is an alarmingly young age for such a disease (CANCER TODAY, 2021).
Nevertheless, not an explicit age or specific frequency, the population within its
control is impacted by the availability of interpreters in their medical facilities. The
younger generation in urban areas makes use of this facility, whereas the elderly in
rural areas prefer traditional discourse. About 30% to 40% of advanced patients have
tiny tumours, but this does not mean a substantial reduction in size (CANCER
TODAY, 2021).

Quantitative constraints clearly differentiate benign and malignant tumors
based on radiological data. Radiologists use digital mammography and CAD support
to discover and scan irregular density ranges. However, due to limitations in
processing power and supervised learning, most CAD fails in tiny breast tissue in the
irregular density range, especially at early stages (Batchu et al., 2021). This digital
medical image preparation (shown in Table 1.1) covers the major factors (such as
super-resolution, filtering, sensitivity, transition, compression, parallelism,
architecture, precision data, and deep learning) in the varying composition of density
mapping results. This major factor comes from the review by Hassan et al. (2022) and
Mohammed et al. (2021), on how to improve CAD using significant developments in

machine learning and image processing techniques. From here, this study selects the



best results from an improved technical perspective based on the preferences of

society, leading industry, and academia.

Table 1.1: Major factor in digital medical image preparation.

1. Boudraa et al., 2020 The super-resolution reconstruction improves distinguishing
feature extraction but results in a large number of observed
classes.

2. de Santana ef al., 2021  This technique uses image filtering to improve classification but
is not suitable for detecting breast lesions.

3. Henriksen et al., 2019  Case studies using Computer-Aided Detection (CAD) improve
sensitivity in screening but require a longer follow-up period.

4. Farber et al., 2021 When data from multiple screens were combined in case studies

involving the transition from film to digital mammography, there
was no difference in interpretation.

5. Jo et al.,2021 The impact of compression on the model's classification
performance is presented, but only for binary classification.

6. Forooshani ez al.,2021 ~ The use of machine learning algorithms to identify abnormal
lesions in mammography images increases sensitivity to noise.

T Abdou, 2022 According to their review, the Deep Neural Network architecture

is still in its early stages for medical image processing analysis,
requires extensive training time, and may lead to overfitting.

8. Huang & Lin 2021 The accuracy of data of the computer method decreases as the
density of the breast increases.
9. Sahiner ef al., 2019 There are still ongoing research challenges designed to reduce

large data sets in medical imaging without implementing such
architectures and algorithms.

Table 1.2: Trends in image analysis.

Refs. Applications Image Implementations
1 2 3 4 5 6 2-D 3-D HW SW MM

Sharma et al. 2019 v v v v v

Radzi et al. 2020 4 v v v

ALmaremi, 2020 v v / v

Joetal 2021 v / v v

Garcia et al. 2021 v v v v v

MehmoodGondal et al. v v v

2021

Ketabi et al. 2021 v v v

Al-Rubaye 2021 v v v v

Das et al. 2021 v v v v

Note:
HW: Hardware, SW: Software, MM: Mammography Machine 1: Compression,
2: Segmentation and cluster, 3: Registration, 4: Enhancement and de-noising,

5: Quantification, 6: Others.



As a result, Table 1.2 depicts the current state of image analysis in order to identify
the appropriate applications and implementations. All of these works are categorized

based on the following criteria:

1. The majority of medical image processing applications are constituted of
compression, enhancement, registration, segmentation cluster, de-noising,
quantification;

2. Hardware design and development, software simulation, and algorithm creation
and optimization are all examples of system implementation.; and

3. Types of images utilize Two-Dimensional (2-D) and Three-Dimensional (3-D).

Given the trend of research in medical image processing conducted by leading

experts in the field, the following conclusions are reached:

1. The use of digital medical images is increasing dramatically because of the
remarkable benefits that they provide not only for diagnostic assistance but also
for planning and surgical radiotherapy procedures.

2. This application has dominated most of the work reported, with significant
contributions in segmentation and clustering, as well as registration aspects. A gap
between the programming models, accelerators, and sizes identified.

3. The progression of both algorithm development and hardware implementation

aspect is established from cross intra-disciplinary advancement.

Their investigation required an architectural phase, including programming
and hardware expansion. Computer analysis can solve some of these problems, and it
was found that most of the foundation's operations contained hyper-parameters.
(Martin et al, 2021; Reddy & Das, 2020). Unlike explicit spectral ranges,
improvements in the speed of medical image processing hardware have given rise to a
great deal of consideration for innovative work. Until now, building a dedicated
hardware accelerator required creating a special front-end program that communicated
with the accelerator at the same time. This procedure is tedious and limits the

adaptability of both the software and the hardware.
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