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ABSTRACT 

 

 

 

Articular cartilage is a soft tissue that covers bone joint surface. It has very low self-

regenerative potential after injury, owing to its avascular nature. In recent years, 

hydrogels have been extensively studied as tissue engineering scaffolds for damaged 

articular cartilage. However, the use of fish skin gelatin as articular cartilage tissue 

engineering scaffold is remained unclear. Accordingly, the ultimate goal of this 

project is to investigate the feasibility of fish skin gelatin scaffold for articular 

cartilage tissue engineering application. Fish skin gelatin solution was first 

electrospun into fibrous scaffold under different solution feed rate (0.15 ml/h to 0.60 

ml/h), applied voltage (9 kV to 18 kV) and spinning distance (10 cm to 25 cm). The 

scaffolds were visualized under SEM and mechanically tested in uniaxial tension and 

fracture mode I at displacement rate of 3 mm/min. Results revealed that scaffolds 

with fiber diameters ranged from 199 ± 15.75 nm to 795 ± 89.91 nm have been 

produced at different process parameters. After crosslinking with GA vapor, 

scaffolds were found to maintain their fibrous structure with improved aqueous 

stability and mechanical properties. The elastic modulus and fracture toughness of 

crosslinked scaffolds was found to achieve up to 363.50 ± 61.83 MPa and 8.81 ± 

1.91 kJ/m2 respectively. The crosslinked electrospun scaffolds were stiffer and 

tougher than that of articular cartilage. Moreover, in vitro culture of human 

chondrocytes on scaffold revealed that fish skin gelatin scaffolds supported cell 

proliferation and attachment as well as ECM production. Besides that, in an attempt 

to mimic the layered structure and function of articular cartilage, graded electrospun 

scaffold was produced using sequential electrospinning process. Such scaffold 

presented gradually change in fiber diameter and packing density over the thickness. 

Overall, electrospun fish skin gelatin scaffolds produced in present work showed 

great promise for articular cartilage tissue engineering since they were mechanically 

stiff yet tough scaffolds which supported cell proliferation and GAGs accumulation.   
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ABSTRAK 

 

 

 

Rawan artikular ialah tisu penghubung lembut yang meliputi permukaan sendi 

tulang. Selepas mengalami kecederaan, ianya kurang berupaya untuk pulih kerana 

sifat ketiadaan saluran darah. Dalam beberapa tahun kebelakangan ini, hidrogel telah 

banyak dikaji sebagai scaffold untuk kejuruteraan tisu rawan artikular. Namun, 

penggunaan gelatin dari kulit ikan sebagai scaffold untuk kejuruteraan tisu rawan 

artikular masih tidak jelas. Oleh itu, tujuan utama projek ini ialah mengkaji 

kebolehlaksanaan scaffold gelatin kulit ikan untuk aplikasi kejuruteraan tisu rawan 

artikular. Larutan gelatin dari kulit ikan telah digunakan untuk menghasilkan scaffold 

serat pada kadar suapan (0.15 ml/j hingga 0.60 ml/j), voltan (9 kV hingga 18 kV) dan 

jarak (10 cm hingga 25 cm) yang berbeza. Scaffold kemudiannya dilihat dalam 

mikroskop electron imbasan serta diuji dalam ujian tegangan dan ujian patah mod I 

pada kadar anjakan 3 mm/minit. Dalam projek ini, scaffold serat yang berdiameter 

199 ± 15.75 nm hingga 795 ± 89.91 nm telah diperolehi pada proses parameter yang 

berbeza. Selepas paut silang dengan wap glutaraldehyde (GA), struktur serat scaffold 

masih kekal. Kestabilan scaffold dalam larutan akueus dan sifat mekanikalnya juga 

bertambah baik. Modulus elastik dan ketahanan patah scaffold masing-masing boleh 

mencapai 363.50 ± 61.83 MPa dan 8.81 ± 1.91 kJ/m2. Ianya lebih kaku and kuat 

daripada rawan artikular. Tambahan pula, scaffold tersebut juga dapat menggalakan 

percambahan sel, lampiran sel dan pengeluaran matriks ekstraselular dalam vitro 

apabila kondrosit manusia ditumbuhkan padanya. Selain itu, dalam usaha 

menyerupai struktur dan fungsi rawan artikular, scaffold yang mempunyai perubahan 

diameter dan ketumpatan serat sepanjang ketebalannya telah dihasilkan. Secara 

keseluruhan, scaffold yang dihasilkan dalam projek ini sesuai untuk kejuruteraan tisu 

rawan artikular kerana mereka mempunyai sifat mekanikal yang kaku dan kuat serta 

menyokong percambahan sel dan pengumpulan glikosaminoglikan.  
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1. CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Articular (hyaline) cartilage is a soft and flexible connective tissue covering the bone 

joint surface. It has thin, dense and glassy appearance and is mainly found on the 

articular surface of bones. Figure 1.1 illustrates the appearance of healthy and 

damaged articular cartilage in knee. 

  

            

 

Figure 1.1: Appearance of healthy and damaged articular cartilage in knee  

(Harris & Flanigan, 2011) 

.

Damaged articular 

cartilage 

Healthy articular 

cartilage 
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Sport related injuries, degeneration due to disease, obesity and other types of 

damage can cause injuries to articular cartilage. Although chondrocytes tend to 

proliferate and synthesize extracellular matrix (ECM), their repair effectiveness to 

injury is limited. Moreover, chondrocytes typically suspend the reparative process 

before cartilage defect is healed (Zhang, Hu & Athanasiou, 2009). Continual 

degeneration will lead to osteoarthritis. Figure 1.2 demonstrates schematic 

illustrations of healthy, early stage osteoarthritic and advanced osteoarthritic articular 

cartilage. Changes in the tissue structure and cellular arrangement as well as the 

ECM components occurred when osteoarthritis progressed (Lorenz & Richter, 2006; 

Karim, Amin & Hall, 2018). Besides that, decline in mechanical properties was also 

noticed in osteoarthritis articular cartilage (Cooke et al., 2018; Peter et al., 2018). 

General activities and functions of joint will be limited. The injured joint will 

become swollen and patients will suffer from pain during movement. Without 

treatments in time or if the conservative (non-operative) therapies fail, the articular 

cartilage will wear away over time and may require knee surgery (Rönn et al., 2011; 

Portocarrero, Collins & Livinston Arinzeh, 2013). Wilder et al. (2002) has reported 

that individuals who have history of knee injury were 7.4 times more likely to 

develop osteoarthritis than individuals who have not history of knee injury. 

 

 

 

Figure 1.2: Composition and morphology of healthy, early stage osteoarthritic and 

advanced osteoarthritic articular cartilage (Oei et al., 2014) 

 

Owing to its avascular nature in which it possesses no nerves or blood vessels, 

articular cartilage has very low self-repair/regenerative potential after injury or 

degenerative disease. The limited self-repair/self-healing capacity of damaged 
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cartilage tissue has become interest among scientists and researchers to develop 

approaches in engineer articular cartilage. Figure 1.3 illustrates examples of 

treatment approaches for damaged articular cartilage. Most common current 

treatments for articular cartilage lesions rely on surgery procedures, which may 

include arthroscopic debridement, microfracture, osteochondral autograft transfer, 

autologous chondrocyte implantation, and partial or total knee arthroplasty (Rönn et 

al., 2011; Portocarrero et al., 2013; Rambani & Venkatesh, 2014; Kwon et al., 2019; 

Roseti et al., 2019). 

 

 

 

Figure 1.3: Treatments approaches for damaged articular cartilage  

(Kwon et al., 2019) 

 

Although scientists and surgeons have tried to improve current treatments and 

several strategies have been introduced in cartilage repair or regenerate over the 

years, there has been little success and no universally accepted successful treatment 

for articular cartilage injury. Overall, the outcomes of current treatments are still 

unsatisfying. For example, instead of repairing the damaged cartilage, arthroscopic 

technique removes the debris and inflammatory cytokines by shaving or smoothing 

the degenerated cartilage and this method is only a temporary treatment to reduce 
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symptoms (Rönn et al., 2011; Portocarrero et al., 2013). Besides, current treatments 

have their own limitations. In the case of autografts and allografts, the availability of 

grafts tissue in human body has limited its use in articular cartilage repair. 

Furthermore, two times operations are required for autologous chondrocyte 

implantation – harvest healthy chondrocyte in one operation and implant into the 

defected site in second operation after expansion in culture. For microfracture 

approaches, fibrocartilage typically forms, which is mechanically much less robust 

than articular cartilage (Portocarrero et al., 2013). For severe osteoarthritis, joint 

arthroplasty is the only remedy but it is not suitable for patients younger than 60-

years old and the prosthetic components will lose its durability after 15 – 20 years 

(Rönn et al., 2011). 

 In recent years, articular cartilage tissue engineering has been found as an 

alternative approach for articular cartilage repair and regeneration. It is a intersect of 

scientific and technological field that focuses on development and application of 

knowledge in chemistry, physics, engineering, life and clinical sciences in order to 

solve the critical medical problems (Langer & Vacanti, 1993). In articular cartilage 

tissue engineering, many approaches have been done which focused on the 

development of artificial replacement (scaffold) that is functional resembling to the 

native extracellular matrix (ECM) of articular cartilage. A small amount of relevant 

healthy cells taken from human are cultured in vitro and seeded onto the scaffolds 

before transplantation onto human body. Such scaffolds are responsible to regenerate, 

maintain and improve the damaged tissue. Thus, it is believed that this strategy could 

be promising treatment method for patients with articular cartilage injuries. 

 

 

1.2 Problem Statement 

 

 

One of the key parameters that promise the outcome of tissue engineering is scaffold 

design (material and structure). To date, a wide range of scaffold materials have been 

extensively investigated for cartilage repair and regeneration. Hydrogels, a class of 

highly hydrated polymer materials, are promising scaffold materials for cartilage 

tissue engineering application, owing to their biocompatibility, cell affinity and 

biodegradable feature (Wei et al., 2021). Among hydrogels, gelatin is one of the 
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most studied scaffold materials. It can be classified as mammalian gelatin or fish 

gelatin, according to its source. Although fish gelatin has been widely employed in 

different fields such as food industry, its use in articular cartilage tissue engineering 

applications remained unclear. Therefore, this study intended to use fish gelatin as 

the base material in preparing scaffold. Since fish gelatin presents highly hydrated 

and swelling feature which in turn influenced the mechanical properties of fish 

gelatin (Michelini et al., 2020), method in improving water resistance and 

mechanical properties of fish gelatin was also investigated in this project.   

Besides scaffold material, the structure of scaffolds also plays crucial role in 

ensuring the positive outcome of tissue engineering. Fibrous scaffolds have been 

extensively studied, due to their promise in mimicking the structure of tissues and 

also providing more favorable microenvironment for in vitro cells responses (Woo, 

Chen & Ma, 2003; Woo et al, 2007). Previous finite element studies revealed that the 

mechanical properties of fibrous scaffolds were depended on many factors including 

their microstructural architecture, e.g., fiber density (Koh & Oyen, 2015; Koh, Low 

& Yusof, 2015) and crosslinking density. However, there was still a lack of 

understanding in experimental work on the relationship between the microstructural 

architecture, in particular fiber diameter, and deformation and fracture of fibrous 

networks. Such understanding is critical in facilitating the production of fibrous 

scaffolds with predicted as well as improved mechanical properties. 

 In order to study the relationship between microstructural architecture and 

mechanical properties of fibrous scaffolds, it is therefore important to understand 

how their microstructural architecture can be altered. Fibrous scaffolds produced by 

electrospinning technique have been extensively studied as an ECM replacement for 

articular cartilage (Steele et al., 2014). The microstructural architecture of fibrous 

scaffolds is governed by three main parameters, which are solution properties, 

process parameters and environmental factors (Sill & von Recum, 2008; Bhardwaj & 

Kundu, 2010; Repanas, Andriopoulou & Glasmacher, 2016). Existing studies have 

shown that changes in any electrospinning parameters can affect the morphology of 

resultant electrospun scaffold including beads formation and fiber diameter. 

Consequently, the mechanical behavior of fibrous scaffold will be affected due to the 

microstructure morphology variation. However, detailed understanding on how the 

electrospinning parameters affect electrospun fish skin gelatin scaffold morphology 

in micro length scale is still insufficient. 
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 Native articular cartilage possesses zonal organization which distinguished by 

differences of cell morphologies and arrangement, collagen fibers orientation and 

mechanical properties. However, scaffold with homogenous materials composition 

or structural organization for single tissue regeneration is used typically in cartilage 

repair strategies. This shortcoming has consequently caused the resultant scaffolds 

become insufficient to mimic the complex composite tissue, which commonly 

exhibits gradient structural, compositional and functional properties. Hence, the 

development of scaffolds which mimic the gradient structure and properties of native 

articular cartilage is the current strategy employed in tissue engineering.  

In current study, fish gelatin was electrospun into fibrous scaffold at different 

electrospinning process parameters including applied voltage, distance between need 

tip and collector and also feed rate. The microstructure morphology and mechanical 

performance of these electrospun scaffolds were then assessed. The relationship 

between fiber diameter and tensile properties as well as fracture properties was 

determined. The electrospun scaffolds were further subjected to three different 

crosslinking processes to restrict the swelling characteristic and improve the 

mechanical properties of scaffold. In vitro test was then conducted on selected 

electrospun scaffolds to investigate the chondrocytes responses when seeded on 

different morphology. At the end of the project, structural and functional graded 

scaffold was developed with intention to mimic the fibrous microstructure and 

mechanical properties of articular cartilage.  

 

 

1.3 Objectives of Study 

 

 

This research is conducted specifically to achieve the following objectives: 

1. To study on the mechanical performances of electrospun fish skin gelatin 

scaffolds by control their microstructure morphology at different 

electrospinning process parameters.  

2. To investigate the effects of crosslinking methods on physical properties and 

mechanical properties of electrospun fish skin gelatin scaffolds.  

3. To evaluate the influences of fiber diameter on mechanical properties and in 

vitro cell responses of the crosslinked electrospun fish skin gelatin scaffolds. 
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4. To develop and evaluate the functional graded electrospun fish skin gelatin 

scaffold for articular cartilage tissue engineering application. 

 

 

1.4 Scopes of Study  

 

 

In order to achieve the objectives, the following scopes have been drawn. 

1. This project covered fabrication of electrospun scaffolds using 

electrospinning technique. All the scaffolds were produced using customized 

electrospinning unit with horizontal configuration. 

2. Fish skin gelatin was the only base material which used in preparing polymer 

solution for electrospinning process. The concentration of gelatin solution 

was maintained at 25 wt. % throughout the study.  

3. In preparing electrospun scaffolds, only three electrospinning process 

parameters which were distance between needle tip and collector (10 cm to 

25 cm), solution feed rate (0.15 ml/h to 0.60 ml/h) and also applied voltage (9 

kV to 18 kV) were varied throughout present work.  

4. The relative humidity of electrospinning chamber was kept constant at 50 ± 

10 % throughout the electrospinning process by using silica gels.  

5. For the crosslinking agent for electrospun scaffolds, glutaraldehyde (GA) 

solution was used to create GA vapor during crosslinking process. The 

concentration of GA solution was only 5 % and 25 %.  

6. The morphology and cross section of electrospun scaffolds were 

characterized using scanning electron microscopy (SEM). An image analysis 

software ImageJ was used to measure the diameter of electrospun fiber and to 

obtain the pore size of electrospun scaffolds. 

7. The surface topology of crosslinked electrospun scaffold was visualized using 

atomic force microscope (AFM). Both top and bottom surfaces of each 

crosslinked scaffold were visualized.  

8. The swelling and degradation behavior of electrospun scaffolds were 

monitored as the change in scaffold weight over time.  

9. The mechanical performances of electrospun scaffolds covered uniaxial 

tensile test and fracture test. For uniaxial tensile test, it was conducted to 
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determine the stress-strain behavior, elastic modulus and also tensile strength 

of the electrospun scaffold. For fracture test, loading Mode I was used. The 

failure mechanism, failure strain as well as fracture toughness of electrospun 

scaffolds were determined under the fracture test.  

10. Human chondrocyte was the only cell type which utilized in the in vitro study. 

 

 

1.5 Significance of Study  

 

 

While other studies focused on the reduction of morphological defects at different 

polymer solution properties, the significance of this study lies in the investigation of 

electrospinning process parameters including solution feed rate, applied voltage and 

also distance between needle tip and collector on fibrous fish skin gelatin scaffold’s 

microstructural morphologies. Besides, the mechanical performances of fibrous 

scaffold including tensile and fracture properties were also studied to understand how 

the variation in fiber diameter affected the electrospun scaffold’s mechanical 

properties. Such understanding can provide an insight for researchers in producing 

fish skin gelatin electrospun scaffold with desired fiber diameter and tailored 

mechanical properties.  

Moreover, findings from this study also demonstrated that the electrospun 

fish skin gelatin scaffold was biocompatible to the human chondrocytes. The cells 

were able to attach, proliferate and remain viable during in vitro investigations period. 

Besides, results from present work also revealed the different chondrocytes responses 

and ECM production when they seeded on scaffold with different morphologies. 

These findings provide a new insight into cell-scaffold structure interactions which 

are important for understanding the responsibility of scaffold structure in leading cell 

responses and tissue formation.   

Furthermore, the significance of this study also lies in the development of 

functional graded electrospun fish skin gelatin scaffold for articular cartilage tissue 

engineering application. By varying the process parameters in sequential 

electrospinning technique, scaffold with gradually changes in microstructure has 

been successfully produced. Such scaffold has successfully mimicked the fibrous 

microstructure and mechanical properties of native articular cartilage. Hence, the 
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scaffold has the potential to undergo in vitro and in vivo tests to further verify its 

feasibility in articular cartilage tissue engineering application. 

 

 

1.6 Organization of Thesis  

 

 

This PhD thesis is organized in eight chapters. Chapter 1 is the introduction on the 

research work. Chapter 2 is literature review on previous researches while Chapter 3 

is the research methodology which used in this research work. Chapter 4 to Chapter 7 

present the result and discussion on research findings. Chapter 8 is the conclusion 

and recommendations for future work.  

Chapter 1 presents the background of this research work which briefly 

describes about the composition and morphology of healthy and damaged articular 

cartilage. The shortcomings of current treatments for damaged articular cartilage 

have also been discussed. The objectives, scope as well as significance of the 

research have also been presented in this chapter.  

Chapter 2 reviews the findings and works published by previous researchers. 

Attention was first given on the structure and biomechanical properties of articular 

cartilage. Afterwards, electrospinning technique as fabrication method of fibrous 

scaffolds were studied as an alternative approach to replicate fibrous structure of 

articular cartilage. The influence of fiber diameter on scaffolds’ properties and cell 

responses have been reviewed. Besides, this chapter also concentrated on the 

researches of development of functional graded scaffold as artificial replacement for 

native tissue.  

Chapter 3 demonstrates the materials and scaffold fabrication method which 

have been used in this research. Fish skin gelatin was first dissolved in solvent in 

order to produce polymer solution. The solution was then electrospun into 

homogenous scaffolds and functional graded scaffold at designated process 

parameters. Three crosslinking methods which performed on the electrospun 

scaffolds were presented in detail. Besides that, details of characterization methods 

and mechanical testing which conducted on electrospun scaffolds were also 

introduced. Furthermore, the in vitro cell culture and types of testing were also 

described in this chapter. 
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Chapter 4 presents the fabrication of electrospun fish skin gelatin scaffold at 

different electrospinning process parameters. The influences of process parameters 

on fiber diameter of electrospun scaffolds have been revealed and discussed in this 

chapter. Moreover, this chapter also studied about the effects of fiber diameter on 

tensile and fracture properties of electrospun scaffolds. Observation on failure 

mechanism revealed in this chapter provided an understanding on the crack 

propagation on scaffold which consisted of different fiber diameter.  

Chapter 5 discusses about the influences of crosslinking methods on 

electrospun fish skin gelatin scaffold’s performances. After electrospun scaffolds 

were crosslinked with GA vapor at different conditions, e.g., 5 % and 25 % of GA 

concentration, changes in appearance, morphology as well as topology of scaffolds 

were presented and discussed. Besides that, the influences of crosslinking conditions 

on mechanical behavior of scaffolds in terms of tensile and fracture properties were 

also identified and discussed in this chapter. Other than that, the swelling and 

degradation properties of crosslinked scaffolds were also evaluated and discussed.  

Chapter 6 presents the performances assessments on two types of electrospun 

scaffolds which consisted of different fiber diameters. The influences of fiber 

diameter on in vitro chondrocytes proliferation, cell morphology as well as GAGs 

formation were assessed and discussed in this chapter. Besides that, the mechanical 

performances of both types of scaffolds were then compared to native soft tissues 

and other mechanical enhancement strategies.  

Chapter 7 demonstrates the fabrication of functional graded electrospun fish 

skin gelatin scaffold using sequential electrospinning technique. The morphology 

and cross section of graded scaffold were visualized to confirm the changes of fiber 

diameter over the thickness. The failure mechanism of graded scaffold was also 

visualized under SEM. Besides that, both swelling and degradation tests were 

performed to access scaffold’s stability in aqueous condition. In this chapter, 

fabrication method of functional graded scaffold was discussed. Furthermore, this 

chapter also discussed the mechanical performances comparison of graded scaffold 

with native soft tissues including articular cartilage.  

Finally, Chapter 8 presents the final conclusions which drawn out based on 

the research findings. Some recommendations for future work also have been 

presented in Chapter 8.  
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2. CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction to Articular Cartilage  

 

 

Hyaline cartilage, fibrocartilage, elastic cartilage distinguished by their molecular 

components in the ECM, anatomic location and functions. Hyaline (articular) 

cartilage is the most abundant type of cartilage in body which can be primarily found 

on the articular surface of joints. It is also located at the tip of nose, trachea, larynx 

and costal. The articular cartilage is a smooth yet flexible connective tissue with 

white and glassy appearance (Mow, Ratcliffe & Poole, 1992). Its thickness ranges 

from a few hundred micrometres to less than 5 millimetres, depending on the 

location in body (Stockwell, 1971; Quinn, Hunziker & Häuselmann, 2005; Antos et 

al., 2018; Shah et al., 2019). Besides that, gender, age, weight, height as well as body 

mass index (BMI) also relate to influence articular cartilage thickness (Shepherd & 

Seedhom, 1999; Shah et al., 2019; Wang & Liang, 2019). The ECM of an articular 

cartilage consists of tissue fluid, collagen fibers, proteoglycans and chondrocytes.  

The functions of an articular cartilage including distribute load evenly and 

provide low friction movement. The mechanical properties of this tissue are 

determined at tissue length scale and these properties mainly depended on the 

composition and architectures of articular cartilage such as collagen fibers and 

proteoglycans.  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



12 

 

2.1.1 Composition of articular cartilage 

 

 

Generally, an articular cartilage consists of two phases: solid phase and liquid phase. 

The dominant components of solid phase are chondrocytes, collagens, proteoglycans 

and non-collagenous proteins while for the liquid phase are tissue fluid.  

 Tissue fluid, the most abundant component of an articular cartilage, accounts 

for about 60 – 85 % of its total wet weight (Mow et al., 1992; Buckwalter, Mankin & 

Grodzinsky, 2005; Bhosale & Richardson, 2008). It is a saline based substance which 

abundant in hyaluronan, glycosaminoglycans (GAGs) and lubricin. As primary 

carrier, the tissue fluid content in articular cartilage helps in providing lubrication, 

distributing nutrient and oxygen to chondrocytes and transporting waste within tissue. 

Besides water, it also contains gases, metabolites and cations (positive ions). The 

presence of large number of cations within the tissue fluid is to balance the 

negatively charged cartilage ECM. The negatively charged in ECM arise from 

sulfate and carboxyl groups of proteoglycans (Mansour, 2003). The repulsive force 

between negative charges leads the proteoglycan molecules to diffuse and hold large 

volume in cartilage.  

Collagen, the major constituents of solid phase of an articular cartilage, 

accounts for about 15 – 22 % of wet weight (Mow et al., 1992) or 60 % of dry 

weight (Buckwalter et al., 2005; Wang & Peng, 2014). The collagen fibrils 

embedded in cartilage responsible to tensile, tear and shear resistance (Zhang, Hu et 

al., 2009; Both, Yang & Jansen, 2012). Collagen type II is the major type of collagen 

which covers about 90 – 95 % of total collagen in an adult cartilage ECM (Eyre, 

Weis & Wu, 2006; Responte, Natoli & Athanasiou., 2007).  

In articular cartilage, another main yet unique component is proteoglycans 

which occupy about 4 – 7 % of total wet weight (Mow et al., 1992) or 25 – 35 % of 

total dry weight (Buckwalter et al., 2005; Wang & Peng, 2014). They help to 

maintain tissue fluid and electrolyte balance in an articular cartilage, in addition to 

provide compressive strength to the cartilage (Zhang, Hu et al., 2009). These protein 

polysaccharide molecules are produced, maintained and secreted into the cartilage 

ECM by chondrocytes. A variety of proteoglycans present in cartilage, including 

aggrecan, decorin, biglycan, fibromodulin, lumican and prelecan (Knudson & 

Knudson, 2001). Among them, aggrecan is found the primary proteoglycan and 
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possess the largest size in articular cartilage. The functions of these proteoglycans are 

defined by their core protein and their glycosaminoglycans (GAGs) chains. The 

presence of carboxyl and sulfate groups on the aggrecan GAG have caused the 

proteoglycans and also cartilage ECM to be negatively charged. Because of this 

negative charge, the matrix has the tendency to imbibe fluid, or swelling the tissue 

(Landínez-Parra, Garzón-Alvarado & Vanegas-Acosta, 2012). As a result, the 

articular cartilage has hydrophilic properties.  

Beside collagen and proteoglycans, a mature articular cartilage also contains 

non-collagenous proteins which occur in minute amounts. These non-collagenous 

proteins contribute about 15 – 20 % of total dry weight of cartilage (Buckwalter et al., 

2005; Wang & Peng, 2014). In addition to glycoproteins, other non-collagenous 

proteins commonly found in articular cartilage are included fibronectin and tenascin. 

However, the specific functions of these non-collagenous proteins have not been 

fully characterized and are currently being investigated. 

In humans, chondrocyte which originates from mesenchymal stem cells 

(MSCs), is the only cell type present in an articular cartilage tissue, which accounts 

for about 1 – 5 % the volume of articular cartilage (Hunziker, Quinn & Hauselmann, 

2002; Quinn et al., 2005). It is a specified cell that responsible in synthesizing and 

remodeling/repairing highly hydrated cartilage ECM like collagen and proteoglycan 

in vitro to maintain tissue’s size and mechanical properties. 

 

 

2.1.2 Hierarchical structure of articular cartilage  

 

 

The hierarchical organization of an articular cartilage over different length scale is 

illustrates in Figure 2.1. 
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Figure 2.1: Schematic illustration of hierarchical structure of the articular cartilage 

over different length scale (adapted from Mow et al., 1992) 

 

 At the nano structural length scale, ions, triple helix collagen molecules in 

collagen fibrils and glycosaminoglycans (GAGs) chains in proteoglycans are the 

basic building blocks of an articular cartilage hierarchy. Triple helix collagen 

molecules assembled to form collagen fibrils and then organized into collagen fibers. 

At one step further, under a scanning electron microscope, the microstructural 

features of the tissue such as arrangement of collagen fibers and cells can be 

observed. The organization of articular cartilage at this level can be divided into four 

different zones: superficial, transitional, deep and calcified zone. Each zone is 

composed of fibers arranged in different geometric pattern. The four distinct layers 

form few millimetres thick articular cartilage. Finally, at the largest length scale, 

bone, ligaments and articular cartilage are organized to form a joint with approximate 

0.5 to 15 cm (Mow et al., 1992). 
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2.1.3 Structure and zonal organization of articular cartilage 

 

 

In designing and developing treatments for articular cartilage repair and regeneration, 

the knowledge of fundamental structure of this native tissue is very essential. The 

structure of articular cartilage is not homogenous in nature and can be divided into 

multiple zones, which are superficial zone, transitional zone, deep zone and calcified 

zone (Hwang et al., 1992; Izadifar, Chen & Kulyk, 2012; Landínez-Parra et al., 

2012). These zones are classified based on their differences in matrix morphology 

(Hwang et al., 1992; Changoor et al., 2011), matrix composition (Mow et al., 1992), 

cell density (Stockwell, 1967; Stockwell, 1971; Hunziker et al., 2002), and metabolic 

properties. Each zone plays different roles within an articular cartilage. Figure 2.2 

and Figure 2.3 illustrate zonal organization of collagen fibrils and chondrocytes in an 

articular cartilage, respectively. 

 

 

 

Figure 2.2: Zonal organization of collagen fibrils in an articular cartilage  

(adapted from Mow et al., 1992). 
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Figure 2.3: Zonal organization of chondrocytes in an articular cartilage  

(adapted from Mow et al., 1992). 

 

The superficial zone is the thinnest layer in articular cartilage which is about 

10 – 20 % of total thickness of the tissue (Mow et al., 1992; Mow, Gu & Chen, 

2005). The morphology of chondrocytes in this zone is parallel to articular surface. 

Cell densities appeared higher than in the deeper tissue zones (Stockwell, 1967; 

Stockwell, 1971; Hunziker et al., 2002). The activity and protein synthesis of cells 

are low (Landínez-Parra et al., 2012). This zone contains highest concentration of 

fine collagen fibrils and lowest concentration of proteoglycans (Mow et al., 1992; 

Zhang, Hu et al., 2009; Fischenich et al., 2020). The collagen fibrils are distributed 

parallel to articular surface where they are compactly arranged in groups of five to 

six fibrils, or showed a tendency to twist around one another (Hwang et al., 1992). 

Chondrocytes in this zone appear in oval form, with long axis parallel to the articular 

surface (Hunziker et al., 2002). 

The transitional zone, located in between superficial and deep zone, accounts 

for 40 – 60 % of the total thickness of tissue (Mow et al., 1992; Mow et al., 2005). 

This zone contains higher concentration of proteoglycan and lower concentration of 

collagen fibrils than superficial zone (Mow et al., 1992). Chondrocytes in this zone 

appear more rounded and randomly oriented as compared to chondrocytes in 

superficial zone (Hunziker et al., 2002). The collagens fibrils appear in larger fiber 

size (Hwang et al., 1992) and randomly oriented (Bhosale & Richardson; 2008; 

Zhang, Hu et al., 2009).  
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The deep zone covers about 30 % of total articular cartilage thickness (Mow 

et al., 1992; Mow et al., 2005). Similar to transitional zone, the cells in deep zone are 

rounded but appear larger in size. The collagen fibrils located in the deep zone have 

the largest diameter and are perpendicular to articular surface (Weiss, Rosenberg & 

Helfet, 1968; Hwang et al., 1992). The concentration of proteoglycan is about 15% 

lower than to those in the former zone while for water content is the least in this layer 

(Mow et al., 1992; Zhang, Hu et al., 2009). Cells in this layer, arranged in columns 

irregularly and perpendicular to articular surface (Hunziker et al., 2002), shows 10 

times higher synthetic activity than cells in the superficial zone (Wong et al., 1996; 

Temenoff & Mikos, 2000; Zhang, Hu et al., 2009). 

 The calcified zone, separated from the deep zone by a wavy plane called 

tidemark, is a thin mineralized layer that lies close to subchondral bone. It acts as a 

transition between soft hyaline cartilage and bone which minimize the stiffness 

gradient between rigid bone and cartilage (Izadifar et al., 2012). Therefore, 

significant shear stress can be generated between soft cartilage and stiff bone. The 

orientation of collagen fibrils in this layer is just like in deep zone, which is oriented 

radially and arranged tightly (Hwang et al., 1992; Mansour, 2003). The metabolic 

activity is very low since only a small number of cells, chondrocytes, are embedded. 

The chondrocytes here are smaller and scarce (Temenoff & Mikos, 2000). This zone 

is rich in hydroxyapatite crystals (Landínez-Parra et al., 2012) and has same extent of 

calcified like bone (Wilson et al., 2005). Unlike other zones, the calcified zone is the 

only layer contains type X collagen which replaced type II collagen. The type X 

collagen aids in cartilage mineralization, shock absorption along with subchondral 

bone and provides structural integrity (Cohen, Foster & Mow, 1998; Bhosale & 

Richardson, 2008).  

 Table 2.1 summarizes component morphology, size and composition of four 

distinct articular cartilage regions. 
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Table 2.1: Summary of component morphology, size and composition of four distinct 

articular cartilage regions 

 

Cartilage 

component 

Superficial 

zone 

Transitional 

zone 

Deep 

zone 

Calcified 

zone 
Reference(s) 

Collagen fibril 

diameters (nm) 

30 – 35 -- 40 – 80 No data 
Weiss et al. 

(1968) 

25 – 50 60 – 140 Up to 160 No data 
Hwang et al. 

(1992) 

Collagen fibre 

diameters (nm) 
55.8 ± 9.4 87.5 ± 1.8 108.2 ± 1.8 No data 

Changoor et al. 

(2011) 

Water content (%) ~ 80 - ~ 65 No data 

Mow et al. 

(1992), Bhosale & 

Richardson 

(2008), Zhang, Hu 

et al. (2009) 

Total thickness 

(% of total tissue) 
10 – 20 40 – 60 30 No data 

Mow et al. 

(1992), Mow et 

al. (2005) 

 

 

2.2 Biomechanical Properties of Articular Cartilage 

 

 

Indeed, the biomechanical properties of articular cartilage’s are complex. It can be 

regarded as a non-linear (e.g., dependent on strain magnitude), viscoelastic (time or 

rate dependent), non-homogenous (different layered morphology throughout the 

entire thickness), and anisotropic (different properties in different direction 

throughout the volumes) biological composite materials. The inhomogeneity 

properties of such fibrous biological tissue are attributed by the layered morphology 

of collagen network whilst the anisotropic properties are results from orientation of 

collagen fibers in the tissue (Mow et al., 1992; Cohen et al., 1998).  

 During joint movement and weight bearing, the collagen fibrils, 

proteoglycans and other matrix components within native articular cartilage help to 

maintain the biomechanical properties of articular cartilage. When a load is subjected 

to the native tissue, the negatively charged of proteoglycans becomes closer which 

causes the increase of their repulsive forces and thus enhances the compressive 

stiffness of tissue (Mansour, 2003). Besides, not only compression stress, an articular 

cartilage is also experiencing to complex stress during impulsive compressive 
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loading, including tensile and shear. Such compressive loading has significantly 

generated tensile and shear stresses within the tissue. The tensile properties of 

articular cartilage are discussed in the following subsection.  

 

 

2.2.1 Tensile properties of articular cartilage 

 

 

In articular cartilage, the primary function of collagen fibers is to provide resistance 

to tensile loads. Compared to compression, tension is more likely to cause failure to 

the tissue. The tissue can sustain much greater strain in pure compression than in 

tension. No failure was found in the compression specimen at up to 50 % of 

compressive strain subjected whilst about 25 % of tensile specimen experienced 

failure at strain of 20 % or 25 % (Huang et al., 2005). Hence, understanding on 

articular cartilage mechanical behavior in tension is essential in aiding development 

of artificial cartilage replacement.  

 As mentioned in section 2.2, articular cartilage exhibits viscoelastic 

characteristic in tension. Hence, the stress-strain relationship and tensile modulus are 

highly dependent on strain rate. Tissue will become stiffer with increasing of strain 

rate (Verteramo & Seedhom, 2004). This viscoelastic behavior is the result of fluid 

flow from tissue and internal friction related with collagen-proteoglycan molecular 

motion. The viscoelastic effects within the tissue will become significant as the strain 

rate increases. Substantial amount of tissue fluid flow out from tissue when high 

strain rate is applied (Roth & Mow, 1980). True volumetric changes and material 

properties of cartilage specimens are then difficult to access.  

 Therefore, in evaluating tensile properties of solid phase within the articular 

cartilage, it is essential to invalidate the existence of fluid flow effects. Two 

approaches have been implemented in previous studies to determine tensile 

properties of the collagen-proteoglycan solid matrix. One of the approaches is to 

perform a very slow strain rate (near to equilibrium) tensile experiment, typically 

with displacement rate of 5 mm/min (Kempson et al., 1973; Kempson, 1982), to 

avoid significant flow generated stiffening effect and thus measure tensile modulus. 

Another method is performing the tensile experiment with stress relaxation to allow 
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the specimen reaches equilibrium at each strain increment. Through both approaches, 

the mechanical properties of solid matrix can be determined.  

From previous works, it can be noted that only a range of values, no specific 

value for tensile properties of articular cartilage obtained even though different 

studies have been conducted to determine these properties. This variation arises from 

numbers of factors (Roth & Mow, 1980; Akizuki et al. 1986; Charlebois, McKee & 

Buschmann, 2004; Huang et al., 2005; Oinas et al., 2018), including type of species, 

age of species, type of joints taken in the species, region in the joint (e.g., high load 

weight bearing area or low load weight bearing area), and state of degradation. 

Akizuki and coworkers (1986) reported that the stress strain behavior of normal 

human articular cartilage is linear up to 15 % strain. They also found that the tensile 

modulus was less than 30 MPa, most in the range between 1 MPa to 15 MPa. 

 Typically, as with other soft collagenous biological tissues, the articular 

cartilage also indicates nonlinear tensile behavior. Figure 2.4 is a schematic 

representation of a stress-strain curve of an articular cartilage, showing a nonlinear 

tensile behavior. As shown in the figure, there is a nonlinear and a linear region 

before cartilage fails. The nonlinear ‘toe region’ indicates that the native tissue 

deforms easily when there is a small load subjected on it. Small load acting on it 

causes a large deformation. This is due to the initial state of fibrous collagen network 

within the tissue where collagen fibers are not particularly stretched. Tensile load is 

required to slip collagen fibers though the gel like proteoglycan initially. When the 

collagen fibers are eventually stretched, they will start to absorb the tensile load 

acting on them. The tissue will then become stiffen as strain increased, as indicated 

in linear region of Figure 2.4. Actual stiffness and strength of collagen fibers network 

is observed in this region.  
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Figure 2.4: Stress-strain curve of an articular cartilage, showing nonlinear tensile 

behavior (Cohen et al., 1998). 

 

Sasazaki, Shore & Seedhom (2006) observed the deformation and failure 

mechanism of bovine cartilage in tensile mode. A systematic investigation towards 

the cartilage failure when tensile strain was subjected has been carried out from 

macroscopic level to the ultrastructural level. Through their observation, matrix 

reorganization (collagen meshwork and chondrocytes) occurred before failure. When 

tensile strain was 0 %, the fibrillar meshwork within articular surface was 

predominantly orientated. Collagen in the articular surface reorganized and aligned 

to direction of applied strain when strain was increased from 0 %. About 3 μm in 

diameter of ridges bundle, parallel to the applied strain direction, was observed on 

the articular surface. Mansfield and coworkers (2015) also reported similar 

observation on surface corrugation on superficial zone of horses’ cartilage at high 

strains. After the fibrillar meshwork was completely reoriented and aligned to the 

applied strain direction, cartilage failure was initiated with the rupture of fibrillar 

meshwork within the articular surface. Finally, failure of cartilage was completed 

with the rapid propagated rupture of subjacent layers throughout full thickness of 

cartilage. 
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2.2.1.1 Zonal variations of articular cartilage in mechanical properties 

 

 

Owing to variation in the articular cartilage’s structure and composition in each zonal, 

the mechanical forces acting on the tissue are different. These mechanical differences 

of this tissue are attribute by the variation of cells (morphology, density, orientation 

and metabolic activity), collagen fibrils (diameter, density and orientation) and 

GAGs (type and amount) over the depth of the articular cartilage (Hu & Athanasiou, 

2003).  

 As discussed in previous section, arrangement of collagen fibril within the 

ECM of articular cartilage is non-homogenous and anisotropic. The inhomogeneity 

of cartilage is associated to the layered morphology of collagen network whereas the 

anisotropy is related to the collagen fibres orientation within the tissue (Mow et al., 

1992). Starting from superficial zone which has the orientation of collagen fibrils 

parallel to the articular surface, the collagen fibrils orientation changes through 

transition zone to deep zone and tidemark where the collagen fibrils oriented normal 

to articular surface. Because of the orientation and collagen fibrils diameters are 

different at each zone, therefore the mechanical properties vary from zone the zone. 

Table 2.2 states the mechanical properties of each zone obtained from previous 

studies.   

 

Table 2.2: Zonal variations in mechanical properties of human articular cartilage 

 

Mechanical 

properties 

Superficial 

zone 

Transitional 

zone 
Deep zone 

Calcified 

zone 
Reference(s) 

Tensile 

modulus (MPa) 

20.67 ± 3.01 a 4.14 ± 1.72 a No data No data 
Akizuki et al. 

(1986) 
10.13 ± 1.78 b 4.54 ± 1.28 b No data No data 

Ultimate strain ~ 0.20 No data ~ 0.45  No data 
Bader et al. 

(1981) 

Poisson’s ratio 1.87 ± 1.11 c 0.62 ± 0.23 c No data No data 

Elliott, 

Narmoneva & 

Setton (2002) 

location = a lateral patella groove, b medial femoral condyle, c patella 

 

From table above and findings from previous studies, some general 

conclusions may be made. Superficial zone exhibits highest tensile stiffness among 
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other zones (Kempson, Freeman & Swanson, 1968; Akizuki et al., 1986, Bell et al., 

2014). The tensile stiffness of native articular cartilage tissue was found to be 

decreased as distance from the articular surface increased (Kempson et al., 1968; 

Kempson et al., 1973; Akizuki et al., 1986; Mow et al., 2005). At higher strain and 

tensile loading, superficial zone tends to reorganize. Surface corrugation and ridges 

bundle were observed (Sasazaki et al., 2006; Mansfield et al., 2015). Hence, it is 

believed that such changes are to resist deformation and failure of superficial zone. 

Once the superficial layer loss its stiffness and failure, the remaining lower zones 

will subject rapid degeneration process (Akizuki et al., 1986; Sasazaki et al., 2006). 

 

 

2.2.2 Fracture of articular cartilage  

 

 

Cracks appeared in the articular cartilage due to trauma, wear and tear or when the 

joint is forced to exceed its normal range of motion periodically. Owing to various 

causes such as sudden high forces, fatigue, creep and etc., cracks can grow very 

rapidly and can cause pain which compromises the knee movement. As the crack 

size increases, the failure strength of tissue decreases. Over a period of time, the 

failure strength becomes very low and thus the tissue may fail in service. Once the 

tissue exhibits defects, it has poor healing ability due to their avascular nature. Hence, 

articular cartilage must exhibit sufficient toughness to resist the propagation of 

defects in vivo.  

 The failure properties of articular cartilage with presence of crack have to be 

evaluated by fracture toughness technique. Fracture toughness is an important 

material property to describe defect tolerance of a material. It measures the ability of 

a material to resist the cracks propagation. Under a modified single edge notched test 

(MSEN), the fracture toughness of normal articular cartilage was about 0.14 – 1.2 

kN/m (Chin-Purcell & Lewis, 1996).  

Figure 2.5 shows five stages of crack growth mechanism in an articular 

cartilage. As shown in the figure, a micro-crack appeared in the tissue may 

eventually result failure to the tissue under tensile loading. Instead of expanding 

towards the bottom layer of the tissue, the crack grew in a stretching manner in the 

loading direction and parallel to the articular surface. The curve illustrated in the 
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Figure 2.5 also revealed that the tissue exhibits brittle fracture (when stage 4 is 

negligible) or initial brittle fracture followed by a period of steady crack growth 

before sudden fracture. This indicates that in evaluating the fracture mechanics of 

articular cartilage, it is possible to describe the cartilage fracture in linear elastic 

fracture mechanics (Stok & Oloyede, 2007).  

 

 

 

Figure 2.5: Five stages of crack growth in articular cartilage (Stok & Oloyede, 2003). 

 

As illustrated in Figure 2.5, Stok and Oloyede (2003) suggested that the 

fracture propagation of an articular cartilage has five stages at any strain rate, which 

are: 

1. Initial rapid opening by stretching along the loading direction. 

2. Prolonged stable opening, by stretching, of the articular surface. The rapid 

opening was slowed down into a stable growth phase. Deep matrix was 

pulled up towards the crack root. This region indicated the superb 

toughness of articular cartilage.  

3. Rapid necking and unstable growth of the general matrix. 

4. A temporary cessation of unstable propagation, followed by a brief period 

of stable propagation. In some cases, stage 3 was followed by stage 5, 

skipping the stage 4. 
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