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ABSTRACT 

Basically, a speed sensor is used to sense an electric vehicle’s motor speed at the rated 

value in order to achieve a high tracking accuracy of the speed, but the use of a sensor 

is costly and it is sensitive to vibrations. Therefore, this project proposed a new 

mechanism in order to eliminate the speed sensor by adopting an enhanced hybrid flux 

estimation. The voltage signal was modified using the rotor-flux-oriented current 

model’s output for the internal stator flux controller to minimise the back-EMF error 

to represent a sensorless control. Artificial neural network (ANN)-field-oriented 

control (FOC) was used in the hybrid flux system. The function of the ANN was to 

improve speed-tracking performance, and the learning rate of the ANN inside the 

indirect FOC’s structure trained using the Levenberg-Marquardt (LM) algorithm was 

varied in order to increase speed-tracking accuracy when combined with the improved 

ANN speed controller. The hyperparameters of ANNs, such as weights and biases, 

were randomly initialised and updated using the backpropagation (BP) algorithm in 

order to increase the convolution of the ANNs. The sensorless ANN-IFOC was 

modelled, simulated, and tested using MATLAB/Simulink for a 20Hp EV motor based 

on a small Renault Twizy EV model and triggered by the space-vector pulse-width 

modulation (SVPWM). The results of the ANN-IFOC hybrid estimator were obtained 

in four cases, which were 1) constant high and low speeds, 2) constant speed against 

parameter variation, 3) variable speed, and 4) variable load torque disturbances. All 

results showed that the proposed method gave excellent agreement, as compared with 

ANN- and PI-based conventional voltage model estimators, with increased tracking 

accuracy (1500 rpm: 99.23% and 99.60% to 99.85%; 1000 rpm: 98.90% and 99.45% 

to 99.85%; and 500 rpm: 97.92% and 99.10% to 99.85%). The proposed model with 

the sensorless speed controller showed consistent tracking accuracy with faster speed 

responses and gave the shortest settling time and fewer overshoots compared with the 

existing PI controller. Furthermore, the drive system was able to control and improve 

the transient response of the EV motor.
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ABSTRAK 

Pada dasarnya, sensor kelajuan digunakan untuk mengesan kelajuan motor kenderaan 

elektrik pada nilai kadar untuk mencapai ketepatan penjejakan yang tinggi, tetapi 

mahal dan sensitif kepada getaran. Oleh itu, dalam projek ini, satu insentif baru untuk 

menghilangkan sensor kelajuan dengan menerapkan penganggar fluks hybrid. Ianya 

mengubahkan isyarat voltan dengan menggunakan keluaran model arus yang 

berorientasikan fluks pemutar untuk pengawal fluks pemegun dalaman untuk 

meminimumkan ralat EMF sebagai kawalan kelajuan tanpa sensor. Sistem hibrid ini 

telah disertakan kawalan berorientasikan medan (FOC) berdasarkan rangkaian neural 

buatan (ANN). Penggunaan kercerdasan ANN adalah untuk menambah baik prestasi 

kelajuan dengan mengubah nilai kadar pembelajaran ANN dalam struktur FOC yang 

tidak langsung serta telah dilatih menggunakan algoritma Levenberg-Marquardt (LM) 

untuk meningkatkan ketepatan penjejakan kelajuan yang mana telah dihubungkan 

dengan pengawal kelajuan ANN yang ditingkatkan. Hiperparameter ANN seperti 

berat dan bias diinisialisasi secara rawak dan dikemas kini menggunakan algoritma 

backpropagation (BP) untuk meningkatkan pelingkaran ANN. ANN-IFOC dengan 

struktur tanpa sensor telah dimodelkan, disimulasi dan diuji melalui 

MATLAB/Simulink untuk ukuran EV yang berkuasa 20 Hp berdasarkan model EV 

kecil Renault Twizy, serta dicetuskan oleh 5 kHz penyongsang berdasarkan space-

vector pulse-width modulation (SVPWM). Hasil penganggar hibrid ANN-IFOC 

diperoleh berdasarkan empat kes seperti; 1) berkelajuan tinggi dan rendah secara 

berterusan, 2) kelajuan berterusan terhadap variasi parameter motor, 3) kelajuan 

berubah, dan 4) gangguan beban tork berubah. Pada kesemua hasil akhir, ia 

menunjukkan bahawa pengawal yang dicadangkan memberikan kesepakatan yang 

sangat baik dibandingkan dengan ANN dan PI yang berdasarkan penganggar model 

voltan dengan ketetapan penjejakan kelajuan meningkat dari: 1500 rpm: 99.23% dan 

99.60% kepada 99.85%, 1000 rpm: 98.90% dan 99.45% kepada 99.85%, dan 500 rpm: 

97.92% dan 99.10% kepada 99.85%. Pengawal yang dicadangkan dengan model 
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kelajuan tanpa sensor menunjukkan ketepatan penjejakan yang konsisten dengan 

tindak balas kelajuan yang lebih cepat yang memberikan masa pengenapan terpendek 

dan kurang terlajak berbanding pengawal PI. Tambahan pula, sistem pemacu dapat 

mengawal dan meningkatkan tindak balas fana motor EV. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

This chapter presents the introduction of the research to understand the research 

background of EV motor applications. In addition, the problem statement of this 

research is explained in detail, which the research objectives were based on. At the end 

of this chapter, the research outline is constructed into the listed chapters. 

1.2 Research Background 

The growth of electric vehicles (EVs) around the world is rapidly increasing in the past 

ten years, with the global stock of electric passenger cars passing 5.1 million units in 

2018, an increase of about 63% from the previous year. As reported by the 

International Energy Agency (IEA), China showed an increasing number of electric 

car usage at a total of 2.3 million units, which was around 45%, compared with 39% 

in 2017. In addition, the electric car usage in Europe accounted for 24% of the global 

fleet and the usage was 22% in the United States [1]. The consumption of electricity 

could increase in the coming years due to EV usage. The IEA’s New Policies Scenario 

2030 stated that demand will continue for electricity, which is projected to reach 

almost 640 terawatt-hours (TWh), with light-duty vehicles (LDVs) as the largest 

electricity consumer among all electric vehicles. The share of electricity consumption 

by the electric motor driven system (EMDS) could be the largest based on the statistics 

in the IEA 2006 report, with 39% of consumption in the transportation sector [2]. 

Therefore, alternative ways should be explored globally to reduce electricity 
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consumption by improving the speed-tracking accuracy of electric motors to give more 

mileage during driving. 

There is an increasing trend in EV research, which shows the importance of 

taking care of the environment. EVs are a key technology to reduce air pollution in 

densely populated areas and it is a promising option to contribute to energy 

diversification and to reduce greenhouse gas emissions. EV benefits include zero 

tailpipe emissions, better efficiency than that of internal combustion engine vehicles, 

and a large potential for low greenhouse gas emissions. All these advantages are 

achieved by improving the EV speed even on rough road surfaces. Therefore, electric 

motors in EVs, such as the induction motor (IM), are commonly studied and widely 

developed to give extra efficiency during motoring [3]. 

The IM was patented in 1888 by Nikola Tesla and the structure was extended 

in 1890 by Dolivo Dobrowolski, which is known as the squirrel-cage motor [4]. IMs 

are mainly used in many industrial applications for requiring constant speed. In the 

past decades, DC motors are commonly used for variable speed applications. In the 

early 1990s, with advancements in power electronics and microprocessors, the 

characteristics of the IM have more advantages over that of the direct current (DC) 

motor as controlling methods are widely developed [5]. The advantages of the IM, 

such as high efficiency, simple construction, small in size, high reliability, and low 

cost, are the reasons why IMs are the most preferred machine in industries [6] and also 

in EV usage. Therefore, this has attracted more researchers to develop controllers for 

the IM due to its wide use as EV motors. Figure 1.1 shows the electric motor control 

system that is frequently used for improving motor speed control.  

For power converters, the most efficient method of controlling output voltage 

is to incorporate the pulse-width modulation (PWM) control in the inverters. PWM is 

a way to control analogue devices with a digital output. A fixed DC voltage, such as 

the battery storage as in EVs, is applied to the inverter, and a controlled AC output 

voltage is obtained by adjusting the ON-OFF periods of the inverter devices [7]. The 

PWM-based variable speed drive is widely developed and used in many industrial and 

EV applications that require superior performance. There are various types of 

switching control techniques, such as PWM, Sinusoidal PWM, Multi-PWM, Modified 

Sinusoidal PWM, and Space Vector PWM (SVPWM) [8]. There is an increasing trend 

in using SVPWM due to its advantages of providing a more efficient switching control 
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and better output and at the same time reducing the harmonic content in the voltage 

and increasing 15% of the fundamental output voltage [9]–[11]. 

 

 

 

 

  

 

 

 

 

 

Figure 1.1: Electric motor drive system. 

In an EV’s mode of operation, during the motoring of an EV, speed and torque 

sensors are the main parameter inputs that will determine the speed, stability, 

precision, and power flow of the motor. Therefore, these sensors should be always in 

a healthy condition at all times regardless of the condition of the road. Currently, speed 

and torque sensors are used to regulate the performance of the EV in order to give 

good dynamic responses of especially the torque and speed of the EV. However, these 

sensors are relatively high in cost and very sensitive to road conditions. Therefore, this 

research aimed to develop a sensorless dynamic Indirect Field-Oriented Controller 

(IFOC) for the EV motor during road driving. The improved controller was tested on 

constant torque and varying torque in order to mimic road conditions. The biggest 

challenge was when the EV is in the motoring mode on un-flat surfaces, where the 

dynamic of the motor changed frequently. Therefore, it was necessary for the EV to 

give a continuous regulated speed to maintain motor efficiency.  

In order to develop this sensorless dynamic IFOC controller, the estimated 

speed and hybrid fluxes were required as the feedback for the speed and current 

controllers. So, an improved estimator-based adaptation mechanism on hybrid stator 

flux controllers was designed to represent a sensorless speed signal to eliminate the 

use of the sensors in order to reduce the cost of the EV. To control speed behaviour, a 

special speed controller was designed in this research by implementing the artificial 

neural network (ANN) method to create the least error of speed with better dynamic 
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speed performance. Together with the speed controller, a current controller was also 

placed to control the voltage regulated for the SVPWM input.  

At the end, these two improved controllers (ANN hybrid flux estimator with 

the adaptive mechanism and speed controller) were tested in the MATLAB/Simulink 

platform for several cases for verification. Using these techniques, the controllers were 

able to increase the speed-tracking accuracy in the variable speed operation without 

being affected by parameter variations, such as resistance and inductance, and had a 

fast load disturbance rejection created by un-flat road conditions. 

1.3 Problem Statement 

Generally, the IM in EVs operates at the rated parameters of speed and load torque and 

at the rated efficiency. In some applications, variable speed is required due to the 

variable loads of the IM. In order to face these challenges, IMs that operate with 

variable frequency drives (VFDs) have been widely developed. However, in an EV, 

the IM is very sensitive to vibrations when the EV is moving on an un-flat road. This 

vibration will reduce the efficiency of motor performance. The biggest problem is that 

when the vibration gets stronger, the torque and the speed of the motor will not follow 

the rated values. Therefore, this will increase the deviation of the allowable boundary 

of IM response, especially the speed output, which then requires more power from the 

EV battery. This problem happens especially during driving on un-flat surfaces. 

There are two strategies that can be used to overcome the problem, which are 

the Field-Oriented Control (FOC) and Direct Torque Control (DTC). However, by 

using DTC, the torque ripple needs to be between the boundaries of the allowable 

torque ripple. A torque ripple value that is more than the allowable value will affect 

the efficiency of the motor, especially the speed, and cause uncomfortable driving. 

While a constant torque is ideal, torque changes all the time when the EV is motoring 

or braking on un-flat road surfaces. This affects not only the speed but also the dynamic 

of the IM by causing the IM to absorb extra unnecessary power from the EV battery.  

For FOC, there are issues, including cost, in controlling the IM. Usually, 

sensors are used to obtain the flux and speed of the IM, such as the optical sensor and 

tachometer. However, the use of sensors will increase the cost of motor control. 

Furthermore, there is complexity in placing sensors in the motor, which need more 
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cables. In addition, regular maintenance is also required, making the cost of using 

sensors more expensive. 

 In order to solve this problem, this research proposed a hybrid model of flux 

and speed estimator, which was based on the voltage model and the rotor-flux-oriented 

current model, with an ANN-IFOC adaptive mechanism. The hybrid estimator used 

the principle of back-emf error compensation to minimise the speed error fed to the 

ANN-IFOC speed controller. It also aimed to increase speed-tracking accuracy, 

efficiency, and speed response and have a faster rejection of load disturbances. 

1.4 Research Aim 

The aim of this research was to establish an improved speed-tracking accuracy of a 

sensorless IFOC drive system for EVs during un-flat road driving by applying neural 

networks in sensorless hybrid flux and a speed estimator with an adaptive mechanism 

to minimize the speed error based on the principle of back-EMF error compensation.  

1.5 Objectives 

This research work embarked on the following objectives: 

 

a) To investigate the sensorless dynamic IFOC of the IM drive by modelling it 

in MATLAB/Simulink based on the voltage model’s flux and speed estimator. 

 

b) To design an improved sensorless drive system for EVs on un-flat road 

conditions using the proposed hybrid flux and speed estimator to minimise the 

speed error fed to the speed controller.  

 

c) To apply neural networks in the proposed ANN-IFOC hybrid flux and speed 

estimator to enhance the speed-tracking accuracy of rotor flux position for the 

speed controller. 

 

d) To compare with the existing PI speed controller model the effectiveness and 

robustness of the proposed speed controller with ANN-IFOC hybrid flux and 
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speed estimator towards speed-tracking accuracy improvements of the drive 

system. 

1.6 Research Scope 

This research focused on the dynamic performance of the IM of EVs for better speed-

tracking accuracy, which is affected by the load torque variation of un-flat road 

conditions. The scope of this research is as follows: 

a) Simulation model development: 

• A dynamic IFOC controller in sensored and sensorless modes was 

developed, simulated, and tested in MATLAB/Simulink by using the 

SimPower library. 

• The IFOC used a 5kHz three-phase IGBT inverter triggered with space 

vector pulse-width modulation (SVPWM). 

• The control drive system used 800 V of DC source as the input voltage 

or battery storage behaviour. 

• An LC filter was used to filter out the AC voltage of the inverter. 

• The EV motor control in this research focused on a two-seater electric 

car based on the Renault Twizy model with a limit of 20-horsepower 

(Hp) induction motor. 

• The performance of the EV in this research was scaled at the top speed 

of 80 km/h with 150 km of driving range and 3.5 hours of charging 

time. 

• The capacity of the battery packs in this EV was rated at 12 kWh based 

on the lithium-ion material. 

• The number of cells used were 20 cells rated at 2.45 V each with the 

arrangement of five modules. 

• The real-condition test was conducted through a simulation with real 

parameters of the EV, in which the total mass was 690 kg and 4 tires 

with radius of 0.1651 m were used. 

• The design of the speed bump used real data obtained from the 

Malaysian Public Works Department (Jalan Kerja Raya (JKR) 

Malaysia), which were 75–150 mm and 75–100 mm for the height and 
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less than 1 m and 2.2–4 m for the width of the road bump and the road 

hump, respectively. 

 

b) Hybrid estimator and controller program development: 

• A conventional speed controller was designed using the PI controller 

with a saturation limit. 

• Two inner-loop current controllers were designed using PI-controller-

based pre-compensated back-EMF. 

• To deal with parameter sensitivity, an enhanced ANN-IFOC hybrid 

flux estimator was proposed with the 2-10-2 network topology using 

the back-EMF error compensation technique to estimate the flux based 

on stator current and voltage from the terminal of the IM. 

• An ANN-IFOC speed controller was designed with the 2-10-1 network 

topology to deal with the variation of operating speed conditions and 

load torque disturbances.  

1.7 Research Contribution 

The proposed technique aimed to give special control to the IM by using the ANN-

IFOC hybrid-flux-based adaptive mechanism with a speed estimator so that the IM 

could increase its speed-tracking accuracy. The approach was specifically based on 

back-EMF error compensation. It aimed to increase speed tracking by extracting 

accurate rotor flux position to achieve decoupled control of flux and speed. The 

proposed ANN technique in the estimator with the speed controller would reduce the 

speed error through the learning of the network so that it can adapt to the EV motor’s 

behaviour. The operating condition of the IM could be longer with excellent 

performance obtained by the proposed method. Therefore, the increasing current 

trends of the use of artificial intelligence should be applied in all areas of research, as 

it benefits society. 
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1.8 Thesis Outline 

This thesis presents a review of previous research and the design and analysis of the 

proposed ANN-IFOC hybrid flux estimator and speed controller of the EV motor 

drive. The thesis is divided into seven chapters and each chapter is summarised as 

follows: 

Chapter 2 gives an overview of previous research on the controlling methods 

of the IM. The basic principle of the IFOC concept was generally presented involving 

the dynamic modelling of the IM. Various methods for designing the estimator and the 

speed controller commonly used in previous research were widely covered in terms of 

the dynamic performance of the IM. Both conventional and modern techniques were 

compared through the research gap as a guide in proposing a better and more robust 

controller. Since ANNs were proposed in this research, the fundamental design of this 

method was studied in detail and several algorithms being used to design ANNs were 

gathered. 

Chapter 3 presents the steps in developing the complete system of the 

proposed drive through the proposed algorithm. The ANN method implemented in the 

hybrid flux estimator and speed controller was based on the backpropagation algorithm 

in a multilayered structure. The scheme of the Levenberg-Marquardt algorithm was 

explained for the offline training of the ANN hybrid-flux-estimator-based adaptive 

mechanism and speed controller to give the best feedback response. Also presented 

was the estimation of flux and speed by the proposed hybrid flux estimator based on 

the combination of the modified voltage model, which was compensated by the rotor-

flux-oriented current model, with the ANN stator flux control as the adaptive 

mechanism for back-EMF error compensation. Together, the conventional 

proportional-integral (PI) current controllers with pre-compensated back EMF were 

discussed as the inner-loop control. The design flow was constructed via the flowchart 

at the end of the chapter to give a clear understanding of the control process. 

Chapter 4 presents the implementation of the sensorless IFOC drive system in 

MATLAB/Simulink. The sensorless drive system was investigated through two 

general cases to investigate the robustness of the estimator and the controller. Here, 

the decoupled control between flux and torque was achieved through the simulation 

results obtained. A table was provided to indicate the speed-tracking accuracy 

achieved. 
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Chapter 5 presents the neural networks’ performance of the proposed hybrid 

flux estimator and the speed controller. The ANNs’ performance was analysed based 

on several stability plots to investigate network errors. The hyperparameters in the 

networks, such as weights and biases, were recorded in a table. These hyperparameters 

were responsible to make the networks adapt to the input model. Then, a summary was 

given to show the network parameters used in the applied neural network model. 

Chapter 6 presents the simulation results of the proposed ANN-IFOC hybrid 

flux estimator with an adaptive mechanism. Various cases were examined to verify the 

robustness of the proposed estimator. Back-EMF error compensation was explained 

based on the mesh plot graph. The estimated rotor flux and speed were presented 

through the data obtained. Comparison tables were tabulated to show the 

improvements achieved in the proposed model compared with the conventional model. 

Chapter 7 concludes the main objectives, findings, and contribution of this 

research, and recommendations were stated for future work of research.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter aims to give a clear development of EVs, which faces several issues in 

recent years, and also an overview of the development of IM control using various 

controlling methods during the late and modern eras of technology. The fundamental 

knowledge of IM modelling involving variables’ transformation with respect to frames 

is described. Various models for the estimation approach of motor variables that were 

implemented in previous research works are presented. Another important part in this 

chapter is a review of speed controller designs based on previous research, where 

conventional and modern techniques are compared for a better and more robust 

controller. Since AI was explored in this research, the fundamental knowledge of 

ANNs is described in detail and several algorithms used to design ANNs are gathered. 

2.2 Current Issues in Electric Vehicle for Future Transportation 

Economic and environmentally friendly, electric vehicles have grown in popularity 

considerably in recent years. The increasing trend in electric car registration indicates 

people’s interest in choices of future transportation. The electric light commercial 

vehicles (LCVs) globally are stated at 435,000 units, a third of which are in Europe, 

where new electric LCV registrations in 2020 were only 5% below those in China, 

which is the world leader [12]. However, these increasing trends come with some 

issues facing EV production. So, EV automakers should take actions to overcome 

some hurdles before EVs are broadly adopted. 
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A common issue related to EVs raised by customers is the driving range. The 

driving range differs based on the size of the EV. It also depends on the speed limit of 

the EV. The speed limit for a small EV is in the range of below 80 km/h. For the Toyota 

C+pod electric car roughly calculated for 150 km of range, the EV needs a 6.1 kWh 

battery pack for a single electric motor. But, for the top speed of 60 km/h, it requires a 

motor rating of 12 Hp [13]. So, a larger battery capacity is needed for a longer driving 

range. 

However, the issue regarding larger battery capacity is that more space is 

needed for the EV. Hence, it is hard to produce a small EV with a longer driving range. 

An optimum space in a small EV is needed to store the number of cells according to 

its module in the battery packs. Furthermore, this depends on the type of battery 

material. Current trends show that Li-ion batteries are widely used due to specific 

advantages, such as having more energy density and cycle durability, as shown in 

Table 2.1. 

Table 2.1: Characteristics of EV batteries [14].  

Characteristics of 

EV batteries 

Type of EV batteries 

Pb-PbO2 Ni-Cd Ni-MH Zn-Br2 Na-NiCl Na-S Li-Ion 

Working 

temperature (°C) 
-20-45 0-50 0-50 20-40 300-500 300-350 -20-60 

Specific energy 

(Wh/kg) 
30-60 60-80 60-120 75-140 160 130 100-275 

Energy density 

(Wh/L) 
60-100 60-150 100-300 60-70 110-120 120-130 200-735 

Specific power 

(W/kg) 
75-100 120-150 

250-

1000 
80-100 150-200 150-290 

350-

3000 

Cell voltage (V) 2.10 1.35 1.35 1.79 2.58 2.08 3.60 

Cycle durability 500-800 2000 500 >2000 
1500-

2000 

2500-

4500 

400-

3000 

 

Logically, EV automakers mostly focus their sales in cities with people using 

EVs as the main short-range transportation. In addition, the use of EVs depends on the 

availability of EV charging stations, which are commonly in cities with a huge 

population. So, the demand for EV charging is the biggest challenge for automakers, 

since a wide network is needed to place EV charging stations at landmark buildings. 

Besides that, EV charging stations are costly. Moreover, charging time is also an 

important factor. But this depends on the capacity of the battery. Current technologies 
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could be the main support for EV supercharging stations to be realised, which needs 

more research. 

In producing an EV, the size of EV is one of the main factors related to the 

target users and areas. It is affordable to produce small EVs for transportation in areas 

with good road conditions. Bad road conditions could affect the most important part 

of an EV, which is the motor, the lifespan of which could be short. Poor or bumping 

roads may affect motor operation at the side of motor load. Hence, maintenance cost 

has to be considered to maintain EV motor performance. Alternatively, the EV motor 

could be given special control to operate on poor roads or bumping roads so that the 

motor could withstand variable motor loads. 

Currently, several new technologies are implemented today, and still some to 

be evaluated, in order to increase EV performance. Users need a lot of consideration 

to use their own EV for daily routine, since it involves specific costs. However, using 

EVs as the main transportation could maintain a green environment. When the issues 

are narrowed down, electric motor control is qualified to be investigated for future 

development, as listed in Table 2.2. In the table, the highest score for each motor’s 

characteristics is 5, representing the highest power density, efficiency, controllability, 

reliability and technological maturity, and the lowest cost. 
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Table 2.2: Types and characteristics of electric motors in EVs [15], [16].  

Index 
Propulsion system 

DC IM PM SRM 

Power density 2.5 3.5 5 3.5 

Efficiency 2.5 3.5 5 3.5 

Controllability 5 5 4 3 

Reliability 3 5 4 3 

Technological maturity 5 5 4 4 

Cost 4 5 3 4 

Total score 22 27 25 23 

Common brand 

• PSA 

Peugeot-

Citroen 

• ZAP Xebra 

• NICE Mega 

• Tesla model 
X 

• Tesla model 

S 

• Mercedes-

Benz EQC 

• BMW X5 

• Tesla model 

3 

• BMW i3 

• Toyota Prius 

• Mitsubishi i-

MiEV 

• Land Rover 

• Holden Eco 

Advantages in EV N/A 

• Competitive 

efficiency 

against PM 

at high 

speeds on 

torque speed 
curve. 

• Possible 

efficiency 

optimisation 

with control 

of flux. 

• Economical 

due material 

cost. 

• Reduces 

total weight 

of vehicle. 

• Lower 

current 

rating for 

inverter and 

improved 

battery 
utilisation. 

N/A 

Notes: DC: Direct current; IM: Induction motor; PM: Permanent magnet; SRM: Switch 

reluctance motor; N/A: Not applicable. 

2.3 Theory of 3-Phases Induction Machine 

The most widely used AC machine is the induction or asynchronous machine due to 

its advantages, such as being rugged, reliable, and economical. It can be used as both 

a motor and a generator, like any electrical machine. The induction of the machine is 

when the stator winding produces a spinning magnetic field that causes the short-

circuited rotor winding to alternate.  

In general, the induction machine consists of two parts: the stationary 

component, called the stator, and the rotating cylindrical part, called the rotor. Both 

the stator and rotor irons are made up of laminate cuts from iron sheets a few tenths of 

a millimeter thick. This is to minimise iron losses caused by the alternating magnetic 
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fields (hysteresis and eddy currents) [17]. The laminations of the stator are slotted to 

allow a three-phase winding on the inner surface. Coils of multiple turns scattered over 

the periphery of the stator comprise this winding. The coils of each step are linked in 

sequence. An acceptable spacing of the coils (pole pitch: 180° for 2-pole motor, 90° 

for 4-pole machine) achieves the desired number of poles and the associated 

speed/frequency. The stator of an induction machine with four poles rotates at 1500 

rpm of synchronous speed with 50 Hz of fundamental frequency [18]. The ends of 

each coil are directed to the terminal box and can be attached to the three conductors 

of the network in either star or delta, as shown in Figure 2.1. The stator winding 

consists of overlapping winding represented by La, Lb, and Lc, which are offset by an 

electrical angle of 120°. When the stator winding is connected to a three-phase AC 

source, magnetic flux is induced, which then creates electromagnetic voltages ea, eb, 

and ec. Depending on the need for torque or speed control, the rotor winding 

configuration differs. It is possible to differentiate between two general categories, 

which are the squirrel-cage rotor and wound rotor. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Three-phase configuration of IM at stator side [19]. 

2.4 Adjustable Speed Drives 

The electric motor was first developed in the 1830s, 30 years after the invention of the 

first battery. Interestingly, the motor was developed before the first dynamo or 
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generator was invented. The development of electrical drives began in 1834 when the 

electric motor was developed by Thomas Davenport based on the principles of 

electromagnetic fields introduced by Joseph Henry and Michael Faraday in 1821 [20]. 

This developed technology used Faraday’s law and Fleming’s law. The development 

of electric drive in induction motors was continued by Nikola Tesla in 1888. 

The advancement in the electric drive is much related to the technological 

development of power semiconductor devices. Before semiconductors were 

developed, DC motors were widely used to obtain variable speed due to fast torque 

and easy decoupled control between the flux and torque components [21]. Flux and 

torque are always magnetically perpendicular to one another. Torque is controlled via 

armature current while maintaining the field component constant. However, regular 

maintenance is required due to the mechanical construction of the commutator and 

brushes, which limits speed, making DC motors suitable for preset speeds. In contrast, 

in an induction motor, a fixed speed is applied due to the fixed frequency and voltage 

supply. However, some actions are manually taken to control the speed of the IM by 

generating an alternating-current (AC) voltage with variable frequency using rotary 

converters, which are bulky and inflexible [22]. Poor results are obtained and, 

consequently, DC drives have been widely used.  

After the development of power semiconductors, such as the bipolar junction 

transistor (BJT) in 1950 and the silicon-controlled rectifier (SCR) in 1957, it became 

possible for power semiconductors to be used in a static converter or inverter for high-

power applications [23], [24]. AC motor speed can be controlled because variable AC 

frequency can be generated using inverters. In the early 1960s, the fabrication of BJT 

with pulse-width modulation brought new contributions to the AC motor. With 

complex algorithms, high performance of torque control of the AC motor was nearly 

achieved similar to DC drives but there was a complex magnetic coupling between the 

phases in the stator and rotor of AC machines.  

The development of adjustable speed drive (ASD) or variable speed drive 

(VSD) was rapid until the early 1980s, where the revolution of microprocessors 

contributed to modern complex algorithms as a more effective way to develop 

variable-speed AC machines due to the advantages of AC machines, such as having 

no commutators or brushes and requiring no maintenance. These advantages make AC 

machines being exploited in the applications of high variable speed compared with DC 

drives. The trend of using adjustable speed drive has increased in industrial, utility, 
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and agricultural fields. ASDs control the speed of the machinery in some applications. 

Many industrial processes, such as assembly lines, must operate at different speeds for 

different products. Process engineers had been asked for the ability to control the speed 

of machines according to variable production. It is where process conditions demand 

adjustments, such as the flow from a fan or pump, to vary the speed of the drive to 

save energy and cost. This principle can be applied in many applications, such as EVs, 

where this environmentally friendly technology is developed worldwide.  

Generally, ASDs can provide a reliable dynamic system that significantly 

contributes to the minimum energy usage and low cost of IM operation. Obtaining the 

accurate speed of the IM is an important requirement for ASDs for robust and high-

precision control. As shown in Figure 2.2, ASDs offer two approaches in controlling 

electric motors, which are scalar and vector controls. 

 

Figure 2.2: Adjustable speed drives (ASDs) of IM. 

2.4.1 Scalar Control of IM Drive System 

Most existing variable speed drive systems with induction motors are low-

performance drives, where the adjusted variables are the magnitude and frequency of 

either the voltage or the current supplied to the stator. This allows control of the 

motor’s steady-state speed or torque while the motor’s magnetic field is held at a 

Adjustable Speed Drives 

Scalar Control Vector Control 

V/f Control Slip Frequency Control Field-Oriented Control Direct Torque Control 

Open-Loop Closed-Loop Air-Gap-Flux-Oriented Rotor-Flux-

Oriented 
Stator-Flux-Oriented 

Direct Indirect 
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desired constant level. This form of control is commonly referred to as scalar control 

because the controlled stator voltage or current is presumed to be sinusoidal and 

because the system operates with only the adjusted magnitude and frequency and with 

no regard for the spatial location (phase) of the corresponding vector quantities. Scalar 

control systems are simpler than those using vector control, but the latter’s superiority 

is unquestionable due to the drive’s complex output. 

The first controlling method via scalar control used in practice was constant 

voltage/hertz (CVH), also known as V/f control. This control scheme involves the 

adjustable magnitude of stator voltage and frequency to be fed to the induction motor. 

The principle of this scheme is based on maintaining the air gap flux at a constant 

value at steady state so that the ratio of V/f remains constant by controlling stator 

voltage and frequency [25]. This scheme focuses on the steady-state dynamics, which 

allow the stabilisation of stator flux with different speed and torque values. In order to 

a maintain constant flux level, the voltage should be increased when frequency 

increases, and vice versa. As V/f is kept constant, this scheme is called the variable 

voltage/variable frequency (VVVF) method. 

The most common scheme of V/f control and widely used in industries is the 

open-loop control due to its simplicity, which was proposed in [26] and [27]. However, 

it encounters some problems, such as a sluggish response and the systems are easily 

exposed to instability because of the effect of the higher-order system. This technique 

is usually used in low-speed applications, where speed control is not necessary because 

the speed cannot be controlled precisely [28]. In this scheme, rotor speed is not 

measured, causing the slip not maintained. Hence, the torque-speed characteristics 

may operate in an unstable region, causing stator current to exceed the rated current 

and become harmful to the inverter-converter combination [29], [30]. 

Lately, advancements in power electronics and microprocessors are able to 

increase motor performance. Variable frequency and variable voltage are used 

increasingly in various applications to provide constant air gap flux so that voltage is 

frequently varied and machine saturation problems, as faced in [31], are avoided. 

Therefore, another way to improve open-loop V/f control is controlling the system 

using a closed-loop scheme, which offers a more precise solution of speed control 

compared with that of open-loop V/f control, as proposed in [32]–[34], where a PI 

controller was used to control speed. However, the voltage drop across stator resistance 

is ignored, making speed control in the low-speed region not being fully satisfied. It is 
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where the torque response takes a lot of ripples even though the scheme fully applies 

voltage compensation to boost speed control in the low-speed region, as shown by the 

voltage profile in Figure 2.3.  

 

 

 

 

 

 

 

 

 

Figure 2.3: Stator voltage versus frequency profile under V/f control. 

Alternatively, torque can be controlled, which is also not done in the open-loop 

scheme, by also using the maximum torque per ampere (MTPA) control strategy, as 

proposed in [35] and [36]. In this scheme, stator voltage, supply frequency, and slip 

power recovery can be controlled by this scalar control method in controlling the speed 

of the induction motor. Hence, the most popular scheme currently used in the scalar 

control method is the closed-loop V/f control, where the supplied voltage and 

frequency are varied to keep the V/f ratio constant. The closed-loop V/f control, as 

shown in Figure 2.4, used a PI controller, where the speed controller interacts with a 

V/f control scheme called the slip-based VVVF speed controller. The speed 

controller’s output is regarded as torque command, and the required slip is calculated 

in proportion to the torque command. The synchronous speed is determined by the 

addition of slip and measured rotor speed, where it acts as the command frequency for 

the VVVF inverter. However, the controlling operation is not very stable and the IM 

can easily lose synchronisation in the high-speed region or under abrupt load changes 

[37]. 

Based on Figure 2.3, at a higher rated frequency, the V/f ratio cannot be 

satisfied because it will lead to the field-weakening region due to insulation breakdown 

at stator windings. This is the main factor that limits the V/f control to the ratio when 

the rated frequency is reached. In order to have a stable operation in the high-speed 

Voltage-boost region 
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region, stabilising loops are introduced based on power calculation [37]–[39]. 

However, there are large overshoots in the speed response during load changes. Also, 

the phase current’s angle and the estimated rotor position’s angle are larger compared 

with those in the low-speed operation. This show that there are higher stray and friction 

losses at higher frequencies in the high-speed region, as examined in [40]. 

 

 

 

 

 

 

 

 

 

Figure 2.4: VVVF pattern and slip-based VVVF speed controller with MTPA. 

Both open-loop and closed-loop controls of the speed of the AC induction 

motor can be implemented based on the constant V/f principle. There are some 

advantages of the closed-loop control over the open-loop control that can be 

highlighted, such as the accuracy in speed response. However, previous studies faced 

challenges in solving speed control in the high-speed region, since the frequency is 

limited to give a stable operation. Due to these drawbacks, current research trends 

show that the development of vector control is widely explored and discussed. 

Attention has shifted towards various types of vector controls in order to solve the 

problems faced in the scalar method especially on the variable speed response and load 

changes in the stable operation region. 

2.4.2 Vector Control of IM Drive System 

The development of VSDs is currently increasing by introducing more effective ways 

of control operation using vector control and consequently eliminates scalar control. 

This type of control offers better dynamic performance than scalar control due to 

special characteristics. It has a different operation than those in previous controls, 
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where torque and flux are controlled by controlling the stator current fed to AC 

machines. The objective of this control is to emulate the behaviour of a separately 

excited DC machine in order to achieve decoupling between torque and flux of the IM 

with respect to the reference frame [41]. As in DC machines, the magnetic field and 

torque are directly and independently controlled by the field and armature currents. In 

AC machines, stator current components are the fundamental contributor in 

establishing magnetic field and electromagnetic torque production. The field flux 

produced by the field current is orthogonal to the armature flux produced by the 

armature current, giving rise to the most favourable condition for torque production. 

The principle of vector control is the conversion of three-phase stator currents 

into corresponding complex space vectors. The current vector is then transformed into 

a coordinate system rotating with the rotor of the machine [42]. In order to have 

decoupled control of flux and torque, rotor positions must be known. Basically, the 

speed variable is selected and measured by using a speed sensor. Then, the rotor flux 

linkage vector is estimated by the product of stator current and magnetising 

inductance. By using the rotor flux linkage, the stator current vector is further 

transformed into a d-q coordinate system to control flux and torque. 

In vector control, various control strategies are introduced based on the 

functionality of the motor system. The implementation of this control can be done in 

many ways but several basic schemes are widely used and offered in the market. The 

most popular vector controls are field-oriented control (FOC) and direct torque control 

(DTC), which have become evolutionary methods and are widely used in current 

research works.  

2.4.2.1 Direct Torque Control (DTC) 

Direct torque control (DTC) was presented by Isao Takashi and Toshiko Noguchi in 

1985 with a similar concept that was patented by Manfred Depenbrock (U.S. Patent 4, 

678, 248) in October 1984 called direct self-control (DSC), and it has the same 

objective as that of field-oriented control (FOC), which is to control the torque and 

speed of three-phase AC electric motors. DTC alleviates the step of intermediate 

current synthesis by directly linking stator voltage to the torque and flux of the 

machine. Recently, DTC is implemented in different ways. The conventional DTC is 
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based on the hysteresis controller of torque and flux that results in variable switching 

frequency for power electronic converters. The principle is to have direct control of 

the inverter state while simultaneously maintaining stator flux and torque within the 

hysteresis band limits. Hence, this type of control avoids the use of the current control 

loop. 

A hysteresis controller operates by passing the difference between the 

evaluated amount and command amount of flux and torque to the inverter. Flux and 

torque of the IM are usually estimated by using a block of estimator. If either the 

estimated flux and torque deviates from the reference more than allowed tolerance, the 

switching frequency is turned off and on so that flux and torque return to their tolerance 

bands as quickly as possible. Acting like a comparator, the controller works in different 

levels, where the torque section consists of three levels, while the flux consists of two 

levels because stator flux cannot be held constant during motor operation, as shown in 

Figure 2.5. The advantage of this control, commonly mentioned in previous studies, is 

that there is no rotor position required to attain the decouple variables [43]. 

 

 

 

 

 

 

 

 

(a)     (b) 

Figure 2.5: Hysteresis controller: (a) flux level and (b) torque level. 

The configuration of a DTC-based hysteresis controller, as shown in Figure 

2.6, is commonly used in previous research works to avoid a complex structure 

compared with those in other vector controls. Stator flux position is determined by the 

estimator directly syncing with torque and flux errors of the hysteresis controller as 

inputs to the switching table.  

The stator flux position is divided into six different sections, listed according 

to their state, so that the three-phase inverter creates six non-zero and two zero-voltage 

vectors. The proper selection of voltage vectors based on the switching table is shown 
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in Table 2.3. Based on the configuration, there are no coordinate transformations, PI 

regulators, PWM modulators, and position encoders required. Two loops of stator flux 

and torque are not enough to solve the issues faced in machine-control development, 

such as current distortion and good load disturbance rejection [43], [44]. Therefore, 

some modifications have been introduced based on this conventional scheme. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Block diagram of conventional DTC-based hysteresis controller of IM. 

Table 2.3: Switching table for voltage vector in DTC.  

Stator 

flux, ∆ψs 

Torque, 

∆τe 

Stator flux position, θs  

θ1 θ2 θ3 θ4 θ5 θ6 

1 

1 V2 (110) V3 (010) V4 (011) V5 (001) V6 (101) V1 (100) 

0 V7 (111) V0 (111) V7 (111) V0 (111) V7 (111) V0 (111) 

-1 V6 (101) V1 (100) V2 (110) V3 (010) V4 (011) V5 (001) 

0 

1 V3 (010) V4 (011) V5 (001) V6 (101) V1 (100) V2 (110) 

0 V0 (111) V7 (111) V0 (111) V7 (111) V0 (111) V7 (111) 

-1 V5 (001) V6 (101) V1 (100) V2 (110) V3 (010) V4 (011) 

 

The DTC-based hysteresis controller has completely evolved with the 

implementation of DTC with constant switching frequency using voltage synthesis 

techniques, such as PWM and SVPWM. This technique resulted in improvements, 

such as fixed amount of switching losses and minimum harmonic distortion, as 

mentioned in [45]. The idea remains the same, where flux and torque controllers are 

compulsory by replacing the conventional PI controller. The configuration of DTC-

based SVPWM for voltage synthesis, as shown in Figure 2.7, is composed of three 

controllers, which are PI speed, torque and flux controllers, with the implementation 
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of SVPWM [45]–[47]. With this scheme, the response of the IM yields superior 

performance at steady state over a wide range of speeds. However, there are some 

drawbacks, such as high ripple torque and poor dynamic performance at low speeds 

[48]. In addition, a few research studies reported that errors in flux and torque are not 

distinguished [49], [50]. In other words, the same vectors are used during starting up 

and step changes and at steady state.  

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Block diagram of modern DTC-based SVPWM of IM. 

As a rising control technology, DTC is commonly used due to its advantages, 

such as simplicity by not considering the internal parameters of IM, such as slip speed, 

rotor resistance variation, and EMF error effect. Hence, an evolutionary method is 

required to give special control characteristics to the IM. Therefore, field-oriented 

controls are widely developed and investigated to avoid the poor results from using 

DTCs. 

2.4.2.2 Field-Oriented Control (FOC) 

In AC machines, torque is expressed as the outer product of flux and current vectors. 

Therefore, maximising the torque value can be done by using the two vectors in 

orthogonal. In DC motors, the orthogonality is guaranteed by the brush and 

commutator actions. However, in AC machines, this can be achieved dynamically in 

the synchronous frame. There are two degrees of freedom, based on a balanced three-

phase current system, allocated to two different missions, which are flux regulation 
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and torque control. However, there is an unclear decomposition role according to the 

fixed coordinate frame. Thus, taking into synchronous reference frame, the roles of d- 

and q-axis currents are naturally decomposed and the dynamics resemble those of a 

separately excited DC machine. 

Therefore, the field orientation concept is used to accomplish decoupled 

control of torque and flux. This concept is the same as that in a DC machine’s direct 

torque control, which has these following requirements [51]: 

• Independent control of armature current to overcome the effects of armature 

winding resistance, leakage inductance, and induced voltage. 

• Independent control of the constant value of flux. 

When all these requirements are met at every instant of time, torque will follow 

current. This allows for torque control and decoupled torque and flux. Further 

knowledge on the decoupled control’s concept can be reviewed from the two-phase d-

q model of an induction machine rotating at synchronous speed. For summarisation of 

the d-q model, some equations are included in APPENDIX B. 

The FOC in an IM consists of controlling stator currents, where it is represented 

by a vector phasor, as depicted in Figure 2.8 [52], which projects the transformation 

of the three-phase quantities into two-coordinate d-q axes. Two constant inputs are 

required as reference, which are torque and flux. The torque component aligns with 

the q-coordinate, while the flux component aligns with the d-coordinate. It is simply 

based on transformation projection, as it handles the instantaneous electrical quantities 

by the control structure, which results in accurate control for every working operation, 

such as steady state and transient, independent of the limited bandwidth of the 

mathematical model.  
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