
THE IMPROVEMENT OF PRESSURIZED METERED-DOSE 

INHALER AND SPACERS FOR TREATING  

RESPIRATORY DISEASES 

 

 

 

 

 

 

 

 

MUHAMMAD FAQHRURRAZI BIN ABD RAHMAN 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TUN HUSSEIN ONN MALAYSIA 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



UNIVERSITI TUN HUSSEIN ONN MALAYSIA 
 

STATUS CONFIRMATION FOR THESIS 

DOCTOR OF PHILOSOPHY  
 

THE IMPROVEMENT OF PRESSURIZED METERED-DOSE  

INHALER AND SPACERS FOR TREATING RESPIRATORY DISEASES 

 

ACADEMIC SESSION: 2021/2022 

 
I, MUHAMMAD FAQHRURRAZI BIN ABD RAHMAN, agree to allow Thesis to be kept at the 

Library under the following terms: 

 

1. This Thesis is the property of the Universiti Tun Hussein Onn Malaysia. 

2. The library has the right to make copies for educational purposes only. 

3. The library is allowed to make copies of this Thesis for educational exchange between higher 

educational institutions. 

4. The library is allowed to make available full text access of the digital copy via the internet by 

Universiti Tun Hussein Onn Malaysia in downloadable format provided that the Thesis is not 

subject to an embargo. Should an embargo be in place, the digital copy will only be made 

available as set out above once the embargo has expired. 

5. ** Please Mark (√) 

 
 

CONFIDENTIAL (Contains information of high security or of great 

importance to Malaysia as STIPULATED under the 

OFFICIAL SECRET ACT 1972) Title and Abstract 

only 

 

RESTRICTED (Contains restricted information as determined by the 

organization/institution where research was 

conducted) Title, Abstract and Introduction only 

 

    EMBARGO       ______ until _______ 

      (date)          (date) 

 

     √            FREE ACCESS 

 

 

 

             Approved by, 

 

 

 

 

 

(WRITER’S SIGNATURE) (SUPERVISOR’S SIGNATURE) 

 

 

Permanent Address: 

 

NO 20, JALAN PERDANA 2/34, 

TAMAN BUKIT PERDANA,  

83000 BATU PAHAT, JOHOR 

 

Date : 18-08-2022  Date:  18-08-2022  

 

 

 

NOTE: 

 

 

**       If this Thesis is classified as CONFIDENTIAL or RESTRICTED, please attach 
the letter from the relevant authority/organization stating reasons and duration 
for such classification

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



This thesis has been examined on date 10th August 2022  

and is sufficient in fulfilling the scope and quality for the purpose of awarding the 

Degree of Doctor of Philosophy. 

 

Chairperson: 

 

PROF. DR. ZAWATI BINTI HARUN 

Faculty of Mechanical and Manufacturing Engineering 

University Tun Hussein Onn Malaysia (UTHM) 

 

 

Examiners: 

 

PROF. IR. DR. ROZLI BIN ZULKIFLI 

Faculty of Engineering and Built Environment 

Universiti Kebangsaan Malaysia (UKM) 

 

 

 

ASSOCIATE PROF. TS. DR. NURHAYATI BINTI ROSLY 

Faculty of Mechanical and Manufacturing Engineering 

University Tun Hussein Onn Malaysia (UTHM) 

 

 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



xxxii 

 

THE IMPROVEMENT OF PRESSURIZED METERED-DOSE INHALER AND 

SPACERS FOR TREATING RESPIRATORY DISEASES 

 

 

 

 

 

 

MUHAMMAD FAQHRURRAZI BIN ABD RAHMAN 

 

 

 

 

 

 

A thesis submitted in 

fulfillment of the requirement for the award of the  

Doctor of Philosophy of Mechanical Engineering 

 

 

 

 

 

 

 

Faculty of Mechanical and Manufacturing Engineering 

Universiti Tun Hussein Onn Malaysia 

 

 

 

 

 

 

 

 

SEPTEMBER 2022  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



ii 

 

 

 

 

 

 

I hereby declare that the work in this project report is my own except for quotations 

  and summaries that have been duly acknowledged 

 

 

 

 

  Student :  ………………………………...…….. 

     Muhammad Faqhrurrazi bin Abd Rahman 

 

  Date  :  ……………17/8/2022……………… 

 

 

 

 

 

 

 

  Supervisor :  ……………………………………… 

     Assoc. Prof. Dr. Norzelawati binti Asmuin 

 

 

 

 

 

 

  Co Supervisor : ………………………………………. 

    Ts. Dr. Ishkrizat bin Taib 

 

 

 

 

 

 

Co Supervisor : ………………………………………. 

 Dr. Nurul Fitriah binti Nasir 

  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



iii 

 

 

 

 

 

 

This thesis is dedicated to: 

For the sake of Allah, my Creator and my Master, 

My great teacher and messenger, Muhammad S.A.W (May Allah bless and 

grant him), who taught us the purpose of life, 

My great parents, Abd Rahman Hasan and Fatimah Sham Matt@Ahmad, who 

never stop giving of themselves in countless ways, 

My supervisor, Associate Professor Dr. Norzelawati Asmuin and my co-

supervisor, Dr. Ishkrizat Taib and Dr. Nurul Fitriah Nasir, who leads me 

through this journey with light of hope and support, 

My lovely wife, Nur Syakirah Rabiha Rosman, who stands by me when things 

look bleak, 

My cute little baby girl Nur Ayra Zhafira who always replaces my tears with 

laughs and smiles,  

My beloved sibling for her endless love,  

My friends who encourage and support me,  

All the people in my life who touch my heart, 

I dedicate this research. 

  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



iv 

 

 

 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

"Alhamdulillah", all praise to Allah SWT, the most gracious and the most merciful and 

also salutation on prophet great reverences Muhammad S.A.W., his whole family and 

ruler's friends because with Allah bless, I have managed to understand and completed 

this research successfully. Firstly, my sincere gratitude and appreciation to my 

supervisor, Assoc. Prof. Dr. Norzelawati binti Asmuin, for her advice, encouragement 

and patience throughout this research period. Not to forget my co-supervisor, Dr. 

Ishkrizat bin Taib and Dr. Nurul Fitriah binti Nasir, for additional advice and 

invaluable guidelines throughout this research. I also want to convey my deepest 

gratitude to all my lab partners and friends who have been very helpful by giving 

comments, advice and discussion sessions about this research, especially Dr. 

Mohamad Nur Hidayat and Riyadhthusollehan. I would like to confer special thanks 

to my cousin, Muhammad Asyraf, for helping me during this journey. My most 

profound appreciation to my families; my parents (Abd Rahman bin Mohd Hasan and 

mother Fatimah Sham binti Matt@Ahmad), my parents-in-law (Rosman bin Aziz and 

Rohaizan binti Mohd Ali), my sister and brothers-in-law who never stop giving 

themselves in countless ways. A million thanks to my little family, Nur Syakirah 

Rabiha binti Rosman and Nur Ayra Zhafira binti Muhammad Faqhrurrazi, for staying 

and giving me moral support and encouragement to finish this research. Lastly, I would 

like to thank the Ministry of Higher Education Malaysia and Postgraduate Research 

Grant (GPPS), Universiti Tun Hussein Onn Malaysia, for supporting this research. 

May Allah SWT bless all of us with His love. 

 

 

 

  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



v 

 

 

 

 

 

 

ABSTRACT 

 

 

 

 

The burden of respiratory diseases such as asthma and chronic obstructive pulmonary 

disease (COPD) is constantly increasing. The symptoms can be alleviated using a 

pressurized metered-dose inhaler (pMDI). However, poor inhalation technique 

incorporation with a high initial velocity of pMDI may compromise treatment efficacy. 

This problem can be tackled by optimizing the pMDI actuator nozzle and using a 

spacer. Thus, this research aims to improve drug deposition in the lower respiratory 

tract using an optimized pMDI actuator nozzle and spacers. This study employed 

computational fluid dynamic (CFD) to predict particle tracking, particle deposition, 

and spray plume characteristics. Three designs of actuator nozzle (Design A, Design 

B, and Design C), two designs of disposable spacers (AeroCup Design D and AeroCup 

Design E), and two designs of the valved-holding chamber (VHC) (AerospaAcer 

Design F and AerospaAcer Design G) had been studied. The selected designs were 

fabricated using a three-dimensional (3D) printer. Lastly, the simulation results were 

validated with particle imaging velocimetry (PIV). Based on these results, actuator 

nozzle Design C was selected due to the highest injection particle with a maximum 

velocity magnitude of 35.67m/s. Moreover, actuator nozzle Design C improved the 

drug deposition in the lower respiratory tract to 21.80% compared to the commercial 

pMDI (16.90%). AeroCup Design D shows outstanding performance by trapping the 

highest injection particle and reducing the particle velocity to the air velocity. The 

particle deposition in the lower respiratory tract improved up to 54.7%. Lastly, 

AerospaAcer Design G shows a promising result by trapping the highest injection 

particles and reducing the particles' velocity to the air velocity. AerospaAcer Design 

G further improved the particle deposition in the lower respiratory tract up to 69.8%.  

Overall, the spray plume analysis of the actuator nozzle in pMDI, disposable spacer, 

and VHC showed a similar trend with a percentage error below 5%.   
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ABSTRAK 

 

 

 

 

Bebanan penyakit pernafasan seperti asma dan penyakit pulmonari obstruktif kronik 

(COPD) sentiasa meningkat. Gejala ini boleh dikurangkan menggunakan ubat sedut 

dos bermeter (pMDI). Namun, teknik penyedutan salah disamping halaju awal pMDI 

tinggi boleh menjejaskan keberkesanan rawatan. Masalah ini boleh diatasi dengan 

mengoptimum muncung aktuator pMDI dan corong sedut. Oleh itu, penyelidikan ini 

bertujuan untuk menambahbaik pemendapan ubat dalam saluran bawah pernafasan 

menggunakan muncung aktuator pMDI teroptimum dan corong sedut. Kajian ini 

menggunakan pengiraan dinamik bendalir (CFD) untuk mensimulasi pengesanan 

partikel, pemendapan partikel, dan ciri-ciri kepulan semburan. Tiga jenis reka bentuk 

muncung aktuator (Reka Bentuk A, Reka Bentuk B, dan Reka Bentuk C), dua jenis 

reka bentuk corong sedut pakai buang (AeroCup Reka Bentuk D dan AeroCup Reka 

Bentuk E), dan dua jenis reka bentuk rongga penyimpan berkatup (VHC) 

(AerospaAcer Reka Bentuk F dan AerospaAcer Reka Bentuk G) telah dikaji. Reka 

bentuk terpilih difabrikasi menggunakan mesin pencetak tiga dimensional (3D). Akhir 

sekali, dapatan simulasi disahkan menggunakan halaju pengimejan partikel (PIV). 

Berdasarkan dapatan ini, muncung aktuator Reka Bentuk C terpilih kerana bilangan 

partikel tertinggi dengan magnitud halaju maksimum 35.67m/s. Selain itu, muncung 

aktuator Reka Bentuk C meningkatkan pemendapan ubat dalam saluran bawah 

pernafasan sebanyak 21.80% berbanding pMDI komersil (16.90%). AeroCup Reka 

Bentuk D menunjukkan prestasi cemerlang dengan memerangkap partikel tertinggi 

dan mengurangkan halaju partikel kepada halaju udara. Pemendapan partikel dalam 

saluran bawah pernafasan bertambah baik sehingga 54.70%. Akhir sekali, 

AerospaAcer Reka Bentuk G menunjukkan hasil memberangsangkan dengan 

memerangkap partikel tertinggi dan juga berjaya mengurangkan halaju partikel ke 

halaju udara. AerospaAcer Reka Bentuk G meningkatkan lagi pemendapan partikel 

dalam saluran bawah pernafasan sehingga 69.80%. Keseluruhannya, analisis kepulan 

semburan muncung aktuator dalam pMDI, corong sedut pakai buang dan VHC 

menunjukkan arah aliran sama dengan peratusan ralat bawah 5%.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research background 

 

 

Respiratory problems such as asthma and chronic obstructive pulmonary disease 

(COPD) inflict an immense worldwide health burden. Over 1 billion individuals 

worldwide suffer from acute or chronic respiratory conditions, which account for 7% 

of all mortality (4.2 million deaths) (Marciniuk et al., 2017). Respiratory problems are 

characterized by chronic airways inflammation that induces bronchial 

hyperresponsiveness and decreased lung function. Approximately 97.2 million 

individuals globally suffer from moderate to severe COPD. About 3 million 

individuals die each year, making it the third leading cause of mortality — and the 

numbers are increasing (Li et al., 2020). Nearly 334 million individuals worldwide 

have asthma, the most prevalent chronic disease of childhood, affecting 14% of 

children (Enilari & Sinha, 2019).  

Typically, respiratory problems are treated using a nebulizer, a dry powder 

inhaler (DPI), and the pressurized metered-dose inhaler (pMDI) (Ibrahim et al., 2015). 

However, the situation has been exacerbated because the nebulizer is not 

recommended during the current coronavirus disease 2019 (COVID-19) pandemic 

(Fink et al., 2020; Mei-Zahav & Amirav, 2020). Individuals with respiratory problems, 

particularly asthma and COPD, are more susceptible to the severe repercussions of 

COVID-19 as viral infections may result in pneumonia, affecting the respiratory 

system (Rabe & Watz, 2017; Leung et al., 2020). Due to their ease of use and cost-

effectiveness, DPIs and pMDIs became some of the most popular and common 

methods of delivering pharmaceutical drugs, substituting the nebulizer. Despite that, 

the primary disadvantage of DPIs is their high surface-free energy, which causes them 
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to bind together cohesively (Shetty et al., 2020). Consequently, it has a poor flow and 

aerosolization efficiency and tends to accumulate within the inhaler. Moreover, some 

patients with nerve or muscle weakness might have difficulty inhaling DPI forcefully. 

Poor coordination, such as blowing and exhaling directly into the device, might 

potentially result in medicine scattering prior to inhalation (Levy et al., 2019). Figure 

1.1 shows the image of the nebulizer and DPI. 

 

(a) (b) 

 

Figure 1.1: Device to treat respiratory problems. a) nebulizer, b) dry powder inhaler 

(Atkins et al., 2005; Santati et al., 2019) 

 

 

In contrast to DPIs, pMDIs have a canister that aids medication delivery to the 

lung. Thus, pMDI is more suitable for individuals with nerve or muscle weakness, 

such as the elderly and children. Figure 1.2 shows the components of pMDI. Previous 

studies have demonstrated that pMDI decreased the drug deposition in the pharynx, 

boosting the drug deposition in the lower respiratory tract (Vincken et al., 2018). The 

geometry of the actuator nozzle inside pMDI is one of the factors affecting drug 

deposition in the lower respiratory tract (McKiernan, 2019; Abd Rahman et al., 2020). 

The pMDI actuator nozzle is a vital subsystem that directly impacts the pMDI’s 

distribution properties. The diameter, length, and actuator angle of the orifice might 

significantly affect the atomization of particles. Furthermore, pMDI contains 

hydrofluoroalkane (HFA) as an inhaler propellant, obviating the need for harmful 

chlorofluorocarbon (CFC). HFA, with much smaller particle size, delivers more than 

10% to 15% of drugs to the lower respiratory tract (Stein & Thiel, 2017).  
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Figure 1.2: The components of pMDI (Lavorini, 2013) 

 

 

The proper use of pMDI is challenging, with the most critical problem being 

synchronizing actuation and inhalation. A spacer is designed to assist patients with 

difficulty with their inhaler techniques. In general, the spray plume generated by the 

pMDIs is faster than the patient's inhalation. Children and the elderly confront the 

challenge of coordinating device actuation with patient inhalation when using pMDIs. 

Additionally, the patient’s breathing pattern influences the effectiveness of pulmonary 

delivery. Rapid inspiration is not recommended when using pMDIs because it results 

in turbulent airflow and high velocity, increasing impaction deposition in the upper 

airways (Lavorini et al., 2017). In these scenarios, most drugs are deposited in the 

upper respiratory tract. The drug delivery efficiency of pMDIs in the lower respiratory 

tract can be increased by utilizing spacers and valved holding chambers (VHCs) 

(Vincken et al., 2018).  

A spacer is a tube or extension device placed at the interface between the 

patient and the pMDI. There are two types of spacers available in the market: a simple 

spacer, and a VHC, as shown in Figure 1.3. A simple spacer is usually disposable and 

for short-term usage. It is made from plastic bottles, Styrofoam or paper cups, plastic 

baggies, or even toilet paper rolls (Lavorini et al., 2020). On the other hand, VHC has 

a one-way valve at the mouthpiece end to allow inhalation and prevent exhalation into 

the chamber (Vincken et al., 2018). It is reusable and easy to clean, ideal for long-term 

use. Spacers enable the patients to breathe from a “standing aerosol cloud” that does 

not require breath coordination (Chandel et al., 2019). These inhalation aids slow 

down the spray plume production, allowing the propellant to evaporate from the larger 
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droplet, increasing lower lung deposition and decreasing oropharyngeal deposition 

(Ibrahim et al., 2015).  

 

(a) (b) 

 

Figure 1.3: Two types of spacers. a) simple spacer and b) VHC (Dissanayake & 

Suggett, 2018; Thong et al., 2021) 

 

 

Experimentally developing and optimizing inhalation devices will be costly 

and time-intensive. The rapid development of innovative devices might be critical for 

their thriving market penetration in a highly competitive environment. This drawback 

can be resolved by decreasing the number of experiments and trials using 

computational models. Computational fluid dynamic (CFD) models may substantially 

reduce the time to develop new inhalation products (Milenkovic et al., 2017). For 

optimizing drug delivery, CFD models have been employed to predict injection 

particle number, particle velocity magnitude, particle deposition patterns, and spray 

plume characteristics (Raman et al., 2018). 

This study first designed the three-dimensional (3D) model of pMDIs, 

disposable spacers, and the VHCs through SOLIDWORKS 2019. The best design was 

selected according to injection particle number and maximum particle velocity 

magnitude in ANSYS Fluent version 19.2. This study also investigated the percentage 

of drug deposition in the lungs of selected designs using scFLOW software. Next was 

fabricating the chosen designs using a fused deposition modeling (FDM) 3D printer. 

Following that, the spray plume characteristics of the new design actuator nozzle in 

pMDI, disposable spacer, and VHC were observed using particle imaging velocimetry 

(PIV). Finally, the spray plume characteristics results were validated by comparing the 

simulation study with the experimental. This research established that the new design 

actuator nozzle in pMDI, disposable spacer and VHC contributed significantly to 

enhancing the drug deposition in the lower respiratory tract. 
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1.2 Problem statement 
 

 

Drug delivery to the lungs has emerged as a crucial process in treating respiratory 

problems. Despite this, poor inhalation techniques may compromise treatment 

efficacy. The inhaler’s improper use reduced the amount of drugs delivered to the 

lungs due to direct flow toward the throat (Chongtu et al., 2017). Even with a good 

inhalation technique, most pMDIs only deposit 10% to 20% of the dosage in the lungs 

(Lavorini et al., 2017). Furthermore, the high initial velocity produced by common 

pMDIs, in conjunction with the larger particle sizes, resulted in a sizeable proportion 

of particles impacting the mouth and throat prior to the propellant evaporating, 

decreasing the number of particles available for inhalation (Fonceca et al., 2019). 

Thus, reducing the maximum particle velocity and increasing injection particles 

number may affect the drug deposition in the lower respiratory tract. Several initiatives 

have been taken to address this shortcoming. This problem can be addressed in two 

ways: 1) optimizing the actuator nozzle and 2) using a spacer. Despite several studies 

being available, research into optimizing the actuator nozzle remains limited and 

underexplored. Additionally, previous research indicated that many spacers were 

made from bottomless plastic bottles and toilet paper rolls, increasing the concern that 

the drugs administered to the lungs may not be optimum to alleviate symptoms 

(Vincken et al., 2018; Lavorini et al., 2020). Thus, this study aimed to investigate the 

potency of a novel actuator nozzle design in pMDIs and spacers to improve drug 

particle deposition in the lower respiratory tract by decreasing the particle velocity 

magnitude but increasing the number of injection particles. 

 

 

1.3 Research objectives 

 

 

The general objective of this study was to improve drug deposition in the lower 

respiratory tract by using a novel actuator nozzle design in pMDIs and spacers to 

alleviate respiratory symptoms (asthma, COPD and COVID-19).  
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The study objectives were as follows: 

1. To analyze the particle tracking (injection particles and maximum velocity 

magnitude) in pMDIs, disposable spacers, and VHCs using ANSYS Fluent 

version 19.2, while actuator nozzle (orifice diameter, length of orifice and angle 

of actuator) been analyze in pMDIs only. 

2. To examine the percentage of drug deposition in the lower respiratory tract for 

the selected new design of pMDI, disposable spacer, and VHC using scFLOW 

software. 

3. To investigate the spray plume characteristics (spray penetration, spray cone 

angle and spray plume width) of the new design pMDI, disposable spacer, and 

VHC using ANSYS Fluent version 19.2 and experimental PIV. 

 

 

1.4 Scope of study and limitation 

 

 

The scope of the study was limited to: 

 

1. Commercial products: 

a) Pressurized metered-dose inhaler (pMDI) 

b) DispozABLE spacer (disposable spacer) from Clement Clarke 

International, United Kingdom 

c) AeroChamber (valved holding chamber) from Allergan Sales, LLC, an 

AbbVie company, United States 

d) AngelBiss (valved holding chamber) from AngelBiss Medical 

Technology, China 

2. The simulation employed the ANSYS software version 19.2 and scFLOW 

software, conducted in the Computational Fluid Dynamic (CFD) laboratory at 

Universiti Tun Hussein Onn Malaysia (UTHM). The following were the 

simulation properties: 

 

a) ANSYS software version 19.2 

i. Optimization of pMDI actuator nozzle (Design A, Design B, Design 

C, and commercial pMDI) using response surface method (RSM) 

ii. Three (3) designs were selected for disposable spacer (Design D, 

Design E, and commercial disposable spacer) 
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iii. Four (4) designs were selected for VHC (Design F, Design G, 

commercial VHC 1, and commercial VHC 2) 

iv. K-epsilon for turbulence modeling 

v. Pressure inlet = 5.2 bar (More et al., 2014) 

 

b) scFLOW software 

i. Two (2) designs were selected for pMDI (Design C and commercial 

pMDI) 

ii. Two (2) designs were selected for disposable spacer (Design D and 

commercial disposable spacer) 

iii. Four (4) designs were selected for VHC (Design F, Design G, 

commercial VHC 1, and commercial VHC 2) 

iv. K-omega for turbulence modeling 

v. Recommended inhalation flowrate for pMDI = 30 L/min (Haidl et al., 

2016) 

vi. Pressure inlet = 5.2 bar (More et al., 2014) 

 

3. An experiment using PIV has been conducted at the Aerodynamic laboratory, 

UTHM. The simulation result was validated by experimental results regarding 

spray penetration, spray cone angle, and spray plume width. 

4. The materials used as filament in 3D printing are polylactic acid (PLA), 

thermoplastic polyurethane (TPU), and polyvinyl alcohol (PVA). PLA material 

was used to print the actuator nozzle in the pMDI (Design C), the disposable 

spacer Design D components, and the VHCs (AerospaAcer Design F and 

AerospaAcer Design G). TPU was used to print the universal backpiece, 

duckbill, and flap valve for AerospaAcer Design G. PVA functions as a 

support, printing the PLA without any damage, particularly in the hollow parts. 

5. This study employed two (2) FDM 3D printing machines: a) Creality Ender 3 

Pro (the single extruder machine used to print the PLA and TPU materials) and 

b) Flashforge Creator Pro (the only double extruder used to print the PLA and 

PVA materials simultaneously).  

6. This study utilized a) SOLIDWORKS 2019 to design the components of the 

actuator nozzle in the pMDI, disposable spacer, and VHCs, b) FlashPrint 

version 4.1.0, and c) Ultimaker Cura version 4.6.2 software in a 3D printing 
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machine to print the materials,  d) ImageJ to measure the spray penetration, 

spray cone angle and spray plume width for the new design pMDI, disposable 

spacer, and VHCs, e) scFLOW software to discover the percentages of the 

particle’s deposition in the lungs of new design pMDI, disposable spacer, and 

VHCs, and f) ANSYS Fluent version 19.2 to determine particle tracking 

(injection particles, maximum velocity magnitude, and axial distance) and 

RSM optimization.   

 

 

1.5 Significance of the study 

 

 

Developing the actuator nozzle of pMDI and spacers will benefit society, especially 

individuals diagnosed with respiratory problems such as asthma, COPD, and COVID-

19, by increasing the drug deposition in the lower respiratory tract. These prototypes 

are made from non-toxic and environmentally friendly materials, eliminating the 

environmental issues in response to the government’s call (The 12th Malaysia Plan) to 

adopt green technology. It also enhances expertise and local technology vital for 

national development per Malaysia’s Science and Technology Development Plan 2021 

- 2030 (15 KEGA). Moreover, it is less expensive, more convenient, portable, and 

relatively maintenance-free than nebulized therapy. Furthermore, studying spacer’s 

development will boost demands for local products and economic circulation in the 

local market. It could substitute for the inhaler spacer imported from abroad, which is 

much less costly, alleviating the burden of purchasing an expensive spacer. 

Interestingly, over 1000 of the new disposable spacers have been distributed to the 

healthcare centers across Malaysia, including Hospital Universiti Kebangsaan 

Malaysia, Hospital Putrajaya, Batu Pahat Health Clinic, and Ayer Hitam Health Clinic, 

as part of the company’s corporate social responsibility (CSR) initiative to eliminate 

the burden shouldered by frontliners during the pandemic (APPENDIX A). 
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1.6 Outline of the thesis 

 

 

The thesis was divided into five (5) chapters, which were as listed below: 

 

 CHAPTER 1 Introduction: Provides context for this study by outlining the 

research background, problem statement, research objectives, study scopes, 

limitations, and study significance. 

CHAPTER 2 Literature Review: Provides background information on the 

pMDI, disposable spacer, and VHCs, as well as pertinent information about the study's 

objectives and scopes of study, which includes a fundamental principle of operation, 

the performance of the pMDI's actuator nozzle features (diameter of the orifice, angle 

of the actuator, and length of the orifice), and the research gap in pMDI and spacers 

research. 

CHAPTER 3 Methodology: Covers development of the 3D designs for 

actuator nozzle in pMDI, disposable spacer, and VHCs geometry employing 

SOLIDWORKS 2019. This chapter also discusses the fabrication setup procedures 

utilizing 3D printing machines, experiments utilizing PIV, and simulation employing 

ANSYS Fluent version 19.2 and scFLOW software.  

CHAPTER 4 Results and Discussion: Explanation of the optimization results 

for the various parameters: diameter of the orifice, angle of the actuator, and length of 

the orifice for the pMDI. The number of injection particles, maximum particle 

velocity, axial distance, and drug particle deposition of the pMDI, disposable spacer, 

and VHCs were determined and discussed. In addition, this chapter includes a 

discussion of the validation result obtained from experimental work.  

CHAPTER 5 Conclusion and Recommendation: Summarizes and concludes 

the research output and recommends future research. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Respiratory system 
 

 

The respiratory system is primarily responsible for supplying oxygen to body tissues 

for cellular respiration, removing waste products such as carbon dioxide, and 

maintaining acid-base balance (Patwa & Shah, 2015). The respiratory system is 

divided into two zones; conducting zones (nose to bronchioles) which form a path for 

conduction of the inhaled gases, and respiratory zone (alveolar duct to alveoli), where 

the gas exchange takes place (Meyerholz et al., 2018). The respiratory system is 

divided anatomically into the upper and lower respiratory tracts. Figure 2.1 shows the 

schematics diagram of the human respiration system.  

 

 
 

Figure 2.1: Human respiration system (Han & Hirahara, 2016) 
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2.1.1 Upper respiratory tract 

 

 

The first section of the upper respiratory tract is called the extra-thoracic region, which 

includes the pharynx, oral cavity, nasal cavity, and larynx. The pharynx is a tube-like 

passage connecting the posterior nasal and oral cavities to the larynx and esophagus. 

It is divided into the nasopharynx, oropharynx, and laryngopharynx. This region serves 

as the first barrier in the human respiratory system against inhaled particles (Gulati & 

Cullen, 2017). This region plays a crucial role in improving drug delivery to the human 

lung. Most of the time, inhaled particles are trapped in this region. Geometrical 

complexities, including airway bends and sudden cross-sectional changes, can 

influence the turbulence level of inhaled air (Lizal et al., 2020).  

 

 

2.1.2 Lower respiratory tract 

 

 

The second section of the lower respiratory tract, referred to as the trachea-bronchial 

(TB) region, resembles an inverted tree composed of trachea, bronchi, bronchioles, 

and alveoli (Gulati & Cullen, 2017). As shown in Figure 2.2, the tracheobronchial tree 

is a complex system that transports gases from the trachea down to the acini, 

exchanging the gases. It is partitioned into 23 generations of dichotomous branching, 

extending from the trachea (generation 0) to the last order of terminal bronchioles 

(generation 23) (Patwa & Shah, 2015). At each generation, each airway is split into 

two smaller daughter airways. The airways are purely known as conducting pipes from 

the trachea (generation 0) to the terminal bronchioles (generation 5 to 16). Due to the 

absence of gas exchanges in this region, the volume in these pipes is called the dead 

space volume (average 150 ml) (Han & Hirahara, 2016). The terminal bronchioles 

(generation 16) divide into respiratory or transitional bronchioles (generations 17 to 

19) with occasional alveoli at the walls. These respiratory bronchioles divide further 

into alveolar ducts (generations 20 to 22), wholly lined with alveoli. This region is 

referred to as acinus (generations 16 to 23). Moreover, the acinus comprises respiratory 

airways and forms functional tissues of the lung. The oxygen and carbon dioxide gas 

exchanges occur in this region. It has the most complex structure compared to other 

regions (Patwa & Shah, 2015; Han & Hirahara, 2016). Lastly, the distal ends of 

alveolar ducts open into the alveolar sac made up of alveoli. 
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Figure 2.2: Tracheobronchial tree showing 23 generations (Patwa & Shah, 2015) 

 

 

2.2 Respiratory problem 
 

 

The respiratory problem refers to any disorder of the airways and lungs that affects 

human respiration (Kim et al., 2018). Lower respiratory system problems are less 

prevalent than upper respiratory system problems. However, lower respiratory 

problem symptoms are usually more severe than the symptoms of an upper respiratory 

problem. Coughing is a particularly acute symptom of all diseases affecting any part 

of the bronchial tree (Bouazza et al., 2021). The second most crucial symptom of lung 

disease is dyspnea, or shortness of breath (Bello et al., 2018). This sensation may arise 

acutely upon inhalation of foreign particles into the trachea. Chest pain may be an early 

symptom, but it is most often associated with an attack of pneumonia. It is due to an 

inflammation of the pleura following the onset of the pneumonic process (Miravitlles 
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& Ribera, 2017; Yadav & Gumber, 2017). Figure 2.3 shows the respiratory problems 

considered in this study.  

 

 

 
 

Figure 2.3 Respiratory problems 

 

 

2.2.1 Asthma 

 

 

Asthma is defined as a chronic inflammatory disease of the airways. Chronic 

inflammation is associated with airway hyperresponsiveness, which is an exaggerated 

airway-narrowing response to specific triggers by exposure to certain allergens such 

as weeds, pollen, pets, dust, and mites, among others (Naclerio et al., 2020). Some 

irritants in the air, such as smoke, chemical irritants, certain odors, extreme weather 

conditions, or the presence of sulfites in particular foodstuffs, may also cause or trigger 

asthma (Yadav & Gumber, 2017). Certain conditions, such as respiratory illness, 

exercise, and flu, predispose individuals to asthmatic attacks (Panagiotou et al., 2020). 

An outburst of specific emotions, such as shouting, crying, and laughing, may also 

trigger an asthmatic episode (Lumb, 2017). Wheezing, breathlessness, chest 

tightening, and coughing are common symptoms, especially at night or early morning 
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(Lumb, 2017). The airflow limitation is responsible for airway tissue reactions due to 

smooth muscle contractions, edema, and hypersecretion.  

These symptoms are generally associated with extensive but varying airflow 

obstruction within the lungs that is usually reversible either spontaneously or with 

appropriate asthma medications, such as a fast-acting bronchodilator short-acting β2-

agonists (SABAs) (Quirt et al., 2018). Short-acting β2-agonists (SABAs) such as 

salbutamol are the most frequently prescribed medications in developing countries for 

children and adults with respiratory problems (Muneswarao et al., 2019). Some 

inhaled asthma medications are pressurized metered-dose inhalers (pMDIs) and dry 

powder inhalers (DPIs). SABAs such as salbutamol are commonly prescribed to 

patients with asthma as the preferred reliever for treating acute symptoms. This SABA 

has no anti-inflammatory properties (Chin et al., 2017). Nevertheless, it can relax the 

muscles lining the airways that carry air to the lungs (bronchial tubes) within five 

minutes, increasing airflow and making breathing easier. It may provide relief from 

asthma symptoms for three to six hours.  

 

 

2.2.2 Chronic obstructive pulmonary disease (COPD) 

 

 

Chronic obstructive pulmonary disease (COPD) is a common preventable and treatable 

disease. COPD is characterized by persistent airflow limitation that is usually 

progressive, caused by an enhanced chronic inflammatory response in the airways and 

lungs due to noxious particles or gases (Weinberger et al., 2019). COPD patients face 

a variety of symptoms daily. Dyspnea, coughing, and sputum production are the most 

prevalent symptoms (Miravitlles & Ribera, 2017). Wheezing, chest tightness and chest 

congestion are less prevalent; nevertheless, symptoms are bothersome (Miravitlles & 

Ribera, 2017). Several risk factors and triggers, including smoking, severe airflow 

limitation, bronchiectasis, bacterial and viral infections, as well as comorbidities, 

exacerbate COPD (Viniol & Vogelmeier, 2018). 

COPD is often treatable with β2-agonists and anticholinergics as well as 

systemic corticosteroids. SABAs and short-acting anticholinergics are the initial 

treatment for COPD exacerbations. Systemic corticosteroids have been a standard 

treatment for exacerbations for decades (Crisafulli et al., 2018). It has been shown to 

improve lung function and oxygenation, minimize the recovery and hospitalization 
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time and duration, and reduce treatment failures. COPD patients may also be 

susceptible to bacterial infection in certain circumstances, and these patients will 

receive antibiotic medication (Miravitlles & Anzueto, 2017).  Besides, non-invasive 

ventilation (NIV) and invasive ventilation (IV) can be used to treat COPD. In COPD 

patients with acute respiratory failure, NIV is considered the standard of care (Walter 

et al., 2018). However, severe or chronic COPD patients who need hospitalization or 

emergency room access require intubation with IV and intensifying pharmacologic 

therapies such as bronchodilators, inhaled corticosteroids, phosphodiesterase-4 

inhibitors, long-term antibiotics, and mucolytics (Viniol & Vogelmeier, 2018). Lastly, 

smoking cessation is critical for patients with COPD to prevent further morbidity and 

mortality (Viniol & Vogelmeier, 2018). 

 

 

2.2.3 Coronavirus disease 2019 (COVID-19) 

 

 

On 12th January 2020, the World Health Organization (WHO) announced the epidemic 

outbreak of coronavirus disease 2019 (COVID-19). It is caused by a novel, severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Elengoe, 2020). SARS-

CoV-2 may be transmitted by respiratory droplets up to a distance of 2m or by 

contaminated surfaces, resulting in infection through contact transmission (Peng et al., 

2020). Patients infected with the SARS-CoV-2 are at risk of developing and suffering 

acute respiratory failure, which may result in death (Mohanty et al., 2020). COVID-

19 symptoms are divided into systemic and respiratory disorders. Fever, headache, 

coughing, fatigue, diarrhea, sputum production, hemoptysis, dyspnoea, and 

lymphopenia are common disorders of COVID-19. The respiratory disorders of 

COVID-19 include rhinorrhea, sneezing, sore throat, pneumonia, ground-glass 

opacity, and acute respiratory distress symptoms (Law et al., 2020). 

As hospitalization rates rise due to the spread of COVID-19, salbutamol has 

become the first-line defense in the emergency room for COVID-19 patients with 

respiratory distress. Special groups such as elderly patients with asthma or chronic 

obstructive pulmonary disease (COPD) and premature infants with compromised 

lungs due to the respiratory syncytial virus rely heavily on salbutamol (Elbeddini et 

al., 2020). Additionally, some hospitals use nebulizers to treat COVID-19 patients 

(Sethi et al., 2020). Another treatment option is administering anti-inflammatory drugs 

to reduce the symptoms (Creeden et al., 2021).  
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COVID-19 may cause severe respiratory symptoms and an inability to breathe 

in an adequate amount of oxygen if left untreated. Ventilators may save COVID-19 

patients’ lives by supporting their lungs until their bodies are able to fight the virus 

(Dondorp et al., 2020). Approximately 96 COVID-19 vaccines are currently at various 

clinical development stages, offering hope for a better future (Olliaro et al., 2021). 

Preventive measures such as frequent handwashing with soap or sanitizer, avoiding 

handshakes, wearing masks and gloves, maintaining a social distance of 1m to 2m, 

coughing into disposable tissues, and avoiding gatherings in affected areas can help to 

prevent viral infection from spreading (Elengoe, 2020). 

 

 

2.3 Medical inhalation therapy  

 

 

Drugs and medication must be targeted and administered to the appropriate therapeutic 

or biological site of action to manage these respiratory problems effectively. The 

suitable action site is the lungs' small airways in many cases. Inhaled drug products 

are exceedingly popular for delivering drugs through the lungs or nasal mucosa for 

local or systemic therapy. Inhaled bronchodilators and corticosteroids are the 

mainstays of treating respiratory diseases (Alharbi et al., 2021). There are currently 

four (4) major medical inhalation devices: nebulizer, ventilator, DPI, and pMDI. Each 

of them has its advantages and drawbacks. The example of medical inhalation therapy 

is shown in Figure 2.4. 

 

 
 

Figure 2.4 Examples of medical inhalation therapy 
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2.3.1 Nebulizer 

 

 

A nebulizer is a device that converts liquids into aerosols for inhalation into the lower 

respiratory tract. Nebulizers produce and deliver a polydisperse aerosol in the range of 

1µm to 5µm (Pleasants & Hess, 2018). While most nebulizers use compressed air for 

atomization, some use ultrasonic energy. Nebulizers can deliver bronchodilator 

(airway-opening) medications such as albuterol, Xopenex, or Pulmicort (steroid) to 

treat respiratory problems (Dhand, 2017). A liquid solution or suspension is added to 

the nebulizer for each treatment (Pleasants & Hess, 2018). The three significant 

nebulizers are jet nebulizers, ultrasonic nebulizers, and mesh nebulizers (Figure 2.5). 

Jet nebulizers are capable of nebulizing all drugs in solution or suspension form. In 

contrast, ultrasonic nebulizers can only nebulize aqueous solutions and may produce 

heat during the nebulization process. Similarly, mesh nebulizers can nebulize aqueous 

solutions but are less efficient at nebulizing suspensions formulation (Prajapati et al., 

2019).  

 

  
(a) (b) 

 

(c) 

 

Figure 2.5: Three types of nebulizers. a) jet nebulizer, b) ultrasonic nebulizer and, c) 

mesh nebulizer (Alharbi et al., 2021) 
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The advantages of nebulizers include that they do not require patient 

synchronization between inhalation and actuation; it is beneficial for pediatric, elderly, 

ventilated, and non-conscious patients and those unable to operate pMDIs or DPIs 

(Barjaktarevic & Milstone, 2020). Nebulizers can deliver higher doses than other 

aerosol devices, albeit at the expense of lengthier administration timeframes. Certain 

severe respiratory conditions benefit more from nebulized medicines than standard 

inhaler devices (Tashkin, 2016). One disadvantage of nebulizers for users is that they 

must be assembled and loaded with medicine prior to each usage. Then, if the nebulizer 

is to be reused, it must be disassembled and cleaned (Ibrahim et al., 2015). These steps 

may be challenging and troublesome for untrained and inexperienced patients. 

Additionally, nebulizers are costly, bulky, require oxygen and electricity, deliver a 

high dosage, and produce less pulmonary deposition (Prajapati et al., 2019). They 

transmit infection from unsterile chambers or tubing into the lungs, particularly during 

prolonged usage. Finally, nebulizers waste a significant amount of medication 

vaporizing from the outside (Amirav & Newhouse, 2020). 

 

 

2.3.2 Ventilator  

 

 

A ventilator is a device that supports or recreates the breathing process by pumping air 

into the lungs. Ventilators were used to support those unable to breathe adequately by 

supplying oxygen into the lungs and removing carbon dioxide. Their 

breathing inability might result from general anesthesia or a respiratory issue (Hossain 

et al., 2018). Ventilator support is classified into non-invasive ventilator (NIV) and 

invasive ventilator (IV). The NIV is also referred to as a face mask ventilator in which 

the breathing support is administered through a face mask, nasal mask, or a helmet 

(Bahammam et al., 2018). IV is classified into two types: mechanical ventilator and 

tracheostomy ventilator. Mechanical ventilators operate via a tube inserted into a 

person’s throat, pumping air into the lungs and removing carbon dioxide. 

In contrast, a tracheostomy ventilator involves the creation of an incision in the 

windpipe and the insertion of a tube that allows air to flow in and out (Walter et al., 

2018). The use of NIV is associated with a marked reduction in the need for 

endotracheal intubation, a decrease in complication rate, reduced duration of 

hospitalization, and a substantial decrease in in-hospital mortality (Cortegiani et al., 

2017). However, a ventilator might damage the lung tissue if excessive pressure is 
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applied for an extended period. In certain pulmonary obstruction diseases, the 

ventilator is required to assist the lungs in processing oxygen (Crisafulli et al., 2018). 

Figure 2.6 shows the current-generation ventilators used in the intensive care unit. 

 

 
 

Figure 2.6: Current-generation intensive care unit ventilators (Puritan Bennett 840) 

(Srinivasan et al., 2020) 

 

 

2.3.3 Dry powder inhaler (DPI) 
 

 

DPIs have been used extensively to treat various local and systemic diseases and are 

superior to other formulations. This feature is attributed to the active substance’s solid 

form that provides enhanced stability, ease of use, and ability to administer high 

dosages (Akdağ, 2019). Despite their apparent simplicity, DPIs are sophisticated 

devices. In order to deliver the active drug to the respiratory tract, users must inhale 

through the device. This inhalation provides energy that breaks up the compacted drug 

powder, a process known as de-agglomeration. It transports the de-agglomerated drug 

into the lungs (Levy et al., 2019).  

There are four main types of DPI systems, as shown in Figure 2.7. The single-

unit dose inhaler requires the patient to load the device with a single hard gelatine 

capsule containing the powder formulation prior to usage. This is the most common 

type of DPI device currently available. The second type is the single-unit disposable 

dose DPI. It contains a pre-metered amount of a single dose that can be discarded 

following use. The third type is the multiple-unit DPI. It delivers individual doses from 

pre-metered replaceable blisters, disks, dimples, or tubes. Another type of DPI is a 
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multiple-dose reservoir inhaler with a bulk amount of drug powder in the device with 

a built-in mechanism to meter a single dose (Lavorini et al., 2017). 

 

 
 

Figure 2.7: Examples of DPIs devices (Lavorini et al., 2017) 

 

 

The efficacy of DPIs can be enhanced by developing novel drug delivery 

systems that optimize aerodynamic parameters, formulation stability, and drug 

physicochemical properties (Shetty et al., 2020). DPIs are actuated and driven by a 

patient’s inspiratory flow. It does not require propellants to generate the aerosol or 

coordination of inhaler actuation with inhalation (Lavorini et al., 2017). Patients 

occasionally report that they are unsure whether or not they have taken their dose and 

that devices are discarded before they are completely empty (Alharbi et al., 2021). 

Micronization results in the formation of particles with a mass median aerodynamic 

(MMAD) of less than 5 μm that readily deposit in the lungs. Due to the strong, cohesive 

forces between such fine particles, disaggregation is complex, requiring large carrier 

particles such as lactose to assist in particle separation (Peng et al., 2016). Finally, to 

achieve deposition in the lungs, an inspiratory flow rate between 30 L/min to 120 

L/min is required to separate the drug particles from the lactose carrier. Additionally, 

DPIs are not recommended for children, the elderly, and those severely ill as they often 

cannot provide a high enough respiratory flow rate (Shetty & Srinivasan, 2017). 
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2.3.4 Pressurized metered-dose inhaler (pMDI) 

 

 

A pMDI is the first inhaler device commercially available to treat airway diseases. It 

is a cost-effective inhaler device that is easy to handle, reliable, and extensively 

utilized (Rogliani et al., 2017). A pMDI device consists of a metering valve and stem, 

a mouthpiece actuator, and a pressurized canister containing a medication suspended 

within a propellant (Gumani et al., 2017). Moreover, Figure 2.8 illustrates the 

schematic diagram of pMDI. The propellant is a compressed liquefied gas capable of 

maintaining a constant vapor pressure, essential for proper device functionality. It 

maintains a consistent suspension pressure regardless of the volume remaining in the 

canister. Otherwise, the pressure would fluctuate with each use of the inhaler, 

significantly limiting the device's effectiveness (Ruwaida et al., 2020). 

 

 
 

Figure 2.8: Pressurized metered-dose inhaler (pMDI) (Alharbi et al., 2021) 

 

 

Initially, pMDI devices contained chlorofluorocarbons (CFCs) as a propellant. 

However, it has been phased out in favor of the CFC-free propellant hydrofluoroalkane 

(HFA) following the implementation of the 1987 Montreal Protocol — an international 

agreement to ban CFCs due to their documented role in ozone depletion (Andersen et 

al., 2018). However, this propellant switch has had no adverse effect on the capability 

of pMDI devices to adequately deliver inhaled medications to the lungs (Gumani et 

al., 2017). Instead, HFA-pMDI has been developed to deliver smaller particles with a 
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higher fine particle fraction (FPF) than CFC-pMDIs. (Roche & Dekhuijzen, 2016). 

These properties explained why pMDIs sparked unprecedented interest in lung drug 

delivery. 

The HFA-containing pMDIs tend to produce much softer and warmer plumes, 

resulting in less oropharyngeal deposition (Gumani et al., 2017). Moreover, the 

warmer plume decreases the number of patients experiencing a phenomenon known 

as the ‘cold freon’ effect, a cold sensation felt at the back of the throat following device 

actuation. This is most certainly a result of the forceful plume impacting the back of a 

patient’s throat. The ethanol-HFA-134a formulation delivered through a fine actuator 

orifice was warmer than the 100% HFA-134a formulation delivered through an orifice 

(Rogliani et al., 2017). However, pMDIs emit the dose at a high velocity, increasing 

the likelihood of premature deposition in the oropharynx. Thus, pMDI is limited to 

treating upper airway conditions due to low lung drug deposition. Only 10% to 15% 

of the dose reaches the lung. Furthermore, it requires careful coordination of actuation 

and inhalation (Kadu et al., 2018).  

 

 

2.4 Challenges in treating respiratory problems during the pandemic 

 

 

In most countries, most hospital resources are being allocated to COVID-19 

management. Patients with asthma and COPD are at a significantly higher risk of 

contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amidst 

the current pandemic (Bouazza et al., 2021). Overburdened healthcare systems are 

experiencing a shortage of medical devices. Additionally, there are restrictions on 

using nebulizers to limit the transmission of SARS-CoV-2 infection (Fink et al., 2020). 

These factors combined make the current pandemic one of the biggest healthcare 

crises. 

Although there is minimal data regarding the risks of transmitting viral 

infection with nebulized treatment, it has been a significant concern since the COVID-

19 outbreak. There is compelling evidence that nebulization is associated with 

increased coronavirus transmission (Amirav & Newhouse, 2020). The jet nebulizer 

with the face mask possibly increased the risk of transmission due to the possibility of 

viral secretions entering the nebulizer’s reservoir. In addition, this therapy is not 
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recommended for COVID-19 patients owing to the risk of virus transmission (Sethi et 

al., 2020).  

Individuals with severe respiratory illness may need mechanical ventilation 

during a pandemic of COVID-19 (Attaway et al., 2021). Patients who develop severe 

respiratory conditions require oxygen therapy, with most of them needing ventilator 

support. Depending on the extent of the outbreak, there may be insufficient capacity 

in intensive care units (ICUs) to provide ventilator support to all the rapidly increasing 

cases (Buheji et al., 2020). Hospitals are rapidly running out of ventilators as the 

number of patients infected with COVID-19 increases. This unprecedented demand 

for ventilators puts immense pressure on governments and directs many resources 

toward a single goal. Additionally, the ventilator cost per unit is prohibitively high, 

limiting its use to severely sick patients exclusively.  

When choosing a drug delivery device, the most crucial consideration is 

ensuring that the patients use it appropriately (Waller & Sampson, 2018). Some 

patients may have difficulty inhaling DPI forcefully, as it may be particularly 

challenging for those with nerve or muscular weakness (Ibrahim et al., 2015). Poor 

coordination, such as blowing and exhaling directly into the device, might potentially 

result in medicine scattering prior to inhalation (Levy et al., 2019). Young, elderly, or 

chronically ill patients with poor coordination may have difficulty using DPIs 

(Lavorini et al., 2017; Shetty & Srinivasan, 2017). As a matter of fact, individuals who 

suffer from respiratory problems are unable to inhale appropriately.   

Several reports concluded that pMDI was most likely applicable and effective 

in the current situation. It was affordable, portable, and as effective as other aerosol 

generation systems for drug delivery when properly used (Shetty et al., 2020). The 

multi-dose capability ensures that a dose is immediately available whenever required 

to treat a respiratory condition (Rogliani et al., 2017). Unlike nebulizer therapy, which 

typically takes between 5 and 30 minutes, a dose can be delivered in a matter of 

seconds (Zhao & Yu, 2019). As a result of the pandemic, the utilization of metered-

dose inhalers (MDIs) as an alternative to nebulized therapy has increased substantially 

(Sethi et al., 2020). However, a lack of coordination between inhaler actuation and 

pMDI inhalation might decrease drug deposition in the lung, only around 10% to 15% 

(Kadu et al., 2018). Further improvement in pMDI may result in the most optimal and 

desirable drug delivery to the lungs. 
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2.5 Factors enhancing the performance of pMDI 
 

 

The performance of the pMDI is determined by its velocity and particle size, which 

contribute to increased drug deposition in the lung. The geometry and design of the 

actuator nozzle in pMDI are two factors that impact these properties. Additionally, the 

actuator nozzle design significantly impacts the spray characteristics of the pMDI 

(Wilkinson & Anderson, 2020). The combination of nozzle parameters, including 

orifice diameter, length of the orifice, and actuator angle inside the actuator nozzle, 

influence spray patterns, spray plume, particle velocity, particle size, and drug 

deposition (McCabe et al., 2012; Copellia et al., 2016). Reduced particles' velocity 

and drug particle size may decrease oropharyngeal deposition and increase the 

inhalation success rate (Gumani et al., 2017).  

 

 

2.5.1 Diameter of the orifice 
 

 

The actuator design is critical because the orifice diameter partially determines the 

aerosol particle size, which varies between 0.14mm and 0.60mm (Zhu et al., 2015). 

Aerosol particle size is proportional to the diameter of the orifice, and particle size 

affects lung deposition (Hou et al., 2015). Particles with an aerodynamic diameter of 

1µm to 5µm are deposited in the airways and alveoli. Most particles>10µm are 

deposited in the oropharynx and subsequently swallowed, whereas particles <1µm are 

mostly exhaled. In general, drugs should have a diameter of <5µm to decrease 

oropharyngeal deposition (Bake et al., 2019). Figure 2.9 illustrates the various sizes of 

drug particles that enter the specific area. The dosage and proportion of fine particles 

may be enhanced using actuators with smaller orifice diameters. More precisely, 

improved atomization accomplished via a smaller nozzle orifice results in more 

excellent dispersion of the smaller droplets throughout the airways (Carvalho & 

McConville, 2016). 
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