
 
 

REINFORCEMENT LEARNING-BASED TARGET 

TRACKING FOR UNMANNED AERIAL VEHICLE 

WITH ACHIEVEMENT REWARDING AND 

MULTISTAGE TRAINING 

 

 

 

 

 

 

 

 

 

NAJM ADDIN MOHAMMED AHMED ABO 

MOSALI 

 

 

 

 

 

 

 

 

UNIVERSITI TUN HUSSEIN ONN MALAYSIA 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



 
 

 

UNIVERSITI TUN HUSSEIN ONN MALAYSIA 

 

STATUS CONFIRMATION FOR DOCTORAL THESIS 

 

REINFORCEMENT LEARNING-BASED TARGET TRACKING FOR UNMANNED 

AERIAL VEHICLE WITH ACHIEVEMENT REWARDING  

AND MULTISTAGE TRANING 

 

ACADEMIC SESSION: 2021/2022 
 

I, NAJM ADDIN MOHAMMED AHMED ABO MOSALI, agree to allow this Doctoral Thesis to 

be kept at the Library under the following terms: 

 

1. This Doctoral Thesis is the property of the Universiti Tun Hussein Onn Malaysia. 

2. The library has the right to make copies for educational purposes only. 

3. The library is allowed to make copies of this report for educational exchange between higher 

educational institutions. 

4. The library is allowed to make available full text access of the digital copy via the internet by 

Universiti Tun Hussein Onn Malaysia in downloadable format provided that the Doctoral 

Thesis is not subject to an embargo. Should an embargo be in place, the digital copy will 

only be made available as set out above once the embargo has expired.  

5. ** Please Mark (√) 

 

                         CONFIDENTIAL       (Contains information of high security or of great    

                                                             importance to Malaysia as STIPULATED under the  

               OFFICIAL SECRET ACT 1972) Title and Abstract only 

 

                         RESTRICTED           (Contains restricted information as determined by the  

              Organization/institution where research was conducted)              

                                                            Title, Abstract and Introduction only 

 

                                                             EMBARGO   _________ until _________ 

                                                                                        (date)                  (date) 

 

                         FREE ACCESS  

 

       Approved by, 

 

 

  

 

NAJM ADDIN MOHAMMED                          Ts. Dr. SYARIFUL SYAFIQ BIN SHAMSUDIN 

AHMED ABO MOSALI  

 

Permanent Address: 

G3-08, BLOCK G PERWIRA , 

PT RAJA 86400 BATU PAHAT JOHOR 

 

Date : 20/7/2022           Date: 20/7/2022 

 

 

NOTE: 

                              **    If this Doctoral Thesis is classified as CONFIDENTIAL or RESTRICTED, 

please attach the letter from the relevant authority/organization stating 

reasons and duration for such classifications. 

  / 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



 
 

This thesis has been examined on date 18th April 2022 and is sufficient in fulfilling 

the scope and quality for the purpose of awarding the Degree of Doctor of 

Philosophy in Mechanical Engineering. 

 

 

 

 

Chairperson: 

 

 

ASSOC. PROF. Ts. DR. ZAMRI BIN NORANAI 

Faculty of Mechanical and Manufacturing Engineering 

Universiti Tun Hussein Onn Malaysia 

 

 

Examiner: 

 

 

ASSOC PROF. DR. ARI LEGOWO 

Higher College of Technology 

United Arab Emirates 

 

 

PROF. DR. SHAHRUDDIN BIN MAHZAN @ MOHD ZIN 

Faculty of Mechanical and Manufacturing Engineering 

Universiti Tun Hussein Onn Malaysia 

 

 

. 

 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



ii 
 

 

 

REINFORCEMENT LEARNING-BASED TARGET TRACKING FOR 

UNMANNED AERIAL VEHICLE WITH ACHIEVEMENT REWARDING AND 

MULTISTAGE TRANING  

 

 

 

 

 

NAJM ADDIN MOHAMMED AHMED ABO MOSALI 

 

 

 

 

 

A thesis submitted in 

fulfillment of the requirement for the award of the 

Doctor of Philosophy in Mechanical Engineering 

 

 

 

 

 

Faculty of Mechanical and Manufacturing Engineering 

Universiti Tun Hussein Onn Malaysia 

 

 

 

 

 

AUGUST 2022 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



iii 
 

I hereby declare that the work in this thesis is my own except for quotations and 

summaries which have been duly acknowledged 

 

 

Student : ............................................................... 

 NAJM ADDIN MOHAMMED AHMED ABO MOSALI 

Date : 20/7/2022 

Supervisor :  

Ts. Dr. SYARIFUL SYAFIQ BIN SHAMSDINPTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



iv 
 

 

DECLARATION 

 

This thesis is dedicated to: The sake of Allah, my Creator. My great deal, 

Mohammed S.A.W (May Allah bless and grant him), who taught us the purpose of 

life; My great parents, who lead me and support; My soul partner in this life my 

beloved wife Dr Eman Saleh Alerqi, my lovely daughter Lujin and to my princes 

Yazan; My beloved brothers and sisters and all family; My friends who encourage 

and support me; I dedicate this research. 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



v 
 

 

ACKNOWLEDGEMENT 

 

Before turning the page off, I would like to express many thanks to those who were 

truly standing by my side during this Ph.D. journey. I would like to thank all my 

parents, family members, relatives who have and still support me with their prayers, 

sponsoring, and unlimited encouragement. I could not find even a word in which I 

can thank you enough, but you always have the most part of my prayers.  

I also would like to thank my true supervisor Ts. Dr. SYARIFUL SYAFIQ 

BIN SHAMSUDIN, whom I am grateful for his support, guidance, and supervision 

from the beginning until the end of this journey. On top of that, it was my honour to 

be one of the students who have you as a supervisor of their works. Through him, I 

thank Universiti Tun Hussein Onn Malaysia for offering such a program that 

contributes to addressing one of the challenges faced by our world.  

To my friends, colleagues, seniors, and teachers, I am grateful for your help 

and assistance. Thank you again, I could not have pulled this off without you.  

Above all, I start and end with thanking ALLAH for giving me the 

knowledge and blessing to understand and achieve this work. I ask HIM to accept my 

greatest and sincerest thanks, prayers, and works.   

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



vi 
 

 

 

ABSTRACT 

 

 

Target tracking using an unmanned aerial vehicle (UAV) is a challenging robotic 

problem. It requires handling a high level of nonlinearity and dynamics device. The 

aim is to enable accurate target tracking by UAV with responding to the dynamic 

generated by the target such as sudden trajectory change using reinforcement 

learning which is proved to learn dynamic effectively. In this thesis, the Twin 

Delayed Deep Deterministic Policy Gradient Algorithm (TD3), as one recent and 

composite architecture of reinforcement learning (RL), has been explored as a 

tracking agent for the problem of UAV-based target tracking. This involved several 

improvements on the original TD3. First, the proportional-differential controller was 

used to boost the exploration of the TD3 in training. Second, a novel reward 

formulation for the UAV-based target tracking was proposed to enable a careful 

combination of the various dynamic variables in the reward functions. This was 

accomplished by incorporating two exponential functions to limit the effect of 

velocity and acceleration to prevent the deformation in the policy function 

approximation. Third, the concept of multistage training based on the dynamic 

variables was proposed as an opposing concept to one-stage combinatory training. 

Fourth, an enhancement of the rewarding function by including piecewise 

decomposition was used to enable more stable learning behaviour of the policy and 

move out from the linear reward to the achievement formula. Fifth, a novel agent 

selection algorithm was developed to enable the selection of the best agent and avoid 

under-fitting and over-fitting. For the purpose of evaluating the performance of the 

control system, flight testing was conducted based on three types of target 

trajectories, namely fixed, square, and blinking. The evaluation was performed in 

both simulation and real-world experiments. The results showed that the multistage 

training achieved the best-accomplished performance with both exponential and 

achievement rewarding for a fixed trained agent with a fixed and square moving 

target and for a combinatorial agent with both exponential and achievement 

rewarding for a fixed trained agent in the case of a blinking target.  With respect to 

the traditional proportional differential (PD) controller, the maximum error reduction 

rate is 86%. The developed achievement rewarding and the multistage training opens 

the door to various applications of RL in target tracking. 
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ABSTRAK 

 

 

Penjejakan sasaran menggunakan pesawat tanpa pemandu (UAV) merupakan 

masalah robotik yang mencabar yang memerlukan pengendalian alat yang dinamik 

dan sangat tidak linear. ini. Dalam tesis ini, Algoritma Twin Delayed Deep 

Deterministic Policy Gradient (TD3), binaan komposit pembelajaran diperkukuh 

(RL) dan terkini, telah digunakan sebagai agen pengesan untuk menangani masalah 

penjejakan sasaran berasaskan UAV. Ini melibatkan beberapa penambahbaikan pada 

algoritma TD3 asal. Pertama, kaedah pengawal pembezaan berkadar digunakan 

untuk menggalakkan penerokaan TD3 dalam latihan. Kedua, formula ganjaran 

baharu untuk penjejakan sasaran berasaskan UAV dicadangkan untuk membolehkan 

gabungan pelbagai pemboleh ubah dinamik yang teliti dalam fungsi ganjaran. Ini 

dicapai dengan menggabungkan dua fungsi eksponen untuk mengehadkan kesan 

halaju dan pecutan bagi mengelakkan ubah bentuk dalam anggaran fungsi dasar. 

Ketiga, konsep latihan berbilang peringkat terhadap pemboleh ubah dinamik 

dicadangkan berbanding dengan latihan gabungan satu peringkat. Keempat, 

peningkatan fungsi ganjaran dengan memasukkan penguraian bagian demi bagian 

telah digunakan untuk membolehkan tingkah laku pembelajaran dasar yang lebih 

stabil dan beralih daripada ganjaran linear kepada formula pencapaian. Kelima, 

algoritma pemilihan agen baharu telah dibangunkan untuk membolehkan pemilihan 

agen terbaik dan mengelak pemadanan yang kurang tepat dan berlebihan. Untuk 

tujuan penilaian prestasi sistem kawalan, ujian penerbangan telah dijalankan 

berdasarkan tiga jenis trajektori sasaran, iaitu pegun, segi empat dan berkelip. 

Penilaian telah dilakukan dalam persekitaran simulasi dan eksperimen. Keputusan 

menunjukkan bahawa prestasi pencapaian terbaik dicapai melalui latihan berbilang 

peringkat dengan ganjaran eksponen dan pencapaian untuk agen pelatih pegun 

dengan sasaran pegun dan bergerak secara persegi dan untuk agen gabungan dengan 

ganjaran eksponen dan pencapaian untuk agen pelatih pegun dalam kes sasaran 

berkelip. Kadar pengurangan ralat maksimum adalah sebanyak 86% bagi pengawal 

pembezaan berkadar (PD) tradisional. Ganjaran pencapaian yang dibangunkan dan 

latihan berbilang peringkat dapat membuka peluang kepada pelbagai aplikasi RL 

dalam pengesanan sasaran.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

1.1 Background of the study 

UAV applications are increasing day after day, and aerial vehicles are part of many 

recent technological applications. Some applications can be seen in shipping (Grippa, 

Behrens, Wall, & Bettstetter, 2019), surveillance (Abdallah, Ali, Mišić, & Mišić, 

2019; Mishra, Garg, Narang, & Mishra, 2020b), battlefield (You, 2020), rescuing 

applications (Joshi, Pal, Zafar, Bharadwaj, & Biswas, 2019; Lygouras et al., 2019), 

and inspection (Kocer, Tjahjowidodo, Pratama, & Seet, 2019; Y. Zhang, Yuan, Li, & 

Chen, 2017). The aerial vehicle is categorised into three parts: teleoperated (Aleotti 

et al., 2017; Bareiss, Bourne, & Leang, 2017), semi-autonomous (Khadka, Fick, 

Afshar, Tavakoli, & Baqersad, 2020; D. Zhang & Khurshid, 2019), and full 

autonomous (Uryasheva, Kulbeda, Rodichenko, & Tsetserukou, 2019). Enabling 

aerial vehicles applications require essential autonomous features regarding the 

degree of autonomy in the system.  

Well-developed features of autonomous UAV control include, for instance, 

stability enhancement and waypoint flight, autonomous tracking, and autonomous 

landing. However, new developments in the design of UAVs and the emergence of 

new application areas demand robust and adaptive control techniques for different 

flight conditions, aggressive manoeuvring flight, robust disturbance rejection, 

obstacle avoidance, fault tolerance, formation flying, and the use of new sensing and 

perception paradigms, such as computer vision. Even when the vehicle performs 

tasks autonomously, the efficiency and reliability of the communication link to the 

ground station or other aerial vehicles are important. This is because the autonomous 
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UAV may need to send information about itself or its environment to the ground 

station or other vehicles, or it may need to receive updated mission parameters from 

the ground station or information from other vehicles. To achieve all the ambitious 

requirements that autonomous operation brings, systematic and innovative methods 

for planning, navigation, decision making, control, sensing and communications are 

needed (Becerra, 2019).  

In the non-linear and dynamic type of controls, building a mathematical 

function of the plant is needed to assure a stable controller. The stability of the 

controller is analysed based on complicated mathematical methods and techniques. 

In many real-world applications, the accuracy of the mathematical model of the plant 

is questioned. Furthermore, engineers perform mathematical approximations to 

simplify the model development. These approximations are based on some 

assumptions that limit the generalizability of the controller, which leads to issues in 

the application and reliability. To avoid such approximations and non-valid 

assumptions, the concept of free model control is used. However, instead of using it 

based on repeated trial and error for tuning a simplified controller, it can be used to 

develop an accurate controller that embeds sufficient gained knowledge from the 

plant (Fliess, 2009). 

Reinforcement learning (RL) is model-free control based on artificial 

intelligence (AI). It has been proven to be an effective and practical control approach 

in non-linear and highly dynamic systems, especially when accurate modelling is 

difficult. Integrating RL with a deep neural network (DNN) to analyse scenes from 

video and make a decision based on extensive training has found its way as valuable 

AI products in the automotive industry and driverless cars (Sallab, Abdou, Perot, & 

Yogamani, 2017) and also in aerial vehicles control (Kersandt, 2018). The reason 

behind this is the ability to train the RL model based on an extensive number of 

driving scenarios and then use the learned knowledge for operation. Hence, RL is 

considered one type of model-free control as it does not need to build a model to 

control. 
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1.2 Motivation 

Adding the feature of autonomous tracking of a moving target is considered vital for 

drones. Older variants of drones are controlled manually using a remote control with 

the human controller nearby (less than one mile).  In the near future, it is expected 

that the drone will be autonomous or at least contain a set of autonomous features 

that assists human over the manual control process. In this study, the researcher is 

interested in tracking applications where the UAV is needed to react to a moving 

target in the environment and keep its field of view. On the other side, using 

reinforcement learning to enable smart problem solving of UAVs has emerged 

significantly in the literature. The dynamical aspect of RL is useful for enabling the 

capability to respond to the dynamical changes in the target and learn them 

immediately. Such potential creates good motivation for exploiting RL capability in 

moving target tracking.  

1.3 Research Problem 

The problem of target tracking using UAVs is an active research topic, and it is still 

suffering from various challenges. Firstly, the dynamic aspect of the problem is 

found in the target mobility or manoeuvers. More specifically, the object moves in a 

non-expected direction, and dynamic variables such as velocity and acceleration 

make the UAV tracking subject to confusion and loss of the target. Other sources of 

dynamics exist in the motors’ responses, the battery level change, and its effect on 

the generated forces. Secondly, the non-linearity aspect of the problem is found in 

the kinematic model of the UAV and the trajectory conducted by the target as well. 

Third, the requirements of the problem in terms of the needed accuracy of tracking 

and time of settling are subject to change from one application to another, e.g., in 

some applications such as surveillance, high accuracy is required with the fastest 

time while in target tracking for selfie capturing the target is not subject to escape 

from the view of the camera as the surveillance application. However, in the selfie 

capturing application, the manoeuver of the UAV is important for visual impact.  

Reviewing the previous literature, we found that reinforcement learning gains 

more interest and proves higher performance than classical and modern control. The 
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reason is its powerfulness in approximating high complex control surface based on 

only data generated from the plant and enabling dynamics and change handling. This 

breakthrough of RL-based models was witnessed after proving the power of deep Q 

learning when integrated with the Q learning approach for the ATARI game 

(Leibfried, Kushman, & Hofmann, 2016). However, applying RL to UAV-based 

tracking is not straightforward as it faces challenges in identifying the best RL 

elements, namely, state, action and reward, and finding the best knowledge 

embedding structure. 

Several problems can be stated in the existing works. First, more recent 

variants of using DDPG were proposed based on target networks to reduce the 

accumulation of errors. Furthermore, to address the issue of coupling between value 

and policy, the work of (Fujimoto, Hoof, & Meger, 2018) has proposed delaying 

policy updates until the value estimate has converged with a regularization strategy. 

This work is named Twin Delayed Deep Deterministic policy gradient (TD3), and it 

has not been applied to the tracking problem. Second, non-of the previous 

approaches have enabled dynamic aware training for DQN. In the work of 

(Vankadari, Das, Shinde, & Kumar, 2018), velocity was included in the reward. 

However, their reward formulation does not provide any incorporation to the 

acceleration. In addition, the presentation of the rewarding function behaves linearly 

in terms of the reward presented to the agent based on its achievement which makes 

the learning slow and not efficient. Third, for all the aforementioned RL based object 

tracking, we observe that there was no phase for validation before selecting the 

optimal agent. This leads to sub-optimality because of risk of overfitting. Overall, 

tackling the problem of target tracking using RL is more effective than alternative 

approaches. 

Overall, three matters are needed to be handled. Firstly, the effective 

formulation of the reward function to enable the usage of higher dynamic feedback 

or rewarding. Secondly, moving from a linear way of providing rewarding to agents 

based on achievement is not stable. Thirdly, the need for a validation phase for the 

avoidance of sub-optimality due to over-fitting. 
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1.4 Objectives 

The ultimate goal of this study is to develop an RL-based target tracking for a small 

quadcopter UAV system. The performance and effectiveness of the proposed RL 

tracking will be evaluated in a series of simulated and real-time tracking scenarios. 

This goal is accomplished through the following objectives: 

1. To develop a novel rewarding function to enable the usage of higher 

dynamic feedback for better tracking performance. 

2. To propose a multi-objective agent selection algorithm that is superior in 

terms of holding time and tracking error.  

3. To evaluate the tracking performance of the proposed RL tracking 

system against different target tracking scenarios using standard 

evaluation metrics. 

1.5 Scope of study 

This research tackles UAV-based target tracking, which is an essential UAV 

development problem with a wide range of industrial applications. In our study, we 

assume that the target has the freedom to change its location in the environment 

within the plane of mobility. Without the loss of generality, we assume that the target 

is moving in the YZ plane, and the UAV has to maintain the target in the center of 

the camera. The target is assumed to stay stationary, jump in the location, and move 

in a certain trajectory with constant speed, such as a circular or rectangular trajectory. 

Different speeds were used for moving the target. The work will be evaluated based 

on both simulation and real-world experiments. The latter is done in an indoor 

environment. To confirm the superiority of certain approaches, statistical-based 

evaluation where an experiment will be repeated for several rounds, and boxplot 

visualization is used to express the performance were adopted.  
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1.6 Contributions 

This thesis includes several contributions, we state them as follows  

1- To the best of our knowledge, this study is the first to apply TD3 to the 

problem of UAV-based target tracking. As stated in the problem statement, 

we adopt this architecture because it solves several issues that exist in DDPG 

that was applied in target tracking.  

2- This thesis proposes a novel reward formulation for UAV-based target 

tracking that enables a wise combination of the various dynamical variables 

in the reward functions. The novel rewarding function incorporates two 

exponential functions to limit the effect of velocity and acceleration in order 

to prevent the deformation in the policy function approximation.  

3- This thesis proposes an enhancement of the rewarding function by including 

piecewise decomposition in order to enable a more stable learning behavior 

of the policy and to move out from the linear reward vs. achievement 

formula.  

4- This study proposes a smart agent selection algorithm that takes into 

consideration two objectives for searching and it selects the best agent out of 

the entire agents that are generated from the episodes of training.  

5- This study enables better explanation fidelity by recreating the dynamic 

changes in the policy surface of the various models that are developed or 

implemented as benchmarks.  

6- A thorough evaluation is conducted in both simulation and real-world 

experiments to evaluate the developed models and compare them with the 

benchmarks using standard evaluation metrics 

1.7 Outline of the thesis 

The remaining of the study is given as follows.   

Chapter 2 presents the related background for carrying. Furthermore, a 

literature survey of the most recent RL models developed for UAV tracking is also 

provided.  
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In Chapter 3, all the stated objectives are defined and accomplished based on 

the methodology given in this chapter. First, a novel framework for RL-based object 

tracking using TD3 was built. Second, a novel rewarding function to the framework 

to enable the usage of higher dynamic feedback or rewarding more effectively. 

Third, we extend the rewarding to achievement-aware concept to enable more 

stability in the learning. Lastly, a multi-objective agent selection algorithm was 

proposed to avoid the over-fitting effect and to assure application preference in the 

selection.  

Chapter 4 presents the simulation setup, algorithm, and agent selection 

algorithm developed to enable validation before selection. The validation will be 

based on three experiments for the agent by passing on the agents using an 

incremental way. Lastly, the agent selection algorithm is provided. 

Chapter 5 presents the evaluation of the best achieving model in real-world 

experiments to confirm the generalization of its superiority. Next, we present the 

experimental setup. Then, the experimental results and analysis are provided. 

Chapter 6 summarises the study, limitations, and future works.  
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

2.1 Introduction 

As presented in Chapter 1, a mathematical function of the plant must be built to 

ensure a reliable controller in non-linear and dynamic controls for UAV tracking. 

The controller's stability can be assessed using complex mathematical approaches 

and techniques. However, one can still question the accuracy of a mathematical 

model used in many real-world applications. Engineers also use mathematical 

approximations to make model development easier. Estimates are usually made 

based on assumptions limiting the controller's generalizability, resulting in 

difficulties in application and reliability. The concept of free model control is utilised 

to avoid such approximations and invalid assumptions. Instead of utilising it to tune a 

simplified controller through repeated trial and error, it can be used to construct an 

accurate controller that incorporates enough plant knowledge. Reinforcement 

learning (RL) is a sort of artificial intelligence-based model-free control (AI). It has 

proven to be a useful and effective control method in nonlinear and highly dynamic 

systems, especially when proper modelling is difficult. Furthermore, combining RL 

with a deep-neural network for video interpretation and decision-making based on 

lengthy training has proven to be useful AI in the automotive industry and driverless 

cars and aerial vehicle control. This chapter will provide related literature on the 

most recent RL models developed for UAV tracking.  
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2.2  Background 

This section provides the background of UAVs in general and quadrotors used in our 

research. It consists of a historical overview of the quadrotor, their kinematic, 

dynamics, Gazebo simulation, reinforcement learning and their variants and models.  

2.2.1 History of Quadrotor 

The first trial of the aerial vehicle was done by Abbas ibn Firnas between 800-900 

AD. After a long time, the experiment of Abbas was recreated by Orville and Wilbur 

Wright, who performed the first controlled-powered human flight of a heavier-than-

air aircraft in 1903. The Wright fixed-wing design (Search) was used for the majority 

of the early advancements. However, one of the biggest disadvantages of the fixed-

wing design is the necessity for runways to land and take off. This limitation was 

overcome by developing rotary-wing aerial vehicles in various forms. Early attempts 

showed the Brèguet brothers introduced the first quadrotor-type design in 1907, 

named the Brèguet–Richet Gyroplane, as depicted in Figure 2.1 )a( ((Kim, Gadsden, 

& Wilkerson, 2019). This vehicle had a one-of-a-kind design. Each rotor had four 

biplane-type blades (two deep), providing a total of 32 independent lifting surfaces, 

and was coupled to an ICE through a belt and pulley transmission system. The four 

rotors were set up in two clockwise and counterclockwise revolving pairs, allowing 

torsion effects on the body frame to be controlled. This design approach is still 

employed in modern quadrotors. However, the Brèguet–Richet Gyroplane No. 1 did 

not have any manoeuvering control surfaces, making it unsuitable for use as a 

monitoring device. Étienne Oehmichen continued to experiment and develop 

quadrotors. The rotors on the Oehmichen No. 2 were two-bladed and positioned at 

the end of the frame, as illustrated in Figure 2.1 )b(. These blades could be twisted, 

which changed the blade angle of attack and gave the vehicle more control. The 

vehicle's yaw control was handled by two propellers situated at the vehicle's nose. 

The Oehmichen No.2 is a hybrid design that combines a quadrotor and a helicopter. 

The quadrotor structure was further modified in 1922 by George de Bothezat and 

Ivan Jerome, who added six-bladed rotors and two extra propellers as provided in 
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Figure 2.1)c(. For thrust and yaw control, two tiny propellers were fitted. This 

vehicle was also subjected to collective pitch control (De)). 

Quadrotors sparked initial attention and study, but the concept fell out of 

favour during the next two decades due to weight and technological issues. As 

depicted in Figure 2.1(d), the Convert wings Model A quadrotor was designed and 

debuted in 1956. The design used two engines to power four rotors for the lift. This 

design successfully demonstrated forward flight capability and proved it in flight 

tests. This model, however, was quickly abandoned due to a lack of orders. The 

Curtiss-Wright VZ-7 was designed for the United States Air Force in 1958 (Figure 

2.1(e)(. This quadrotor model has four rotors with independent speed controllers for 

each. The Curtiss-Wright VZ-7 quadrotor design can be seen as a forerunner to 

modern quadrotor designs.  

 

)a ( 

 

)b ( 
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)c ( 

 

)d ( 

 

)e ( 

Figure 2.1: History of quadrotors. (a) Brèguet–Richet Gyroplane No. 1; (b) 

Oehmichen No. 2; (c) Bothezat helicopter; (d) Convertawings Model A; (e) Curtiss-

Wright VZ-7. 
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Quadrotor designs are increasingly being used to construct small-scale UAVs. 

Several institutions and businesses have established research centres to improve 

quadrotor designs and uses. UAV Market is expected to reach USD58.4 billion by 

2026 (marketsandmarkets, 2009). Recently, numerous companies have been offering 

their platform of Quadrotor with different capabilities, features, and costs.  

2.2.2 DOF Airframe Dynamics 

The dynamics of an aircraft are modelled using dominant methodologies such as 

Euler-Lagrange formalism and Newton-Euler formalism. Despite the compact 

formulation and generalisation demonstrated by Euler-Lagrange formalism, it has 

been highlighted that the Newton-Euler approach is simple to understand and accept 

physically. However, when it comes to describing dynamics, two ways are 

consistent. The Lagrange equation is an expression form of the second Newton Law 

after applying a speed transform matrix (X. Zhang, Li, Wang, & Lu, 2014).  

A) Euler-Lagrange Formalism: 

 

q = (𝑥, 𝑦, 𝑧, 𝜓, 𝜃, 𝜙) ∈ 𝑅6 (𝑥, 𝑦, 𝑧) = 𝜉 ∈ 𝑅3 denotes the position of the mass centre 

of the quadrotor relative to the inertial frame  

(𝜓, 𝜃, 𝜙) = 𝜂 ∈ 𝑅3 are the three Euler angles (resp., yaw 𝜓, pitch 𝜃, and roll 𝜙), 

under these conditions:  

(−𝜋 ⩽ 𝜓 ⩽ 𝜋) & (−
𝜋

2
⩽ 𝜃 ⩽

𝜋

2
)  & (−

𝜋

2
⩽ 𝜙 ⩽

𝜋

2
) 

The translation kinetic energy (Ttrans) can be calculated using Equation 2.1. 

𝑇trans ≜
𝑚

2
𝜉̇𝑇𝜉̇ (2.1) 

𝜉̇ denotes the velocity 

Meanwhile, the rotational kinetic energy (Trot) can be calculated using Equations 2.2 

and 2.3. 

𝑇rot ≜
1

2
𝜂̇𝑇𝐽𝜂̇ (2.2) 

𝐽 = W𝑇𝐼W (2.3) 

Where: 

𝑚 denotes the mass of the UAV  

𝐽 denotes the moment of inertia  
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𝜂̇ denotes the angular rate  

𝐼, denotes the inertia 

W denotes the transformation matrix to the body frame expressed as Equation 2.4. 

 

 

W = [

−sin (𝜃) 0 1
cos (𝜃)sin (𝜓) cos (𝜓) 0
cos (𝜃)cos (𝜓) −sin (𝜓) 0

]  (2.4) 

The Lagrangian (L) of the rotorcraft is given in the Equation 2.5. 

𝐿 = 𝑇 − 𝑉 (2.5) 

Where: 

𝑉  denotes the potential energy which is calculated based on 𝑉 = 𝑚𝑔𝐳𝐸 , considering 

that the gravitational potential is the sole potential, 𝑔 denotes the gradational force as 

given in equations (2.6) and (2.7).  

𝐿 = 𝑇trans + 𝑇rot − 𝑉 (2.6) 

𝜉̇𝑇𝜉̇ +
1

2
𝜂̇𝑇𝐽𝜂̇ − 𝑚𝑔z𝐸 =

𝑚

2
 

(2.7) 

The full rotorcraft dynamics model is derived from the Euler-Lagrange equations 

under generalised external forces, as given in Equation 2.8. 

d

d𝑡

∂𝐿

∂𝑞̇
−
∂𝐿

∂𝑞
= (𝐹𝜉 , 𝜏)  (2 8) 

Where:  

𝐹𝜉 = 𝑅𝐹̂ denotes the translational force applied to the quadrotor due to the throttle 

control input. 

𝑅 denotes the rotational matrix 𝑅(𝜓, 𝜃, 𝜙) ∈ SO(3)  

As a result, the group SO(3) can be recognised as the group of these matrices when 

matrix multiplication is performed. These matrices are called "special orthogonal 

matrices", which explains the acronym SO(3). It represents the orientation of the 

rotorcraft relative to a fixed inertial frame.  

𝜏 ∈ 𝑅3 represents the pitch, roll, and yaw moments. 

The Euler-Lagrange equation is divided into two sections because the Lagrangian 

contains no cross-terms in the kinetic energy. Hence, it is written as Equations 2.9 

and 2.10. 
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𝑚𝜉̇ + (
0
0
𝑚𝑔

) = 𝐹𝜉 (2.9) 

𝐽𝜂̈ + 𝐶(𝜂, 𝜂̇)𝜂̇ = 𝜏 (2.10) 

 

 

Where: 

𝐶(𝜂, 𝜂̇) denotes Coriolis terms and contains the gyroscopic and centrifugal terms in 

Equation 2.11.  

𝐽𝜂̇̇ −
1

2

∂

∂𝜂
(𝜂̇𝑇𝐽𝜂̇) = 𝐶(𝜂, 𝜂̇)𝜂̇  (2.11) 

B) Newton-Euler Formalism: 

Typically, it is necessary to define two frames of reference, each with its defined 

right-handed coordinate system, as shown in Figure 2.2.  

𝑉⃗ = [𝑢 𝑣 𝑤]𝑇 body linear velocity vector, Ω⃗⃗ = [𝑝 𝑞 𝑟]𝑇 angular rate vector, 

𝐸 = (𝑋𝐸 , 𝑌𝐸 , 𝑍𝐸) inertial frame, 𝐵 = (𝑋𝐵, 𝑌𝐵, 𝑍𝐵) body frame  

Earth-fixed inertial (also known as navigation) coordinate system. The 

attitude of the quadrotor, expressed in terms of the Euler angles 𝜙 (roll), 𝜃 (pitch), 

and 𝜓 (yaw), is evaluated via sequent rotations around each one of the inertial axes. 

Herein, a reference frame by 𝑂NED (North-East- Down) denotes an inertial 

reference frame and 𝑂𝐵 a body-fixed reference frame.  

 

Figure 2.2: Reference frame and the body frame with their relative geometric relation  
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Generally, a quadrotor is considered a rigid body in a three-dimensional 

space. The motion equations of a quadrotor subject to external force 𝐹 ∈ 𝑅3 and 

torque 𝜏 ∈ 𝑅3are given by the following Newton-Euler equations for the body 

coordinate frame 𝐵 which is given in Equation 2.12. 

[
𝑚𝐼3×3 0
0 𝐼

] [𝑉̇
𝜔̇
] + [

𝜔 × 𝑚𝑉
𝜔 × 𝐼𝜔

] = [
𝐹
𝜏
] (2.12) 

The rotorcraft orientation in space is presented by a rotation 𝑅 from 𝐵 to 𝐸 as given 

in Equation 2.13. 

𝑚𝜉̈ = 𝑅𝐹 −𝑚𝑔𝑍𝐸
𝐼(𝜂)𝜂̈ + 𝐶(𝜂̇, 𝜂) = 𝜏

  (2.13) 

Where: 

𝑅 = (

𝑐𝜓𝑐𝜃 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑠𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜃𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

) 

𝐼(𝜂) = 𝐽 

𝐶(𝜂̇, 𝜂) = 𝐼𝜂̇ +𝑊𝜂̇ × 𝐼𝜂̇ 

2.2.3 UAVs application 

There are various types of UAVs in today’s applications. Four UAVs with different 

applications were used to explore the potential usage of UAVs in different real-world 

applications: cinematographic, traffic tracking, deployment on the battlefield, and the 

auto-landing application for UAVs and ground vehicles collaboration. 

(i) Cinematographic using UAV  

In cinematography, UAVs are deployed to record videos of the scene to replace 

human beings with more impressive scenes capturing. In order to enable this 

functionality, target tracking is an important feature as it guarantees to maintain 

the target in the camera's view. Commercial UAVs employed in media 

production are mostly manually controlled, with only a few rudimentary 

functionalities performed autonomously (Mademlis et al., 2019). In state-of-

the-art drones such as the popular DJI Phantom 4 or Skydio R1, such 

functionalities are obstacle avoidance, landing, physical target following or 

target orbiting (for low-speed, manually pre-selected targets), as well as 

automatic central composition framing, i.e., continuously rotating the camera 

to always keep the pre-selected target properly framed at the centre. These 
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basic functions and any future algorithms for more advanced, automated 

UAV flight and filming require many enabling technologies to be in place.  

(ii) Traffic tracking using UAV 

Compared with traditional traffic surveillance systems, detecting and tracking 

vehicles through the images captured by a UAV is still an active research 

topic due to various challenges (Mishra, Garg, Narang, & Mishra, 2020a). In 

the driver behaviour research models, such as car-following and lane-

changing models, a car might perform non-expected behaviour. Missing car 

data and tracking errors could affect the accuracy of the model parameters 

settings. In addition, the camera of a UAV surveillance platform is changed 

frequently because the camera in a UAV may rotate, shift and roll during 

video recording. Sudden shakes might also happen due to wind fluctuations, 

which can cause negative effects on vehicle tracking. This motivates the 

researcher to build a robust tracking model for the UAV of a moving target.  

(iii) UAV incorporation in the battlefield is becoming essential in the military

 recent industrial achievements (Johnson, 2020). However, this motivates 

researchers to solve various challenges in UAVs deployment in a military 

operation. One important challenge is the capability of a UAV to cooperate 

with a friend military vehicle which requires tracking functionality. On the 

other side, the UAV might need to track the enemy vehicles, which adds 

another challenge due to the uncertainty in the manoeuver of the target and 

the non-expected surrounding conditions in the environment in the military 

zones.  

(iv) Drone Auto-Landing 

One essential autonomous feature is auto-landing on a moving target. In 

various applications such as ground-aerial vehicle collaboration, aerial vehicles 

need to identify a certain ground vehicle for tracking and landing. This 

functionality must be autonomous due to the challenging aspect of 

teleoperation landing on a moving target. In addition, there is a risk of failure, 

which might cause damage to the aerial vehicle. Hence, it is essential to include 

the functionality of autonomous landing in all categories of operation of aerial 

vehicles, even in the teleoperation category. This has encouraged using this 

functionality as part of a robotic competition (Beul, Houben, Nieuwenhuisen, 
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& Behnke, 2017) (Bähnemann et al., 2019). Another example of a flight 

landing application is the landing on a moving ship deck (Lin, Garratt, & 

Lambert, 2017) which also requires not only identifying the landing spot but 

assuring a safe and precise landing while the ship is moving. The functionality 

of autonomous landing can be needed in the applications when a swarm of 

UAVs is deployed for inspection, and a charging pod is deployed to assure a 

longer operation lifetime. This is attained by enabling the autonomous landing 

of the UAV on the charging pod when the battery is dead. Figure 2.3 provides 

1 example of one UAV application for inspection on an electricity tower.  

 

 

Figure 2.3 One example of UAVs application for inspection on electricity tower and 

safe landing on a charging pod 

(Source: Boukoberine et al., 2019) 

 

2.2.4 RL based UAVs applications 

Reinforcement learning-based UAV approaches are widely emerging and prove their 

effectiveness in different challenges. We take three examples from the recent 

literature to show the remarkable capability of RL in solving challenging UAV tasks. 

The first is UAVs racing, the second is chasing UAVs, and the third is fleet decision-

making problems. 

i. UAVs Racing: In many robotic tasks, such as drone racing, the goal is to travel 

through a set of waypoints as fast as possible. A key challenge for this task is 

planning the minimum-time trajectory, typically solved by assuming perfect 

knowledge of the waypoints to pass in advance. The emergence of UAVs 
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racing has increased, enabling UAVs to their limit capability based on RL 

models (Song, Steinweg, Kaufmann, & Scaramuzza, 2021).  In addition, RL 

assists in learning from human experience (Shin, Kang, & Kim, 2019).  

ii. UAVs Chasing UAVs: The use of multiple UAVs and UAV swarms is 

attracting more interest from the research community, leading to the 

exploration of topics such as UAV cooperation and multi-drone autonomous 

navigation. Some researchers have developed deep reinforcement learning to 

predict the actions to apply to the follower UAV to keep track of the target 

UAV (Akhloufi, Arola, & Bonnet, 2019).  

iii. UAV Fleet Decision-Making Problem: In the UAV fleets’ trajectories 

planning in cooperative patrolling and tracking missions, the UAV fleet is 

patrolling in an area split into several grids. d, the UAV or target location is 

simplified as the coordinate of the grid. Many UAVs are appointed to patrol in 

the requested area, in which one or more stationary gas stations can refuel the 

UAV. All UAVs are able to monitor their fuel and need to plan their refuelling 

automatically. In the patrol process, there might be some immobile or mobile 

targets presented in the patrol area. Because the horizons of UAVs are limited 

and are usually smaller than the patrol area, the UAV fleet may not be able to 

locate the target when it appears. However, the fleet is supposed to find the 

target collaboratively as quickly as possible. In addition, the fleet is expected to 

follow the target, which means keeping the target inside at least one UAV’s 

horizon so that the administrators can identify the target and give further 

instructions. If the fleet loses the target, it should be able to search in the 

possible area where the target may hide. Such a problem has been addressed by 

researchers using reinforcement learning (T. Wang, Qin, Chen, Snoussi, & 

Choi, 2019). 

 

2.2.5 Gazebo Simulation  

Every roboticist's toolbox should include robot simulation. A well-designed 

simulator enables rapid algorithms, robot design, regression testing, and AI system 

training using realistic scenarios (Gazebo, 2020). allows to precisely and quickly 

model robot populations in indoor and outdoor contexts (Mengacci et al., 2021). A 
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powerful physics engine, high-quality images, and user-friendly programmatic and 

graphical interfaces. The Gazebo is a three-dimensional dynamic simulator that can 

correctly and effectively model robot populations in indoor and outdoor situations. 

Similar to game engines, Gazebo provides a far higher level of fidelity physics 

modelling, a sensor suite, and user and programming interfaces. (Rivera, De Simone, 

& Guida, 2019) 

Testing robotics algorithms, building robots, and performing regression 

testing with realistic scenarios are all common uses of Gazebo. The following are 

some of the most important aspects of the Gazebo: Several physics engines, a large 

library of robot models and surroundings, a wide range of sensors, and simple 

programmatic and graphical interfaces are all available. The Gazebo interface is 

divided into several pieces. First, the scene is the Simulator's main component. The 

users interact with the world as the simulated items are animated. Second, the panel 

can be displayed, hidden, or resized by dragging the bar separating the right and left 

side panels from the Scene. When Gazebo is running, the left panel appears by 

default. In the panel, there is the world, insert, and layers. The World tab shows the 

current models in the scene and allows to see and change model parameters such as 

posture. The user may also change the camera view angle by extending the “GUI” 

option and altering the camera posture. The insert allows the user to add additional 

objects (models) to the simulation using the Insert tab. The user may need to expand 

the folder by clicking the arrow to see the model list. To add a model, click (and 

release) on the model to insert, then click again on the Scene. The Layers tab 

organizes and displays any visualization groups present in the simulation. One or 

more models can be found in a layer. When the user turns a layer on or off, the 

models in that layer will be visible or hidden. Figure 2.4 shows the main graphical 

components in the Gazebo interface: a) GUI; b) Scene; d) Panel. 
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(c) 

Figure 2. 4: The main graphical components in Gazebo interface: (a) GUI; (b) 

Scene; (c) Panel 
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To identify files and establish communications between the server and 

clients, Gazebo uses a variety of environment variables. This eliminates the 

requirement for any variables to be set. Examples of the world files are 

GAZEBO_MODEL_PATH,GAZEBO_RESOURCE_PATH,GAZEBO_MASTER_

URI, GAZEBO_PLUGIN_PATH, and GAZEBO_MODEL_DATABASE_URI. A 

model file uses the same SDF format as world files but should only contain a single 

<model> ... </model>. To locate files and build up connections between the server 

and clients, Gazebo uses a variety of environment variables. Default values have 

been compiled that will work in the majority of circumstances. This signifies that no 

variables need to be set. Gazebo's workhorse is the server that parses a command-

line-supplied world description file and simulates the environment using physics and 

a sensor engine. The graphical client establishes a connection with a functioning gz 

server and renders the elements. Plugins make interacting with Gazebo 

straightforward, and plugins can be provided in an SDF file or loaded from the 

command line. 

2.2.6 Reinforcement Learning 

Machine learning (ML) is a technique in which computer software learns from its 

previous experiences to enhance its performance on a given job. ML algorithms are 

frequently categorized into three categories: supervised learning, unsupervised 

learning, and reinforcement learning (RL). Unsupervised learning includes 

techniques such as density estimation or clustering applied to unlabeled data, 

whereas supervised learning algorithms are based on inductive inference, where the 

model is often trained using labelled data to accomplish classification or regression. 

In the third type, RL, the expert does not tell RL agents how to act; rather, a reward 

function R evaluates an agent's performance. The agent picks an action for each 

condition encountered and receives an occasional reward from its surroundings based 

on the utility of its decision. The agent's purpose is to maximize the total rewards 

obtained throughout its existence. The rationality of action selection can be judged 

by calculating the expected cumulative return value after the action is executed in the 

current state. In other words, RL is a learning method that uses the ‘trial and error’ 

method to interact with the environment, which the Markov decision-making process 

can characterize. As a result, the mappings between state and action generated by the 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

http://gazebosim.org/sdf.html


22 
 

 

reinforcement learning method consider the action's long-term impact. Rewards of 

the environment can evaluate the agent, so it is feasible to build an RL-based 

tracking for moving targets (Hafiz, Parah, & Bhat, 2021).  

The main concepts and definitions regarding RL are presented in the 

subsequent subsections. The agent can gradually enhance its long-term reward by 

utilizing knowledge gained about the predicted utility (i.e., the discounted sum of 

projected future rewards) of various state-action combinations. Managing the trade-

off between exploration and exploitation is one of the most difficult aspects of 

reinforcement learning.  

A reinforcement learning controller involves sets of elements, namely, state, 

action, transition function, and reward function. It also contains the learning rate and 

the discounting factors as parameters. Each of the elements is presented as follows:  

 

a) State:  

It refers to a representation of the needed information from the environment to 

operate the control. The state is application dependent, indicating that different 

applications imply different state representations which means the number of states 

depends on the application itself. Another aspect of the state is its finite nature. This 

means that the number of states is limited. Mathematically, this is given in Equation 

2.14. 

𝑋 = {1,2, … 𝑖 …𝑛𝑋} (2.14) 

Where:  

𝑛𝑋 denotes the number of states  

𝑖 denotes an index of the state  

b) Action: 

It refers to a representation of the needed actions that affect the environment to 

maintain the control goal or target. Considering that RL is a model free type of 

control, we have to add all candidate actions to the actions set. Afterwards, selecting 

an action is based on the maximal satisfaction of the goal of the control based on the 

learning embedded in the Q-matrix.  𝐴 = {1,2… 𝑗, …𝑛𝐴} the actions  
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Where: 

𝑛𝐴 denotes the number of actions   

𝑗 denotes an index of the action   

c) Transition Function: 

This function reflects the dynamic of the problem represented by the evolution of the 

states from one state to another based on the provided actions. Mathematically, it is 

represented as, 

𝑇: 𝑋 × 𝐴 → 𝑋 Transition Function  

It means that any association of state and action will move the system from 

its current state to another state.  

d) Reward Function:  

This reflects the essential core of the RL's success in providing the needed 

functionality to reach the goal. The role of the rewarding function to score actions 

given provided state according to how much added values to the goal of control is 

accomplished when by the resulted states. This is represented mathematically by the 

equation,  

𝑅: 𝑋 × 𝐴 → 𝑅 Reward Function 

This means that any association of state and action will be linked to a certain 

reward. 

e) Discounting Factor: 

It quantifies the future consideration of the selected action or how much future 

reward will contribute to the decision of selecting the current action. It takes a value 

between 0 and 1.  

f) Learning Rate:  

It quantifies how much new information override current knowledge. Typically, it 

takes a value between 0 and 1. A higher value means that the memory of knowledge 

is reduced, and lower values mean that older knowledge is kept, and we change it 

gradually as new information is received. A typical value for the learning rate is 0.1.  

The pseudocode of RL based on Q-learning is given in Algorithm 2.1 APPENDIX 

A. The training of RL is based on the Bellman equation, given in Equation 2.15. the 
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accumulated reward 𝑄 which has the state 𝑠𝑡 number of rows and the actions 𝑎𝑡 

number of columns. The state is the numeric representation of what the agent is 

observing at a particular point of the time in the environment and the action is the 

input of the agent that provides to the environment that calculated by applying a 

policy to the current state. In addition, reward 𝑟𝑡 is a feedback signal from the 

environment reflecting how well the agent is performing the goals. Furthermore, the 

learning rate 𝛼 is the quantifies how much new information override current 

knowledge while the discount factor 𝛾 is quantifying the future consideration of the 

selected action or how much future reward will contribute in the decision of selecting 

current action. 

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡)⏟    
old value 

+ 

𝛼⏟
learning rate 

( 𝑟𝑡⏟
reward 

+ 𝛾⏟
discount factor 

𝑚𝑎𝑥
𝑎
 𝑄(𝑠𝑡+1, 𝑎)⏟          

estimate of optimal future value 

⏞                          

new value (temporal difference target) 

 temporal difference ⏟            
old value 

 (2.15) 

 

The use of deep reinforcement learning (DRL) in UAV control was first presented to 

address specific issues in the sector. DRL aids in the task of UAV control by 

allowing it to work with model-free algorithms when the UAV model is difficult to 

find, to account for nonlinearities in the system, to actively learn how to achieve the 

target without being explicitly trained, and to work in environments where the UAV 

is unfamiliar 

Some examples of the applications of deep learning models in the UAV 

domain are listed in Table 2.1. As shown, path planning, navigation, control, 

trajectory tracking, exploration and autopilot systems are considered the most 

common applications. In addition, the models of Duelling Double Deep Q-Network 

(D3QN), Deep Q-Network (DQN), TRPO, DDPG, PPO, ACKTR, and DCNNP were 

among the deep learning algorithms used in the UAV applications. 
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