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ABSTRACT

Fractional calculus is a branch of mathematical analysis investigating the derivatives

and integrals of arbitrary order. Fractional calculus has a wide application since many

realistic phenomena are defined in fractional order derivative and integral. Moreover,

fractional differential equations provide an excellent framework for discussing the

possibility of unlimited memory and hereditary properties, considering more degrees

of freedom. In this thesis, the stability criteria of the fractional Shimizu-Morioka

system and fractional ocean circulation model in the sense of Caputo derivative

are developed analytically using optimal Routh-Hurwitz conditions. Hence, Routh-

Hurwitz conditions for cubic and quadratic polynomials are presented. The advantage

of Routh-Hurwitz conditions is that they allow one to obtain stability conditions

without solving the fractional differential equations. In this case, we find the critical

range for adjustable control parameter and fractional order α, which concludes that

the equilibria of systems are locally asymptotically stable. Aftermath, the numerical

results are presented to support our theoretical conclusions using the Adams-type

predictor-corrector method. On the other hand, we derive the analytical solution for

the inhomogeneous system of differential equations with incommensurate fractional

order 1 < α, β < 2, where the fractional orders α and β are unique and independent

of each other. The systems are first written in Volterra integral equations of the second

kind. Further, Picard’s successive approximation method is performed, which is an

explicit analytical method that converges very close to exact solutions, and the solution

is derived in multiple series and some special function expressions, such as Gamma

function, Mittag-Leffler functions and hypergeometric functions. Some special cases

are discussed where all the solutions are verified using substitution.
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ABSTRAK

Kalkulus pecahan ialah satu cabang analisis matematik yang mempelajari pembezaan

dan pengamiran dengan terbitan arbitrari. Kalkulus pecahan mempunyai aplikasi

yang luas kerana banyak fenomena menjadi lebih realistik jika ditakrifkan dalam

pembezaan dan pengamiran pecahan. Persamaan pembezaan pecahan memberikan

satu kerangka kerja yang sangat baik untuk perbincangan mengenai kemungkinan

ingatan tanpa had dan ciri-ciri keturunan, dan pertimbangan untuk darjah kebebasan

yang lebih tinggi. Dalam tesis ini, kriteria kestabilan untuk sistem Shimizu-Morioka

pecahan dan model peredaran lautan pecahan dengan menggunakan definisi terbitan

Caputo akan dibangunkan secara analitik dengan menggunakan syarat Routh-Hurwitz

yang optimum. Oleh itu, syarat Routh-Hurwitz untuk polinomial kubik dan kuadratik

akan ditunjukkan. Kebaikan menggunakan syarat Routh-Hurwitz ialah syarat-syarat

ini memberikan kriteria kestabilan untuk sistem tanpa menyelesaikan persamaan

pembezaan pecahan. Dalam kes ini, kami cari julat kritikal untuk parameter kawalan

boleh laras dan tertib pecahan α, seterusnya menghasilkan kesimpulan tentang

kestabilan untuk keseimbangan sistem secara asimtotik. Selain itu, penyelesaian

berangka akan ditunjukkan untuk menyokong kesimpulan secara teori kami dengan

menggunakan kaedah peramal-pembetul jenis Adams. Selain itu, kami menerbitkan

penyelesaian analitik untuk sistem persamaan pembezaan yang bukan homogen

dengan pembezaan pecahan tidak setara 1 < α, β < 2, manakala α dan β

merupakan dua pecahan nombor bebas yang tidak mempunyai hubungan antara satu

sama lain. Sistem itu pada mulanya ditulis dalam persamaan kamiran Volterra jenis

kedua dan kemudian kami menjalankan penghampiran berturut-turut Picard. Kaedah

penghampiran berturut-turut Picard adalah satu cara analitik eksplisit yang menumpu

penyelesaiannya terhadap penyelesaian sebenar, dalam bentuk siri berganda dan

beberapa jenis bentuk fungsi khas, seperti fungsi Gamma, fungsi Mittag-Leffler dan

fungsi hipergeometrik. Beberapa kes khas dibincangkan dan semua penyelesaiannya

akan disahkan dengan menggunakan kaedah penggantian.
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CHAPTER 1

INTRODUCTION

1.1 Background of research

Fractional calculus is a branch of mathematical analysis that studies the derivatives and

integrals of real number, real number fractional or complex number order (Malinowska

& Torres, 2012). The concept of a fractional derivative is more than 300 years old,

coined by the mathematician Leibniz in 1695 (Petráš, 2011). Although fractional

calculus has a long history, its applications are still important and are more realistic for

many real-life problems if defined in fractional derivative and integral (Tavares et al.,

2016). Nevertheless, the fractional calculus can be applied in physics, specifically in

the framework of anomalous diffusion, and is related to features observed in many

physical systems (Riascos & Mateos, 2014). In particular, Chang et al. (2018)

demonstrated that anomalous diffusion in natural media follows a non-Gaussian

distribution, which deviates from the Brownian motion for the classical integer-order

diffusion model. They presented a comparison of experimental data and numerical

simulation to support the assertion. The other applications of fractional calculus also

include computational biology, material sciences, physical kinetics, economics and

long-range interaction (Odzijewicz & Torres, 2011; Bourdin et al., 2013).

In other aspects, dynamical systems are used to describe various physical

processes. For example, when the integer order derivatives are replaced by non-integer,

fractional order of dynamical systems are obtained. Nowadays, fractional dynamical

systems have become widely researched, especially due to hereditary properties,

more degrees of freedom, and other advantages of fractional modeling (Čermák &
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Nechvátal, 2017). Meanwhile, chaotic-like behaviour is an important dynamical

phenomenon that has recently draw researchers’ attention since the pioneering work

of Lorenz in 1963 (Matouk & Elsadany, 2016). Since then, many papers on fractional

chaotic systems have been investigated, focusing on fractional chaos control, chaos

synchronization and other topics related to performing the stability and bifurcation

analysis of dynamical systems (Matouk & Elsadany, 2016).

The Routh-Hurwitz criterion is a procedure extensively used to discuss the

stability of linear systems, which included continuous-time and discrete-time linear

systems (Wang et al., 2019; Pereda et al., 2001). This criterion enables us to

determine the zeros of coefficient polynomial location without solving the zeros

(Pereda et al., 2001). Generally, Routh-Hurwitz conditions provide necessary and

sufficient conditions for all the zeros to have negative real parts (Pena, 2004; Wang

et al., 2018). In this work, we study the Routh-Hurwitz conditions to develop the

stability analysis for fractional dynamical systems. Stability analysis for fractional

Shimizu-Morioka system and fractional ocean circulation 3-box model are developed

in this thesis. As a comparison, a numerical approach, Adams-type predictor-corrector

method is applied to achieve the stability analysis for fractional dynamical systems.

Shimizu-Morioka system is a three-dimensional model of ordinary differential

equations proposed by Shimizu and Morioka in 1980, investigating the dynamics of the

well-known Lorenz system for the special case of large Rayleigh number (Huang et al.,

2020). Recently, the Shimizu-Morioka system has been studied in order to apply it to

real-world scenarios as well as bursting oscillations (Ma & Cao, 2018) and electronic

circuits (Kapche Tagne et al., 2021). The effect of the fractional-order derivative on

the dynamical behaviour of the classical Shimizu-Morioka system was investigated by

Kapche Tagne et al. (2021), whereas Ma & Cao (2018) exclusively discussed in the

integer-order case.

Besides, the ocean circulation 3-box model is a simple model covering the

large-scale thermohaline circulation behaviour in the Atlantic ocean (Titz et al.,

2002a). Ocean’s salt content is described as the important dynamical behaviour of

this ocean circulation model. The stable oscillations in the same ocean circulation
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3-box model were observed by Keane et al. (2022) with delayed feedback, whereas

Titz et al. (2002b) and Alkhayuon et al. (2019) used distinct higher-order models to

investigate the dynamical behaviour of Atlantic ocean circulation. However, these

researchers studied the model in the integer-order case or with a time-delay term. The

ocean circulation models are still rarely extended to fractional-order cases.

The fractional order differential equation systems can be divided into two

categories, which are commensurate and incommensurate order systems. If the

fractional orders of a system are different and independent to each other, it is then

known as an incommensurate fractional order system; otherwise, it is known as

a commensurate fractional order system. Hence, a commensurate order system is

categorized as a special case of an incommensurate order system (Daşbaşi, 2020).

However, the incommensurate order system does not reduce its difficulty of finding

explicit solutions compared to the commensurate order system. The approximation

solutions are usually obtained for the fractional differential equation systems in

the incommensurate case. Some numerical methods, such as predictor-corrector

method, Adomian decomposition algorithm and reduced-order model approximation

via genetic algorithm, have been developed by researchers (Diethelm et al., 2002;

Diethelm & Ford, 2004; Liao et al., 2018; Soloklo & Bigdeli, 2020). Therefore,

it is still challenging for researchers to obtain the analytical solution of fractional

differential equation systems in incommensurate order.

1.2 Problem statement

In the past decade, fractional calculus has become more important as many phenomena

are more realistic if they defined in fractional derivative and integral instead of

integer order derivative and integral. For instance, Hilfer (2000) claimed that the

integer order calculus sometimes contradicts the experimental result. In this research

direction, the fractional calculus will consider the evolution of the system by taking

the global correlation, not only local characteristics (Tavares et al., 2016). Therefore,

many problems have been extended to fractional order problems or the problem with
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arbitrary order.

Due to this fractional order, the solution of these problems may not be easy

to obtain, or the exact analytical solution may not exist. Many efficient numerical

methods had been derived to obtain the approximate solution of these fractional

calculus problems. However, these numerical schemes had some drawbacks, which

may include the expensive computational cost, and the accuracy of the solution may

not be satisfied. In addition, there are no mathematical software that can directly

solve fractional dynamical systems, either stability analysis or explicit solution for

incommensurate or commensurate cases. In other words, commercial mathematical

software such as Maple is only applicable for solving problem in an integer-order

derivative.

Hence, obtaining the exact analytical solution is always the concern of the

researchers in this area. In this regard, this thesis investigates the analytical solutions

for the stability analysis of fractional dynamical systems by using optimal Routh-

Hurwitz conditions. Besides, Picard’s successive approximation method is applied

to derive the explicit analytical solution for an incommensurate differential equation

system with order 1 < α, β < 2, where α and β are non-integer values and are

independent of each other.

To obtain the stability solution, fractional Shimizu-Morioka system and

fractional ocean circulation 3-box model are considered in this study to represent

the analysis for two types of systems, which are 3-dimensional and 2-dimensional

fractional-order systems, respectively. Fractional-order Shimizu-Morioka system is

defined as follows:

Dαx = y, Dαy = (1− z)x− σy, Dαz = −ηz + x2, (1.1)

exhibits chaotic dynamic behaviours, where Dα denotes the fractional derivative of

order α. However, the stability and bifurcation analysis of fractional-order Shimizu-

Morioka system is still not developed analytically. While, the ocean circulation 3-box

model is a model that drive the Atlantic ocean thermohaline circulation behaviour into
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a simple 2-dimensional model. The fractional-order ocean circulation 3-box model is

defined as follows:

DαS1 =
1

V
SrefF1 +

1

V
m(S2 − S1),DαS2 = − 1

V
SrefF2 +

1

V
m(S3 − S2). (1.2)

Bifurcation study of this ocean circulation model is computed by Titz et al. (2002a)

for integer-order derivative, but still has not been extended into fractional-order. For

the incommensurate fractional differential equation systems as follows:

Dαx1(t) = a11x1(t)+a12x2(t)+g1(t), Dβx2(t) = a21x1(t)+a22x2(t)+g2(t), (1.3)

Huseynov et al. (2021) introduced the explicit solution, but is limited for order 0 <

α, β < 1. Hence, we extend their works rigorously to fractional order 1 < α, β < 2.

1.3 Objectives of research

This study embarks on the following objectives:

(i) Develop the stability analysis of the fractional Shimizu-Morioka system via

optimal Routh-Hurwitz conditions for cubic polynomials.

(ii) Investigate the stability analysis of fractional order ocean circulation box

model via optimal Routh-Hurwitz conditions for quadratic polynomials.

(iii) Determine the analytical solution of incommensurate fractional differential

equation systems with fractional order 1 < α, β < 2.

1.4 Scope of study

Many real phenomena problems have been extended to fractional, but the solutions

of fractional order systems are still few to be derived analytically. Therefore, this

study aims to analyze the stability analysis using optimal Routh-Hurwitz conditions

and analytical solutions for the systems of fractional differential equations. Our

study will cover the fractional differential equation systems in the Caputo sense. The

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



6

Caputo fractional differential operator is commonly used and available for zero initial

conditions cases. Still, it introduces a limitation since the Caputo fractional derivative

is ineffective in explaining the singular kernel of phenomena.

The dynamical systems such as the Shimizu-Morioka system and ocean

circulation 3-box model are extended to fractional order models in our study.

Stability analysis of the fractional systems are developed analytically by applying

the Routh-Hurwitz conditions. In this case, we will obtain the critical point for the

adjustable control parameter and fractional order α where the Hopf bifurcation occurs.

Application of Routh-Hurwitz conditions limits the findings of stability criterion

with the fractional order α ∈ (0, 2). Perturbate the adjustable control parameter or

fractional order α from critical value which lead to dissolve of limit cycle to stable or

unstable condition, yielding the conclusions that the equilibria of systems are locally

asymptotically stable. To support the theoretical conclusions from optimal Routh-

Hurwitz conditions, we will evaluate the numerical results using the Adams-type

predictor-corrector method introduced by Diethelm et al. (2002).

Afterwards, we perform the explicit analytical solution of the systems for

linear fractional differential equations with incommensurate order 1 < α, β < 2.

The inhomogeneous case is considered. We introduce the analytical solution by

transferring the system into the Volterra integral equation of the second kind and

then applying Picard’s successive approximations. Initial conditions are considered

to derive the analytical solutions. Subsequently, the solution can be simplified

by some algebraic manipulation and combinatorial identities. The application of

Volterra integral equation and Picard’s successive approximation method produce the

final explicit solution in the expression of Mittag-Leffler and bivariate Mittag-Leffler

functions, multiple summation series of gamma and hypergeometric functions, and is

verified by substitution. Moreover, some special cases should be considered, such as

the case for zero value determinant and denominator. The scope of the study is limited

to the linear case and fractional orders are limited in α, β ∈ (1, 2).
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1.5 Research gap

Fractional calculus and its applications are wide research areas that need more attention

from mathematicians and scientists. In general, many dynamical systems are extended

to fractional order as the fractional order models are claimed better in describing the

real phenomena. However, the solutions of fractional dynamical systems are not easy

to obtain since the concepts of fractional derivative and integral are different and

more complicated if compared with the integer-order. Regarding the complexity of

the problems, the existing research tends to focus on numerical methods to solve

the fractional dynamical systems. There are very few studies have been done on

investigating an exact analytical solution for models in fractional order.

Investigation of analytical solutions is important because the numerical

solutions sometimes come with error estimation, where the accuracy of the solution

may not be satisfied. This serves to establish the demand for further research in

this area. On the other hand, the analytical solution of stability analysis is still

rarely explored for many dynamical models that extend to fractional order. Therefore,

our proposed framework will provide researchers with a stronger theoretical stability

analysis for fractional order dynamical systems. The fractional Shimizu-Morioka

system and fractional ocean circulation box model are considered in this thesis.

Besides, for the incommensurate fractional order systems, the prior works of Huseynov

et al. (2021) and Ahmadova et al. (2021) are limited to order 0 < α, β < 1.

1.6 Structure of thesis

This thesis consists of seven chapters. Chapter 1 describes the background of research,

problem statement, objectives, scope of study and research gap.

Chapter 2 describes a review of the research on fractional calculus, stability

and bifurcation analysis for fractional dynamical systems, and fractional differential

equation systems. Some fundamental understanding of fractional operators and special

functions of fractional calculus is provided. This is followed by some discussion of
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different approaches used to perform stability and bifurcation analysis. This section

focuses on the Routh-Hurwitz conditions and the predictor-corrector method. A review

of Picard’s successive approximation method is provided. It is the analytic approach

used for solving incommensurate fractional systems in this thesis. In addition, the

chapter provides a critical review of related works on fractional differential equation

systems, including fractional Shimizu-Morioka system, fractional ocean circulation

box model, incommensurate fractional differential equation systems, and numerical

methods for fractional differential equation systems.

Chapter 3 explains the methodology used in this study. Some basic properties

of fractional derivatives and integrals are discussed. Routh-Hurwitz conditions for

cubic and quadratic polynomials, and the predictor-corrector method are presented as

analytical and numerical methods to develop the stability analysis, respectively. The

chapter also presents the definitions of the special functions of fractional calculus,

such as gamma function, beta function, hypergeometric function and Mittag-Leffler

function. The Volterra integral equation of second kind and Picard’s successive

approximation method are the methods used to derive the analytical solution for an

incommensurate fractional differential equation system.

Chapter 4 is devoted in presenting the computation of stability criterion for

the fractional Shimizu-Morioka system. Some basic mathematical concepts for the

Shimizu-Morioka system in integer order and fractional order are discussed. The

major part of this chapter performs the results of stability analysis of the fractional

Shimizu-Morioka system by using optimal Routh-Hurwitz conditions. The chapter

also compares the stability results from Routh-Hurwitz conditions with results from

the numerical approach, which is the predictor-corrector method.

Chapter 5 elaborates on the computation of stability criterion for the fractional

ocean circulation box model. This chapter mainly presents the analysis and

observations to achieve the stability criterion of the fractional ocean circulation box

model. In this case, the optimal Routh-Hurwitz conditions for quadratic polynomials

are applied. The chapter also compares results from the Routh-Hurwitz conditions

with results from the predictor-corrector method.
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Chapter 6 discusses the explicit analytical solutions of incommensurate

fractional differential equation systems with fractional order 1 < α, β < 2. The

chapter starts with the derivation of an explicit analytical solution for a general

incommensurate fractional order system. This is followed by some special cases such

as the A = 1, a11 = 0, a22 = 0, and a11 = a22 = 0. Examples of explicit analytical

solutions of incommensurate fractional differential equation systems are presented

using theorems obtained.

Chapter 7 describes the conclusion of the overall findings and discussions, and

is followed by recommendations for further work in the future.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will be structured as follows: Section 2.2 is devoted to present

some fundamental understanding of the fractional calculus. In this section, some

special functions of fractional calculus, including the gamma function, Mittag-Leffler

function, and hypergeometric function, are studied. These special functions are useful

in helping us develop the solutions of incommensurate fractional differential equation

systems. Some fundamental understanding of fractional derivatives and integrals is

provided in Section 2.2.4.

Section 2.3 is devoted to present some discussion of different approaches

used to perform stability and bifurcation analysis. This section focuses on the

Routh-Hurwitz conditions and the predictor-corrector method, which are discussed

in Sections 2.3.1 and 2.3.2, respectively. Section 2.4 presents the Picard’s successive

approximation method for solving systems of fractional differential equations.

Section 2.5 provides a critical review of the related work on fractional

differential equation systems. The fractional Shimizu-Morioka system, the fractional

ocean circulation box model, and incommensurate fractional differential equation

systems are briefly discussed. At the end of the section, several numerical methods

for systems of fractional differential equations are discussed.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



11

2.2 Fractional calculus

Fractional calculus has a long history and is one of the classical branches of

mathematics. Fractional calculus is the calculus of non-integer order derivatives

and integrals that involves fractional derivatives and integrals (Bourdin et al., 2013).

Leibniz carried out the concept of a fractional derivative in 1695 in his letter

to L’ Hopital (Petráš, 2011). Leibniz raised the question about the possibility

of the derivatives being generalized to non-integer orders (Petráš, 2011). Hence,

contributions of several mathematicians, such as Liouville, Riemann and Weyl, were

made to the theory of fractional calculus (Petráš, 2011).

A fractional differential equation is a generalization of the differential equation

through the application of fractional calculus. Fractional calculus fundamentals have

been studied in many researches, including those of Petráš (2011) and Baleanu

et al. (2012). Fractional calculus may also be applied in fractional conservation

of mass (Dinh, 2019), groundwater flow problem (Mahantane, 2019), fractional

advection-dispersion equation (Singh et al., 2019), time-space fractional diffusion

equation model (Jia et al., 2018), structural damping models (Praharaj & Datta, 2020),

acoustical wave equations for complex media (Näsholm & Holm, 2013) and fractional

heat conduction model (Baleanu et al., 2020).

Besides that, the special functions such as Euler’s gamma function, Mittag-

Leffler function and hypergeometric function always play essential roles in the research

related to fractional calculus. To derive the analytical solutions of incommensurate

fractional differential equation systems in Chapter 6, a precise application of these

special functions is required and permitted us to simplify the solution. Here, we will

briefly present some related works for the special functions.
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2.2.1 Gamma function

Gamma function Γ(x) is a generalized factorial form with its argument shifted down

to complex numbers (Baleanu et al., 2012; Wang, 2016),

Γ(x) = (x− 1)!, (2.1)

if x is a positive integer. This gamma function is considered to extend the factorial

to different definitions for a non-integer or complex number x, for instance, in the

form of Euler’s integral, infinite product and Euler limit (Wang, 2016). Researchers

such as Daniel Bernoulli, Legendre, Gauss, Liouville, Weierstrass and Hermite studied

this gamma function, which was introduced by Euler (Kim & Kim, 2020). The

various definitions given by these different researchers are equivalent to each other.

In particular, the Euler’s integral gamma function is used throughout this thesis,

especially in Chapter 6, and the definition is given in Section 3.5.

2.2.2 Mittag-Leffler function

Mittag-Leffler function can be derived in the integral representation (Baleanu et al.,

2012). In recent years, this special transcendental function shows its importance

in treating problems related to fractional-order differential and integral equations

(Mainardi, 2020). However, the Mittag-Leffler function has a long history. In 1903, the

Swedish mathematician Mittag-Leffler introduced a function with power series given

by

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, (2.2)

namely Mittag-Leffler function, where z is a complex variable and Γ(·) is a gamma

function (Mainardi, 2020). When α = 1, the Mittag-Leffler function is reduced

to an exponential function (Shukla & Prajapati, 2007). Mittag-Leffler function is

important due to its wide applications in applied sciences and mathematics as well as
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Rössler system. International Journal of Bifurcation and Chaos, 28(08), pp.

1850098.

Chang, A., Sun, H., Zheng, C., Lu, B., Lu, C., Ma, R., & Zhang, Y. (2018). A

time fractional convection–diffusion equation to model gas transport through

heterogeneous soil and gas reservoirs. Physica A: Statistical Mechanics and

its Applications, 502, pp. 356–369.

Chatibi, Y., El Kinani, E., & Ouhadan, A. (2019). Variational calculus involving

nonlocal fractional derivative with Mittag–Leffler kernel. Chaos, Solitons and

Fractals, 118, pp. 117–121.

Clark, R. N. (1992). The Routh-Hurwitz stability criterion, revisited. IEEE Control

Systems Magazine, 12(3), pp. 119–120.
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of anomalous diffusion and Lévy flights. Physical Review E, 90(3), pp.

032809.

Samaee, S., Yazdanpanah, O., & Ganji, D. (2015). New approaches to identification

of the Lagrange multiplier in the variational iteration method. Journal of the

Brazilian Society of Mechanical Sciences and Engineering, 37(3), pp. 937–

944.

Sarwar, S., & Iqbal, S. (2018). Stability analysis, dynamical behavior and analytical

solutions of nonlinear fractional differential system arising in chemical

reaction. Chinese Journal of Physics, 56(1), pp. 374–384.

Shatnawi, M. T., Djenina, N., Ouannas, A., Batiha, I. M., & Grassi, G. (2021).

Novel convenient conditions for the stability of nonlinear incommensurate

fractional-order difference systems. Alexandria Engineering Journal,

https://doi.org/10.1016/j.aej.2021.06.073.

Shukla, A., & Prajapati, J. (2007). On a generalization of Mittag-Leffler function and

its properties. Journal of Mathematical Analysis and Applications, 336(2), pp.

797–811.

Singh, H., Pandey, R. K., Singh, J., & Tripathi, M. (2019). A reliable numerical

algorithm for fractional advection–dispersion equation arising in contaminant

transport through porous media. Physica A: Statistical Mechanics and its

Applications, 527, pp. 121077.

Singh, J., Kumar, D., Qurashi, M. A., & Baleanu, D. (2017). A novel numerical

approach for a nonlinear fractional dynamical model of interpersonal and

romantic relationships. Entropy, 19(7), pp. 375.

Soloklo, H. N., & Bigdeli, N. (2020). Direct approximation of fractional order systems

as a reduced integer/fractional-order model by genetic algorithm. Sādhanā,
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