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ABSTRACT 

Oily wastewater discharged into the environment causes serious global water pollution 

issues, which necessitates emerging recovery technologies, such as membranes for 

water purification. In this study, ceramic hollow fibre membrane (CHFM) derived 

from abundant waste materials of metakaolin (MK) and corn cob ash (CCA) were 

successfully developed via phase inversion/sintering techniques. As weakness of MK 

membrane is always associated to the brittleness property that lead to the reduction of 

strength value. Thus, further improvement by substituting a proportion of CCA into 

MK acts as pore-forming material and assist sintering mechanism in the preparing 

MK–CCA CHFM. The fabrication of CHFM involves CCA-based CHFM (H-NCA), 

MK–non-treated CCA-based CHFM (H-MNCA), and MK–treated CCA-based CHFM 

(H-MTCA) with processing parameters of ceramic powder ratio and ceramic powder 

content, bore fluid flow rate, and sintering temperature. Unstable H-NCA and H-

MNCA membranes were observed during dope preparation and membrane spinning, 

owing to corn cob ash–potassium chloride (CCA–KCl) dissolution, which is 

significance as a green viscosity enhancer and pore agent in H-MNCA based on the 

precursor and sintered membrane matrix structure. The optimum MK:NCA ratio at 

75:25 generated mechanical strength of 41.61 MPa and permeate water flux (PWF) of 

~1159.93 L/m2h. The final membrane preparation involved the TCA, produced the 

best H-MTCA asymmetric structure at MK–TCA of 45 wt%, bore fluid flow rate of 

10 mL/min, and sintering temperature of 1150 °C. The performance tests showed a 

stable PWF (~266.52 L/m2h), enhanced mechanical strength (82.78 MPa), and high 

oil–water separation efficiency (93.06%). Hence, CCA offered efficient sintering 

additive, not only formed in-situ reaction of phase network but also allow sintering at 

lower temperature, which preserved the sustainability technology. 
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ABSTRAK 

Air buangan berminyak yang dibuang ke persekitaran menyebabkan masalah 

pencemaran air global yang serius yang memerlukan teknologi pemulihan seperti 

membran untuk pembersihan air. Dalam kajian ini, membran serat berongga seramik 

(CHFM) yang berasal dari bahan buangan metakaolin (MK) dan abu pulung jagung 

(CCA) telah dihasilkan melalui teknik penyongsangan fasa/persinteran. Kelemahan 

membran MK selalu dikaitkan dengan sifat kerapuhan yang menyebabkan penurunan 

nilai kekuatan. Oleh itu, penambahbaikan dibuat dengan mengantikan sebahagian 

CCA ke dalam MK yang bertindak sebagai bahan pembentuk liang dan membantu 

mekanisme persinteran dalam penyediaan MK–CCA CHFM. Pembuatan CHFM 

merangkupi CHFM berasaskan CCA (H-NCA), CHFM berasaskan MK–CCA yang 

tidak dirawat (H-MNCA) dan CHFM berasaskan MK–CCA yang dirawat (H-MTCA) 

dengan parameter pemprosesan iaitu kandungan/nisbah serbuk seramik, kadar aliran 

bendalir, dan suhu bakar. Ketidakstabilan membran H-NCA dan H-MNCA 

diperhatikan semasa penyediaan adunan dan penyemperitan membran disebabkan oleh 

penyahlarutan abu pulung jagung–kalium klorida (CCA–KCl) yang menunjukkan 

kesannya sebagai penambah kelikatan dan agen keliangan dalam struktur matriks 

bakar H-MNCA. Campuran komposisi membran yang optimum pada nisbah 75:25 

(MK:NCA) mencapai kekuatan mekanikal 41.61 MPa dan kadar penyerapan air, 

(PWF) ~1159.93 L/m2h. Penyediaan membran akhir melibatkan CCA yang dirawat, 

menghasilkan struktur asimetri H-MTCA yang terbaik pada kandungan seramik 45 

wt%, kadar aliran bendalir 10 mL/ min, dan suhu bakar 1150 °C. Ujian prestasi 

menunjukkan PWF yang stabil (~266.52 L/m2h), kekuatan mekanikal yang 

dipertingkatkan (82.78 MPa), dan kecekapan pemisahan minyak–air yang tinggi 

(93.06%). CCA bertindak sebagai bahan tambahan pensinteran yang cekap, bukan 

sahaja membentuk tindak balas in-situ rangkaian fasa tetapi juga pensinteran pada 

suhu yang lebih rendah serta dapat mengekalkan teknologi kemampanan. 
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1CHAPTER 1 

INTRODUCTION 

1.1 Research background 

Oil–water mixtures are found in many industrial processes in form of a product, a by-

product or a waste stream [1]. At a mean time, a large amount of water pollutants is 

discharged into the ground and surface water by the oily wastewater from industrial 

application on daily basis which causes severe ecological problems for humans, 

amphibious environments, and microorganism (as depicted in Figure 1.1). For 

instance, the long–term hydrophobicity of oily wastewater causes the pollution in 

agricultural soils and contaminated soils rarely absorb the water [2]. 

 

Figure 1.1: Oil–water separation using membrane technologies  

The produced water treatment is significant from an environmental view to 

minimize waste disposal and for economic perspective, the water management 
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expenses can account for drilling costs about 5–15%. In recent times, membrane based 

separation processes ascertained to be effective for the oil separation from wastewater, 

although there are few discrepancies for the same process [3–5]. For example, reverse 

osmosis is restricted by the application of high pressure and greater fouling problem, 

resulted in a low permeability [6]. Likewise, ultrafiltration [7] and nanofiltration [8] 

also induces a slightly low permeate flux. Microfiltration is most favours in water 

treatment and oil–water separation from wastewater streams due to higher water 

permeability and low pressure requirements [9]. 

Nowadays, application of ceramic membranes has been increasing and 

circumvent the polymeric membranes utilisation. In 1989, Finnigan and Skudder [10] 

pioneering ceramic membrane for application of beer and recovery of extract through 

microfiltration process. At the same time, the treatment of oily wastewater using 

ceramic hollow fibre membrane (CHFM) via separation process is develop for more 

economical fabrication of ceramic membrane that offer many advantages, combined 

phase inversion and sintering technique. Dramatic reduction in the cost makes 

membranes economically competitive with traditional processes. In preparing of a 

good membrane, the properties such as high flux rate (permeability), high selectivity, 

ideal pore size, high surface area, low manufacturing cost, small thickness, and 

mechanically stable must be achieved.  

In addition, ceramic membrane microfiltration has been widely studied as a 

membrane support for various applications such as gas separation, photocatalytic 

activities [11], hybrid membrane for combine separation–adsorption application [12], 

membrane contactor [13], and membrane distillation [14]. For example, Huang et al. 

[15] applied a coating method to prepare superhydrophobic layers on ceramic 

membrane from alumina for membrane distillation application. Also, previous work 

reported on preparation of tubular porous ceramic membrane from alumina through a 

phase inversion casting as membrane support for gas separation application [16]. 

However, ceramic membrane from high–purity alumina is expensive with high 

sintering temperature up to 1500 °C, making this ceramic membrane preparation is 

extremely pricey [17–19] (as shown in Figure 1.2). 

Over the last decade, the exchanging trends of the economical ceramic raw 

sources usage have been studied extensively for various technological applications. 

Therefore, the ceramics manufacturing is also in search of developing waste material 

in its outcome productions. Numerous works of related area have been conducted to 
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reach this ceramics industry goal [20, 21]. As a result, waste by-products have been 

recognised as prospective materials for the ceramics production; i.e., fly ash [22, 23], 

bottom ash [24, 25], blast furnace slag [26, 27], glass waste [28, 29], petroleum waste 

[30, 31], water treatment sludge [32, 33] etc.  

 

Figure 1.2: Advancement of ceramic membrane materials 

Conventionally, low-cost ceramic membranes are prepared from clay and 

starch as the main raw material and pore agent (porogen), respectively, as investigated 

by Lorente-Ayza et al. [34]. Also, Hubadillah et al. [35] prepared low-cost ceramic 

membrane from kaolin clay through phase inversion and sintering technique to 

investigate the effects of kaolin content and particle size. 

It should be mentioned that the world generates millions of tons of agricultural 

waste every day, e.g., rice husks, empty palm oil bunches, sugar cane bagasse, corn 

cobs etc. These abundant unused agro-waste are burned in boilers to generate energy, 

which at the same time produced ash with health hazard, cause lung disease if the ashes 

are disposed into open fields [18]. Considering its abundancy, rice husk ash, which 

highly consists of silica has been utilised as adsorbent–separator CHFM for efficient 

heavy metal removal [12]. In another application, activated carbon derived from 

agricultural sugarcane bagasse waste was applied for adsorbing lead ions from 

wastewate [36].  

The preparation of low-cost ceramic membranes from clay and ash-based 

agricultural wastes have attracted more attention, as these natural materials highly 

consist of potential minerals to be developed as cheap alternative ceramic materials. 
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For example, metakaolin (MK) is classified as calcined clay type which produced from 

the calcination of kaolin [37]. 

Despite the already high applicability, the interests in the use of MK is more 

often reported in these recent years with lesser cost, mainly as substitution of 

cementitious materials in replacing fly ash [38]. MK is an alternative pozzolanic 

materials that are requisite for concrete properties improvement corresponding to 

durability and reducing the cement amount that commonly known as most expensive 

ingredients in concrete production. This is due to the fact that, in some country, the 

coal-fired power industry that producing fly ash will stop the production and thus, the 

applications of fly ash in the cementious will come to end in the next upcoming years 

[39].  

Corn cobs also considered as a major agricultural by-product from the corn 

production which is typically burned after kernel removal from corn or maize [40]. 

Factories sort out corn seeds for further processing, leaving corn cobs as industrial 

waste. The biodegradation of corn cobs by microorganisms is a very long process, and 

incineration can be the simplest and fastest method to dispose corn cobs. However, 

incineration releases greenhouse gases (CO2) into the atmosphere and causes global 

warming. Moreover, the smoke from the process affects public health. Thus, it is 

crucial for the corn industry to be concerned on environmental pollutions and to 

convert corn cob waste into highly valuable products. 

From the literature, corn cob ash (CCA) has been widely used as a pozzolan in 

blended cement [41, 42]. CCA’s pozzolanicity has been proven to meet the demand 

requirement on the strength activities [43]. It is also has been used as a supplementary 

replacement material that is able to improve the compressive strength and workability 

of cementitious samples [44]. The suitability of CCA as an alternative ceramic 

membrane material for CHFM fabrication, and as a reinforced material and pore-

performing agent was investigated in this study via combined phase inversion and 

sintering techniques. The use of CCA not only provide an alternative ceramic 

membrane material but also a sustainable and greener production technology that 

minimize the contamination to the environment. 
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1.2 Problems statement 

Alumina is mostly used as the base support of membrane material which is expensive 

and applied high sintering temperature towards various separation technologies. In the 

attempts to produce ceramic membranes from cheap materials, a number of researchers 

have utilised naturally abundant green materials. These materials can be easily 

extracted at low sintering temperature and known with their renewable nature, 

environmental friendliness and superior as compared to synthetic materials. MK meets 

the requirements as a new development of CHFM material, such as hydrophilic and 

porous properties with varying range of pore size distribution that benefit in permeate 

flux. It also offers a cheap abundance product. However, MK hollow fibre membrane 

offers low strength with a porous structure which requires high sintering temperature 

to achieve complete consolidation even for minimal mechanical strength.  

Despite of CCAs complexity behaviour, they are useful during the phase 

inversion due to their naturally solubility in solvent and non-solvent medium. 

Interestingly, this has not been addressed in previous literature, and this benefits the 

flexibility control of thermodynamic dope suspension system and membrane 

spinnability process. Moreover, water leaching treatment has been studied to improve 

the properties of CCA. 

Many works reported on potassium oxide (K2O) high percentage in CCA, 

which induced a low melting temperature. The KCl originated from CCA seemly 

benefit in reducing MK-based CHFM sintering temperature with greater strength via 

vitrification process. The liquid phase sintering by CCA urged for high-diffusion rates, 

giving fast sintering and rapid complete consolidation at lower sintering temperature. 

Also, due to the high degree of mixing of finer powder particles, precursors often can 

be sintered to the final form at significantly lower temperatures, thus avoiding the 

higher sintering operation to accomplish adequate mechanical strength. Therefore, 

green CCA can be successfully implemented as an alternative supplementary material 

for ceramic membrane strengthening applications at low-sintering temperatures and 

powder loadings. 

Moreover, the large amounts of oily wastewater discharge that could affected 

the groundwater resources, aquatic and human health is seems has a strong beneficial 

in implementing this membrane based-CCA structure. This is due to fluxing of CCA 

at lower sintering temperature that able to minimise and control the pore size with the 
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integration of hydrophilic properties, which strongly influenced the attraction of water 

towards membrane surface and rejected the oil molecule. This mechanism will 

generate the oil waste separation without any pressure or energy consumption, which 

indirectly introducing green approach in reclaiming water from oily wastewater 

discharge. For the above reasons, the aim of this study is to produce an alternative 

green MK–CCA CHFM which are environmentally friendly for water filtration and 

oily water treatment.  

1.3 Research objectives 

The main objective of this study is to develop an alternative ceramic hollow fibre 

membrane using phase inversion/sintering technique from green MK and CCA waste 

for oil–water treatment applications. This objective was achieved by accomplishing 

the following objectives: 

1. To investigate the characteristics and properties of raw MK and CCA waste 

as the main ceramic materials for the CHFM fabrication. 

2. To determine the optimum formulation of different proposed mixture 

(ceramic powder ratio and ceramic powder loading) and different controlled 

variables (bore fluid flow rate and sintering temperature) in CHFM fabrication 

via phase inversion/sintering technique. 

3. To investigate the effects of different mixtures of membrane composition 

towards sintering kinetics mechanism and phase changes in the final CHFM 

sintered body. 

4. To measure and analyse the CHFM performance and efficiency towards oil–

water separation. 

1.4 Research scopes 

A series of experiments were performed to ascertain the effects of key process 

parameters and material factors on the preparation of CHFMs. In addition, a series of 

tests were conducted to characterise the raw materials and final products as a baseline 

for this study and for future studies. Hence, the scope of the study is summarised as 

follows: 
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1. Preparing and characterising waste environmental sources of MK and CCA as 

the ceramic materials for producing CHFM: 

i. Kaolin powder was fired at 650 °C for 4 hours at 10 °C/min to get MK 

powder. 

ii. Prior to use, corn cob waste was sun dried and then crushed to get 5mm 

of corn cob particles. 

iii. The ashing temperature of corn cob were set at 600, 700, and 800 °C, 

respectively, and kept for 8 hours at heating rate of 10 °C/min using a 

kiln furnace. However, CCA produced at 700 °C was selected for 

further processing and divided into two sample: 1) non-treated corn cob 

ash (NCA) was used as prepared, and 2) treated corn cob ash (TCA) 

was initially subjected to water leaching treatment and then oven dried. 

Both of powders were subjected to dry milling and sieved to get 

uniform powder (below than 25 µm). 

iv. The morphology and size of the ceramic powders were analysed using 

a scanning electron microscope (SEM)/elemental diffraction analyser 

(EDS). 

v. The chemical and physical properties of the ceramic powders were 

investigated using x-ray fluorescence (XRF), x-ray diffraction (XRD), 

thermogravimetric–differential scanning calorimetry (TGA–DSC), and 

particle size analyser (PSA). 

2. Fabricating and characterising CHFMs by using phase inversion/sintering 

technique: 

i. CHFM was prepared into three samples: NCA-based CHFM (H-NCA), 

MK–NCA-based CHFM (H-MNCA), and MK–TCA-based CHFM (H-

MTCA). 

ii. Ceramic suspension containing the ceramic powders (MK and CCA) as 

the main material (35–50 wt%), with N-methyl-2-pyrrolidone (NMP) 

as the solvent (44–59 wt%), Arlacel P135 as the dispersant (1 wt%), 

and polyethersulfone (PESf) as the binder (5 wt%). 

iii. Ceramic suspension viscosity at different ceramic powder ratios 

(MK:NCA; 100:0, 75:25, 50:50, 25:75, and 0:100) and loading (35, 40, 

45, and 50 wt%) were measured and investigated on their rheological 
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effects towards membrane shape configurations and structure 

formation. 

iv. Ceramic suspension was shaped into a CHFM precursor through a 

single-orifice spinneret using the phase inversion technique. 

v. The effect of the spinning parameter (i.e., bore fluids flow rate of 5, 10, 

15, and 20 mL/min) was investigated to find the perfect configuration 

shape and properties of the hollow fibres. 

vi. The thermal temperature started from room temperature to 600 °C at 

heating rate of 2 °C/min for 2 hours, which then increased to selected 

temperature based of CHFM types (800, 900, 1000, and 1100 °C for H-

NCA fibre membrane; 1100, 1200, 1300 and 1400 °C for H-MNCA 

fibre membrane; 1050, 1100, 1150 and 1200 °C for H-MTCA fibre 

membrane) at 5 °C/min and held for 3 hours. 

vii. Cross sectional and surface morphological characteristics were 

analysed using scanning electron microscopy (SEM). 

viii. The details of MK impact are not captured in this study, as the effect of 

newly CCA is more highlight towards the membrane fabrication. 

ix. The mechanical strength of CHFM was measured at different ceramic 

powder ratios/loadings, bore fluid flow rates, and sintering 

temperatures using the 3-point bending test. 

x. The porosity and pore size distribution of the sintered CHFMs were 

analysed using Archimedes principle and mercury intrusion 

porosimetry (MIP). 

xi. The pure water flux (PWF) of CHFMs were investigated using cross-

flow filtration. 

3. Investigating and characterising the phase changes in CHFM: 

i. The phase transformation of CHFMs prepared at different 

compositions and sintering temperatures were determined using x-ray 

diffraction analyser. 

ii. The relationship of phase changes in CHFM were referred to the K2O-

SiO2-Al2O3 ternary phase system and SiO2-Al2O3 binary phase system. 

4. Evaluating the performance test of the selected CHFMs towards oil–water 

separation using the fabricated membrane system: 

i. Oil–water flux towards oil–water separation was measured. 
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ii. The separation efficiency of oil–water separation was investigated. 

1.5 Significance of the study and novelty of work 

1. The application of ceramic material is hindered as it has a high capital cost as 

well as the brittleness behaviour. Knowing that, MK and CCA waste have been 

transformed into valuable and useful material, especially in membrane 

applications, which definitely with lesser cost of production. The suitability of 

MK and CCA that possessed high hydrophilicity property able to attract and 

purify the contaminated wastewater efficiently.  

2. The development of these new materials also naturally consisted of low 

burning materials KCl that can act as pore-forming agent of the porous 

structure in allowing better permeate flow.  

3. Futher observed property with high strength phase and as viscosity enhancer 

that limit the inclusion of usage raw composition for the dope preparation has 

lead to the formation of low-cost materials with better performance at 

economical price.  

4. The present development not only limit to the solution of reduce cost of 

production and environmental problems but also able to produce a high-value 

CHFM for highly efficient of oil–water separation application with potential in 

purifiying water production and oil resource recovery with better performance. 

This development is very crucial for our country which is known as one of the 

main contibuter in palm oil production industry. Thus, the interest in utilisation 

of these waste environmental sources is not only offered the development of 

newly low-cost ceramic materials and membrane but also able to enhance 

membrane properties and performance.  

5. In fact, further benefit that can be obtained from the development of CCA also 

expected to guide an effective way and sharing knowledge in recycling 

abundant agriculture waste of corn cob. Further development and improvement 

towards new materials/product from our local sources are expected to drive the 

economy of the country as well as to benefit local people. 
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2CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

According to World Population Prospects: The 2017 Revision, the population in 

Malaysia is expected to increase to more than 40 million in 2050 [45, 46]. Therefore, 

it is believed that urbanisation will cause a tremendous increase in produced water 

being released into the environment due to local usage demands and growth 

consumption. Therefore, the need for more efficient wastewater management arose for 

water cycle resolution. Being located in a rainfall-blessed region, Malaysia is not 

warranted to face water shortages in the years to come. Therefore, proper strategies 

need to be put in place to ensure water safety and security. 

For example, for sewerage services, Indah Water Konsortium (IWK) Sdn. Bhd. 

is responsible in participating sewage treatment plants prior to discharge the sewage 

into rivers, which was done with high and strict compliance to preserve the 

environment. However, the cost of cleaning the environment far exceeds the costs 

involved in preserving it, as the cost of treating wastewater is increasing. Therefore, 

due to the impact of wastewater on the environment, the utilisation of membranes with 

lesser cost and with sustainable technologies in wastewater treatment has attracted into 

foremost attentions.  

At some point, many membrane research modifications have gained the 

attention of research for controlling the material composition of membrane, the type of 

materials, the use or influence of additives (such as inorganic precursors on the 

morphology), the stability and the porous texture of the inorganic matrix, and even 

controlling the processing variables. All these factors are always interlinked and 
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associated with each other to bring the establishment of quality and the targeted 

membrane properties and performance. 

2.2 Overview of oily wastewater industry 

Worldwide oil spills and industrial oily wastewater introduce various toxic compounds 

into clean water systems which subsequently threaten the global ecosystem [47, 48]. 

Water pollution caused by oily wastewater effluents is largely produced from the rapid 

industrial growth of oil and gas, pharmaceutical, metallurgical, petrochemical, and 

food industry sectors. Indeed, the necessity to treat wastewater is quite challenging and 

inevitable. In addition, the increased demand for clean water, particularly in water-

stressed areas is the result of the rapid growth in economy and population, as well as 

the need of future generations [49]. 

From ecological safety perspective, the oil–water emulsions contribute to a 

bigger destructive impact to the ecosystems and the environment towards aquatic and 

human life, which necessitates the oil separation from oily wastewater [50]. Padaki et 

al. [51] described the organic compounds in oily discharge water containing the 

amount of nitrogen (N) content less than 3% sulfur content molecule 0.3–10%. While, 

oxygen content molecule is usually less than 4.8% [52]. Other contaminants at wide 

range are also being discharged together with oil. It is important to know that high 

amount of dissolved oxygen in discharge wastewater affects the algae productivity as 

it is very important link in the food chain. Furthermore, the required amount of oxygen 

is 2 mg/L in order to sustain a safe and normal life for aquatic environment [51]. 

High level of organic matter in oily wastewater discharge into water bodies can 

caused the fatal condition to microorganism due to oxygen excess consumption [51]. 

The out coming of this matter will leads to maintenance of higher life forms. This oily 

sludge water is not only contributes a side effects in aquatic environment, but also in 

agriculture sectors, i.e., soil pollution. This is due to the physical and chemical 

properties changes as it enters into the soil and consequently effects the soil 

morphologies. As a result, plants grow with a fewer nutrients with seed germination 

obstruction and plants restriction growth [53]. Additionally, wastewater pollution also 

weakening the crop production and natural landscape devastation [54]. 
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Oily water constituents are categorised based on oil droplets size, namely, free 

oil (>150 mm), dispersed oil (20 to 150 µm), and stable emulsified oil (<20 µm) [55]. 

In this manner, government agencies and pollution control boards have prepare a strict 

control guidelines for the maximum oil/grease concentration in discharged industrial 

effluents. Therefore, many academic researchers and industrial experts have put high 

efforts in finding solutions for oily wastewater treatment with treated water released 

concentrations below the standard discharge limit (5–10 mg/L) [56]. Table 2.1 listed 

on the produced oily water discharge from several industrial sectors. 

Table 2.1: Produced oily wastewater from industries 

Types of oily water Oily water concentration (mg/L) Ref. 

Refractory oily wastewater 100–200 [57] 

Vegetable oil refinery industry 

wastewater  

2648–3880 [58] 

Palm oil mill effluent 250,000 [57] 

Crude oil  500 [59] 

Synthetic oil (lubricant oil (REPSOL 

ELITE TDI 15 W40) + soluble oil 

(SOL 1000) 

1500–6000 [60] 

Synthetic oil (paraffin oil + Oleic 

acid + Triethanolamine) 

200 [61] 

Restaurant oil water in Hong Kong 100–2100 [59] 

Drilling wastewater from Barekuri, 

India 

35 [62] 

Refinery plant 26 [9] 

Oil and gas  50–1000 [63] 

Fish meal plant 1210 [64] 

Petrochemical  250 [65] 

 

Necessary actions for wastewater treatment are not only for reusing and 

recovering the oil for economic gains but also for oil phase environmentally friendly 

disposal [55]. A preferable solutions in separating oily wastewater are more effective 

compared to oil burning, which address to the global environmental issues. It is 

considerably benefit in reducing environmental pollution, as well as resource recycling 

approach and energy saving [66]. In point of sustainability, oily wastewater 

management has executed a considerable costs and solving challenges so that a cost-

effective and energy-efficient separation techniques should be implemented seriously. 

Among the contaminants found in oily wastewater, oil and grease are the most 

challenging task for wastewater separation. 
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2.3 Conventional oily wastewater treatment  

In the last two decades, there are several methods used for the separation of oil from 

oily wastewater, including air flotation [67, 68], coagulation [69, 70], gravity 

separation [71], de-emulsifications process [72] and flocculation [55] (Figure 2.1). 

Most of these methods are reported as not efficient in following pollution control 

agencies standards, especially when involving low oil concentration. Additionally, 

streams/products of secondary waste are also produced in large quantities, and oil 

emulsions droplet size must less than 20 µm for efficient separation [73]. Crucially, 

these conventional methods have some drawbacks, such as using toxic compounds, 

requiring a large space for installation, having expensive operations and generating 

secondary pollutants [51]. 

 

Figure 2.1: Reported of oil–water treatment technology from 1988 to 2018 from Web 

of Science [55] 

Prior to the discharge of produced water into the environment, region-specific 

regulations have been initiated to enforce the oily wastewater treatment applications 

[55]. Table 2.2 is summarize of the discharge oily wastewater regulations. Hence, there 

is an urgent needs to develop technologies that reach treatment goals cost-effective 
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according to the regulations. The common technologies innovation for treating oily 

waste water are discussed in the next section. 

Table 2.2: Regulations for discharging oily wastewater 

Country/Sea Regulations Upper limit of discharged oil concentration Ref. 

North East 

Atlantic 

Oslo Paris Convention 

(OSPAR) 

30 mg/ L of oil and grease  [74] 

Paris - 40 mg/L for the offshore fields 

5 mg/L for the on-land fields 

(discharged to the sea) 

[75] 

United States Environmental 

Protection Agency 

(EPA) 

72 mg/L for any 24 h period 

45 mg/L over a 30 days period 

 

40 mg/L and typical range around 10-15 

mg/L 

[76] 

 

 

[77] 

Norway - 30 mg/L  [78] 

China - 10–15 mg/L  [78] 

Malaysia Malaysia Environmental 

Quality (Sewage and 

Industrial Effluent) 

Regulation 1979 

5 mg/L inland waters within listed 

catchment areas (standard A)  

10 mg/L for water discharge into any other 

inland or Malaysian waters for standard B 

[79] 

2.3.1 Flotation  

A floating mechanism significantly reduces the overall density of oil/solid particles by 

aggregating them with gas bubbles [80]. The tiny air bubbles adhere to the oil particles 

suspended in water, and because the floating density of oil is less than that of water, 

the formation of a scum layer separates from the water [81] (Figure 2.2). These 

aggregates will rise rapidly and eventually skim off. The mechanism is also suitable 

for the removal of oil droplets with particle sizes of more than 20 µm and with an 

average effluent concentration of 10–40 mg/L [80]. 

In flotation technology, induced and dissolved gas flotation systems are the 

most regularly applied. These are very effective in floating small suspended particles 

(organic matter, oil and grease). Moreover, fine particles as small as 3 µm can be 

removed using this coagulation technology [82]. Typically, waste influent with oil 

concentration lower than 1000 mg/L can be treated using the system. However, the 

disadvantages of this method are that the dissolved oil is difficult to be removed and 

chemical pre-treatment is usually required to remove the emulsified oil. It is also not 

cost-effective to produce large volumes of microbubbles that are smaller than oil 

droplets [80]. Painmanakul et al. [83] studied the modified induced air flotation process 
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for oily wastewater containing anionic surfactants. The study presented that pH value, 

alum dosage, and gas flow rate were related to removal efficiency as considered in 

terms of chemical oxygen demand (COD). 

 

Figure 2.2: Induced gas flotation system [81] 

2.3.2 Biological treatment 

The use of microorganisms in treating oily wastewater has yielded some impressive 

results [84]. The experimental setup sytem can be illustrated in Figure 2.3 via single-

phase system [85]. A consortium of microbes is usually used in oily wastewater 

treatment process in order to eliminate hazardous pollutants. Even though this 

biological treatment is not so popular or well developed as other techniques due to the 

unstable nature of the microbes, there are findings that showed notable contaminant 

removal percentages from oily wastewater [54].  

Nopcharoenkul, Netsakulnee & Pinyakong [86] developed a bio-treatment 

using Pseudixanthomonas sp. RN402 to degrade crude oil, diesel oil, n-hexadecane 

and n-tetradecane, respectively with efficiency of 83, 89, 65 and 92%. Meanwhile, 

Chanthamalee, Wongchitphimon & Luepromchai [87] studied the treatment of bilge 
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water using polyurethane foam (PUF)-immobilized Gordonia sp. JC11. They found 

that PUF–immobilized bacteria performed was efficiently in removing oil and able to 

remove boat lubricant at 40–50%. Hidalgo, Martin-Marroquin & Sastre [85] 

demonstrated the co-digestion of residues and pig manure in the oily vegetable waste 

treatment without chemicals addition by co-digestion of substrates. 

 

Figure 2.3: Experimental set-up in lab-scale single-phase system [85] 

2.3.3 Coagulation 

Coagulation is commonly applied in industrial wastewater treatment by using 

coagulants. Chemical coagulation with certain chemicals can bring non-settleable 

particles together to become a larger heavier mass of floc or solid material, which then 

is removed [88]. The working mechanism of coagulation can be simply explained by 

referring Figure 2.4, as coagulant is added into wastewater tank, it will precipitate and 

trap the impurities which then settle to the bottom tank for further treatment processing. 

Unfortunately, the presence of the precipitatation of impurities in the treated water 

needs another procedure for clean water separation, which presents the most 

challenging task and becomes a drawback for this method as it is time-consuming and 

costly. 
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Figure 2.4: Coagulation process employed water treatment [88]  

Cong, Liu & Hao [89] used poly-aluminum zinc silicate chloride for the 

treatment of oily wastewater. Turbidity, chromaticity, and COD were respectively 

given as 98.9, 91.3, and 71.8%. This conventional method is gradually being replaced 

by advanced hybrid techniques of coagulation/membrane, particularly in oily 

wastewater treatment. Coagulants are added earlier into the feed-water before it is 

enters the membrane module, as at this point sedimentation is omitted. The organic 

matters that accumulate on the membrane surface can be aggregated and escaped the 

fouling cake layer that easily remove by hydraulic cleaning [90]. Hence, membrane 

fouling can be controlled with enhanced filtration performance [91]. 

Rasouli, Abbasi & Hashemifard [88] applied coagulation–MF hybrid process 

using mullite–alumina-zeolite and mullite–zeolite ceramic microfiltration membranes 

for synthetic oily wastewater treatment. Results disclosed that iron (II) sulfate (FeSO4) 

with concentration of 200 mg/L is the best coagulation with excellent performance for 

both membranes. In particular, a hybrid coagulation as pre-treatment use coagulates 

for oil removal such as poly aluminium chloride (PAC1) and casein [92], aluminum 

and iron salts [88] and PACl, aluminum chlorohydrate and iron (III) chloride (FeCl3) 

[93] and aluminium and ferric sulfates [94]. 

2.3.4 Membrane  

Noteworthy separation systems that can separate most oil particles from water are 

regularly used for initiating oil–water separation. For that reason, the remaining oil in 
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water must be fully eliminated with not even in a small amount at an acceptable limit, 

before the water resources are discharged into rivers or the sea or reinjected for water 

flooding [95]. The research on membrane-based separation has started since 1973, and 

it is has been recognised as the most cost-effective technology for removing oil droplets 

with sizes smaller than ~10 µm [96]. Membrane separation processes achieve great 

advantages of no chemical addition and the absence of oily sludge [97]. Many works 

have reported on the ability of membrane separation techniques that successfully meet 

these specification.  

These days, the use of membrane separation processes have outstandingly 

grown in many industrial applications, owing to the properties and efficiency in many 

separation processes, including industrial effluent water treatment [98]. Being able in 

solving an environmental problems in related area with low-cost management has 

made membrane technology become more acknowledged [99]. Due to its high 

selectivity, good productivity, fouling resistance, stability, efficient performance, and 

reliable separations, membrane separation is the best system to protect water resources 

apart from being economical [79]. Ever since the membrane technology was 

introduced, it already demonstrated efficiency in separation applications and 

competitiveness in water purification, as compared to conventional techniques. 

However, it should be noted that efficiency and compatibility are entirely determined 

by the membrane properties itself. 

Membranes separation can be defined as a very simple concept as illustrated in 

Figure 2.5. They acts as a selective partition of semi-permeable layer between two 

phases which then regulates the transportation of those two phases under the effect of 

a driving force. In a simple way, feed will permit and transports through the membrane 

and at the some point, the suspended solids and other substances will be restricted and 

not able to pass through it [51]. A transfer force can be generated by a gradient of 

pressure or applied of electrical potential to induce the membrane permeation. 

Permeate is referred to the fluid part that passes through the membrane, while retentate 

is the liquid with retained elements [99]. 
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Figure 2.5: Membrane separation mechanism 

Suresh, Pugazhenthi & Uppaluri [100], in comparing membrane filtration 

techniques, microfiltration membranes (MF) is suggested more favoured for oil–water 

separation rather than nanofiltration (NF) and ultrafiltration (UF) membrane. This was 

due to the wide range of pore size and also the narrow pore size distribution in the MF 

membrane, which can contribute to high flux with better rejection [101]. During the 

filtration process, the NF and UF membranes needed to be regularly stopped for 

membrane cleaning in order to restore membrane permeability due to pore blockage 

by the cake layer of oil or the fouling mechanism. Normally, concentration polarisation 

and adsorption of oil foulants on the membrane surface were major reasons for the 

fouling issue [102]. 

Oil rejection efficiency or the separation performance of oil–water emulsion 

depends on several factors, such as membrane properties, operating parameters (cross 

flow rate and applied pressure), and feed oil properties (initial feed concentration and 

feed temperature) [100]. Membrane pore size has an interaction with oil droplet size. 

According to Almojjly, Johnson & Hilal [103], membrane pore size is likely 

determined oil–water emulsion filtration properties, which depended on oil droplet size 

related to oil concentration. Zanatta et al. [104] found that a higher oil rejection 

performance of oil separation was due to the larger particles of oil instead of the pores 

of the microfiltration ceramic membrane.  

Tai et al. [105] suggested that the membrane flux of oil–water emulsion was 

significantly low as compared to water flux due to the higher viscosity of the oil 

emulsion. Theoretically, membrane flux enhances with increasing driving force during 

filtration. On the other side, the flux reduces with increasing feed oil concentration. A 

concentrated oil refers to greater oil particles in emulsion, which increase the pore-
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blocking rate of the membrane surface, causing fouling. Most reported studies focused 

on oil concentration equal to or higher than 1000 ppm for treating oily wastewater [7, 

63, 106].  

At high pressure, oil droplet wetting is enhanced and then coalesces to permit 

greater transportation of oil droplets through the membrane porous structure. As a 

consequence, a reduced rejection rate performance is obtained. On the other hand, 

membrane rejection improves with increasing feed concentration, owing to increase 

oil droplet size and oil emulsion density. Fouling control or membrane cleaning 

definitely will increase operation cost, as well as process complexity, thus making 

membrane separation processes less competitive in many circumstances [107].  

Therefore, enhanced hydrophilicity of membranes are more often reported for 

treated oil–in–water emulsions to acquire clean water rather than membranes with 

hydrophobicity characteristics [108, 109]. This is because, a hydrophilic material is 

less sensitive to adsorption and fouling properties as compared to a hydrophobic 

material [110]. This membrane acquires a surface contact angle value of less than 90° 

(Figure 2.5 (a)). Aside from hydrophilic membrane fabrication with high water flux 

for oil–water emulsion, oleophobic characteristic also should be considered for 

reducing oil adhesion onto the membrane surface. This is due to the higher surface 

energy of the hydrophilic surface as compared to the surface energy of the biological 

and organic foulants in water. As a result, pore blockage occurs because oil surface 

tension is lower than that of the membrane surface [79]. 

On the contrary, a hydrophobic membrane (contact angle>90°) has been used 

for oil adsorption (Figure 2.5 (b)) [111, 112] and at the same time prevents water 

molecules from pass through it [113]. Moreover, to adsorb oil droplets, a hydrophobic 

membrane ideally attains a high value of water contact angle. At the same time, the 

membrane must possess an oleophilic characteristic due to the low oil contact angle. 

Above all, special wettability-oriented materials for oil–water separation are 

identified as superhydrophobic/superoleophilic, which refers to oil–removing 

materials, or superhydrophilic/superoleophobic for water–removing materials. 

Membranes wettability-regulated separation methods demonstrate numerous 

advantages over conventional separation methods due to their good reusability and 

high separation efficiency. Prior to this, membrane has been a promising for oil–water 

treatment, as well as oil–water emulsion [114]. 
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2.4 Recent advances in membrane technology towards oily wastewater 

separation 

Nowadays, the membrane technology is known to be a “worldwide technology”, owing 

to its cost-effectiveness, sustainable technology, simple operation, and high energy 

efficiency. Typically, membranes are made from polymeric materials and inorganic 

(ceramic) materials. They are produced in diverse of configurations, such as disk, 

spiral, tubular, and hollow fibre structures. Each type of membrane configurations 

possesses a varying degree of separation. In terms of compatibility and competency, 

hollow fibre membrane configuration usually offers compact modules with a high 

effective surface area [51]. For years, the applications of polymeric and ceramic 

membranes are emerging and effective in separating oil particles from produced water. 

2.4.1 Polymeric membrane 

Numerous studies have conducted on treating oily wastewater using polymeric 

membranes. The most typically used polymer materials for MF/UF membranes 

preparation are polyacrylonitrile (PAN) [115], polysulfone (PSf) [116], cellulose 

acetate (CA) [117], polyvinylidene fluoride (PVDF) [118], polyethersulfone (PESf) 

[119], and polytetrafluoroethylene (PTFE) [120]. The common structure of polymer 

membrane can be demonstrated by the PESf membrane, which mainly consists of a 

dense top layer and a porous support of finger-like voids (Figure 2.6) [119]. The 

advantages of the polymeric membrane technology are offering high-efficiency of 

particles removal, low energy requirements, and most significantly are inexpensive to 

that of ceramic-based membranes [51]. 

However, these membrane types possess some drawback in their utilisation as 

membrane separation, such as ineffectiveness in volatile-compound separation. They 

also tends to suffer from deterioration in flux and rejection during oily wastewater 

treatment, as severe fouling easily occurs for polymeric membranes [121]. Therefore, 

to overcome this phenomenon, a significant number of polymer formulations and 

alterations have been developed to enhance the hydrophilicity, antifouling properties 

and membrane performance, for examples, polymer-blending [122], membrane surface 

modification [118] and nanoparticle-incorporation in the membrane matrix [119].  
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Figure 2.6: Morphological of PESf membrane; a) cross sectional and b) outer surface 

membrane [119] 

Despite prior usage of hydrophobic neat polymers in treating oily wastewater, 

the hydrophilicity characteristic of the membrane is more promising, owing to easy 

water molecule transportation and reduction of oil droplets at the end of the produced 

treated water. Moreover, oil adhesion on the hydrophilic membrane surface could be 

lessened, subsequently resulting in membrane fouling reduction and water productivity 

improvement [123]. Unfortunately, the implementation of hydrophilic polymeric 

membrane is not an easy task. This is because of the accumulated oil formation on the 

membrane surface due to emulsion flow force during oil emulsion filtration. As a 

consequence, fouling is formed by oil accumulation that penetrates into the membrane 

pores. This fouling layer will block the membrane pores and reduced the flow ability 

of water, as accumulated oil molecules or foulants restricted water transportation [79].  

Polymer blending is produced by mixing a dope solution that consist of two or 

more polymer types to improve membrane morphology, hydrophilicity wettability, and 

fouling resistance. A research by Zhu, Lu & Bai [124] found that blending or 

immobilized a hydrophilic substances (additive polymer (AP)) onto hydrophilic 

membrane resulted in the hydrophilicity/oleophobicity and thus minimized the 

membrane fouling. Meanwhile, PVDF/sulfonated polycarbonate (SPC) membranes 

have been successfully developed by Masuelli [125] via the same method. The blended 

membrane established a high oil rejection efficiency of 97.8% and permeate flux of 

28.59 L/m2h at 20 wt% of PVDF/PC blending. Zhu et al. [126] have fabricated a 

superhydrophilic zwitterionic polyelectrolyte/PVDF–blend membrane with 

superoleophobicity characteristics owed to zwitterionic sulfonate group presence on 

the membrane layer. 
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In recent years, the mixed matrix membrane (MMM) fabrication method is 

reported as a compromise to polymer blending due to low fouling and the ability to 

remove specific contaminants. MMM aims for the enhancement of overall efficacy by 

combining advantageous characteristics of two types of material [79]. For example, 

Chen et al. [127] incorporated iron (II) phthalocyanine (FePc) into a PVDF membrane. 

Membrane hydrophilicity increased, as well as mean pore size and membrane porosity 

with enhanced membrane antifouling. This was due to the charged surfaces of Fe 

repulsing similarly charged foulants more strongly which is excellent for fouling 

resistance. 

In another study, a low-cost bentonite nanoclay was mixed into a polyvinyl 

chloride (PVC) membrane to prepare a high hydrophilicity membrane, giving superior 

permeate flux (94 L/m2h) and oil rejection (92.5 %). Evidently, bentonite enhances the 

membrane properties of surface roughness, pore density, and porosity. However, long-

term membrane operation is limited due to the occurrence of fouling behaviour by the 

bentonite nanoclay [128]. 

On the other hand, PAN is a promising candidate for oil–water separation due 

to its high water flux and separation efficiency. Zhang et al. [129] prepared a UF PAN 

membrane via the sodium hydroxide (NaOH)–induced phase inversion process. 

Membrane wettability improved by the surface hydrophilicity, as well as membrane 

surface roughness with ultrahigh water permeation (2270 L/m2h) and oil separation 

efficiency (85%). In order to replace the expensive PAN material, Zuo et al. [118] 

proposed MF polydopamine–coated PVDF membranes for hydrophilicity surface 

modifications with high permeation flux of > 2600 L/m2h and oil rejection rates of 

98.5%. 

On the other hand, hydrophobic membranes is literally block the passage of 

water and are commonly used for oil adsorptions. Sadrzadeh, Gorouhi & Mohammadi 

[130] observed on separation of oil from oily wastewater using PTFE hydrophobic 

membrane at different feed concentration, operating temperature and pressure, and 

feed flow rate towards permeate flux and water rejection efficiency. In contrast, 

Karimnezhad [131] studied water flux of hydrophobic membrane after the membrane 

was continuously filtered for almost 1.4 hour. The results showed about 20% reduction 

of water flux from its initial value and ultimately became constant. This result obeyed 

the hydrophobic membrane working purpose in reducing the water passing.  
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The fabrication of a porous substrate of an electrospun polyurethane (PU) 

membrane by stacking nano or micro fibres to form a hydrophobic surface has been 

deliberately explored in these past years [132, 133]. The hydrophilic epidermis is 

imparted onto the membrane chemically modified with hydrophobic agents, i.e., 

polydimethylsiloxane [134], fluorolkylsilane [135], and dimethyldiethoxysilane [135]. 

Gu et al. [136] indicated that a membrane water permeation could be easier due to the 

polar groups in the polyurethane soft segment. So that, permeate water could be 

blocked by membrane grafting by hydrophobic silica particles to produce a low-energy 

epidermis and a rough surface. The resultant membrane exhibited hydrophobicity with 

high water contact angles, durable water repellency, superoleophilic and had high 

permeation fluxes for various oils separation testings. 

Liu et al. [137] fabricated a coated polypropylene (PP) membrane with TiO2 

and 1H,1H,2H,2H-perflluorooctyltrir thoxysilane (POTS) by multi-layer deposition. 

The modified membrane displayed a superhydrophobic/superoleophilic characteristics 

and good surface stability in the acid environment. The membrane was applied for 

water–in–oil emulsion separation with rejection efficiency of higher than 80 % solely 

using gravity.  

2.4.2 Ceramic membrane 

Inorganic–ceramic membranes have been developed for several process applications. 

For example, a well-known research group led by Li adopted a phase inversion 

technique to produce ceramic membrane for multiple applications, namely 

ultrafiltration, nanofiltration, microfiltration and gas separation, and also serves as 

porous support for dense membrane formation [138, 139]. 

Ceramic membrane is more preferably applied compared to the polymeric 

membrane due to their better resistance over chemical attack, thermal stability, long 

life span [140], microbial degradation resistance [141], mechanical stability [142], easy 

clean regeneration, and high separation efficiency [143]. Hence, they are gradually 

applied in a number of industries, particularly for water purification of sectors from 

municipal, textile, domestic, printing and dyeing, chemical, and oily water treatment 

[144]. 
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