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ABSTRACT 

 

 

 

The development of speech-enabled mobile applications has greatly improved 

human-computer interaction in recent years. These applications are flexible and 

convenient for users. Since the speech signal is captured in mobile conditions, it may 

easily be contaminated by background noises, which may result in a complicated 

computation and require speech enhancement algorithm. Thus, the performance of 

speech applications can be degraded when signal-to-noise ratio (SNR) is low and non-

stationary noise is present. Moreover, the task of removing noises without causing 

speech distortion is also challenging, in which the quality and intelligibility of speech 

are affected. In order to overcome these issues, a supervised Deep Neural Network 

(DNN) algorithm predicted constrained Wiener Filter (cWF) target mask algorithm 

based on extracted Gammatone filter bank power spectrum (GF-TF) features and 

trained model is developed. As a result, the trained model with GF-TF features and 

cross-speech dataset produced promising results, while the proposed target mask 

scored higher on the perceptual evaluation of speech quality (PESQ) and short-time 

objective intelligibility (STOI) tests. On top of that, a modified Harmonic 

Regeneration Noise Reduction (HRNR) algorithm is proposed as a post-filtering 

strategy to enhance speech signal due to residual noise being introduced after DNN 

prediction. Results from TIMIT dataset revealed that average STOI scores for the joint 

algorithm are higher than those of DNN, conventional HRNR and Log Minimum 

Mean Square Error (Log-MMSE) algorithms. With SNR of -5 dB, an improvement of 

4% over DNN algorithm, 36% over conventional HRNR algorithm, and 12% over 

Log-MMSE algorithm are obtained. While the average PESQ score is less affected 

after post-filtering strategy. Thus, this work has contributed to improve speech 

intelligibility from noisy backgrounds at low SNR as it can be deployed in speech-

enabled mobile applications. 
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ABSTRAK 

 

 

 

Perkembangan aplikasi mudah alih yang diaktifkan oleh pertuturan telah 

meningkatkan interaksi manusia-komputer dalam beberapa tahun kebelakangan ini. 

Aplikasi ini fleksibel dan mudah untuk pengguna. Oleh kerana isyarat pertuturan 

dirakam dalam keadaan mudah alih, ia mungkin mudah dicemari oleh bunyi latar 

belakang, yang menyebabkan pengiraan yang rumit dan memerlukan algoritma 

peningkatan pertuturan. Oleh itu, prestasi aplikasi pertuturan boleh berkurang apabila 

nisbah isyarat-ke-bunyi (SNR) adalah rendah dan kehadiran hingar tidak pegun. Selain 

itu, proses membuang bunyi bising tanpa menyebabkan gangguan pertuturan juga 

mencabar, di mana kualiti dan kepintaran pertuturan boleh terjejas. Untuk mengatasi 

isu-isu ini, algoritma rangkaian saraf dalam (DNN) meramalkan penapis algoritma 

topeng sasaran (cWF) yang diekstrak berdasarkan ciri-ciri spektrum kuasa bank 

penapis Gammatone (GF-TF) dan model terlatih telah dibangunkan. Hasilnya, model 

yang dilatih dengan ciri GF-TF dan gabungan pertuturan menghasilkan keputusan 

yang memberangsangkan, manakala topeng sasaran yang dicadangkan mendapat skor 

yang lebih tinggi pada ujian persepsi penilaian kualiti pertuturan (PESQ) dan 

kefahaman objektif jangka pendek (STOI). Di samping itu, algoritma pengurangan 

hingar penjanaan semula harmonik (HRNR) yang diubah suai telah dicadangkan 

sebagai strategi pasca-penapisan untuk meningkatkan isyarat pertuturan yang mana 

baki hingar terhasil selepas ramalan DNN. Hasil daripada set data TIMIT 

mendedahkan bahawa purata skor STOI untuk algoritma bersama HRNR adalah lebih 

tinggi daripada algoritma DNN, konvensional HRNR dan ralat kuasa dua purata 

minimum log (Log-MMSE). Peningkatan 4% ke atas algoritma DNN, 36% ke atas 

algoritma konvensional HRNR, dan 12% ke atas algoritma Log-MMSE ditemui pada 

-5 dB SNR. Manakala skor purata PESQ yang diperolehi kurang terjejas. Oleh itu, 

hasil kerja ini dapat meningkatkan kepintaran pertuturan daripada latar belakang 

bising pada SNR rendah supaya ia boleh digunakan dalam aplikasi mudah alih yang 

diaktifkan oleh pertuturan.  
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CHAPTER 1  

INTRODUCTION 

 

 

 

 

This chapter provides an overview of the research background while emphasizing 

current issues on speech enhancement algorithms in low signal-to-noise ratio (SNR) 

and non-stationary noise, described in Sections 1.1 and 1.3. Subsequently, the 

objectives along with the scopes of research are presented in Sections 1.4 and 1.5, 

respectively. Research contributions and thesis outline are then briefly explained in 

Sections 1.6 and 1.7, respectively. 

 

 

1.1 Research background 

The development of speech-enabled mobile application has significantly improved 

human beings’ daily activities and offers more flexibility. For example, in a remote 

context or hands-free computing scenario, humans interact with the computer system 

via verbal communication for purposes of navigation and speech-to-speech 

translations for foreign language understanding. Practically, a single-channel 

microphone in mobile application system is used to capture human speech signals and 

a central processing unit (CPU) is used to process the acquired raw speech signals. 

Due to the nature of distant speech-enabled mobile applications, acquiring speech 

sources will be easily degraded by background noise or unwanted sound in various 

scenarios depending on the users’ situation. To ensure that the acquired speech signal 

could be learned by the device, domain knowledge of digital signal processing 
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techniques, acoustic theories, and mathematical algorithms including speech 

enhancement algorithm are required. 

Speech is a spoken word created by the phonetic combination of a limited set 

of vowel and consonant speech sound units, known as phonemes such as /ba/ or /sha/. 

In contrast to a computer system, a human perceived speech sound using both ears 

during a spoken conversation situation. Thus, the intelligibility of speech could not be 

guaranteed as the expected phonemes when perceiving and recognizing noisy speech 

signals and the quality of degraded speech might be low. A noise like non-stationary 

noise and higher intensity of noise, which are more dominant among spoken words 

remain an issue to be tackled in mobile speech applications, even though vast speech 

applications have been commercialized and made available in the marketplace. 

Moreover, the goal of reducing noise using speech enhancement algorithm without 

generating speech distortion, which affects speech quality and intelligibility, is 

extremely difficult.  

Generally, the perceived speech signal, 𝑥(𝑡) is mixed with ambient noises, 𝑛(𝑡) 

or acoustic environment, which is known as a noisy speech signal, 𝑦(𝑡). Noisy speech 

signals can be modelled by additive noise and mixed noise as shown in Equation 1.1 

and Equation 1.2 (Zhao, 2000; Zhang et al., 2018b). These noises may cause a 

mismatch between trained speech models and spectral features of test speech, and 

therefore often lead to severe degradation of recognition accuracy in speech-enabled 

mobile applications (Zhao, 2000). 

 

𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡) 
 

(1.1) 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡) (1.2) 

 

 

For information, the convolutive noise only exists when the distortions 

introduced by echo or reverberation are correlated with desired speech signal by the 

impulse response of the surrounding, ℎ(𝑡) (Wölfel & McDonough, 2009). Since this 

thesis focuses on single-channel microphones during far-field speech sound 

acquisition, hence, the noisy speech signal with additive noise or background noise is 

badly affected as illustrated in Figure 1.1 (Wölfel & McDonough, 2009). Speech sound 

event occurred between 0 s and 0.5 s, which changes over time. While background 

noise is always there over time, it is possible that an overlapping occurrence happened. 
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This noise is also known as ambient noise, which is unwanted sound judged to be 

unpleasant, loud, or disruptive to hearing as well as causing difficulties for the 

computer to recognize and perceive the spoken words when noise signal is more 

dominant than speech signal. From a physics perspective, both noise and speech sound 

are vibrations through a medium, such as air or water. Hence, removing background 

noise is a challenging task due to different environmental characteristics, especially 

the non-stationary noise dominating speech signals (Vincent et al., 2017; Yuan, 2020), 

which is constantly changing compared to stationary noise (Parchami et al., 2016).  

 

 

Figure 1.1: Noisy speech signal with background noise (Wölfel & McDonough, 

2009) 
 

 

Due to the aforementioned problems, this research focus on the improvement 

of a speech enhancement algorithm for a single-channel microphone. Hence, a 

supervised Deep Neural Network (DNN)-based mask estimation approach is utilized 

to predict a new target output mask from noisy speech signals. The DNN-based 

approach was chosen due to its capability to automatically learn the complex 

relationship between noisy and target mask speech signals. It is required to select the 

most significant features that are suitable and more discriminant to be used as the DNN 

algorithm input for speech enhancement processes. Besides, the DNN algorithm is 

used to generalize different datasets and also the different speakers at higher duration 

length. A post-filtering strategy is also a possible solution to rectify residual noise after 

speech reconstruction. This is to ensure that high-quality and more intelligible 
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enhanced speech signals can be perceived. Further elaboration can be found in the next 

session to better understand the research. 

 

 

1.2 Research motivation 

With the advancement of digital technology in the present era, most speech 

applications such as speech recognition and hearing aids are in high demand among 

consumers due to the significant impact of their usage. Mobility and portability will 

lead to the distortion of speech by background noise during the acquisition of speech 

signals. In the past several decades, several mathematical algorithms regarding speech 

enhancement have been proposed to deal with the issues. Basically, the speech 

enhancement techniques include two modes: (1) single channel processing; and (2) 

microphone-array processing. The single-channel microphone is more ideal compared 

to the microphone array in terms of deployment in mobile speech applications. 

However, the single-channel speech enhancement remains a challenging task when 

having higher noises than speech sources due to no reference channel to get noise 

information. Therefore, Deep Neural Network (DNN)-based mask estimation is 

preferred to alleviate noisy background due to the ability to construct the complex 

models for nonlinear processing (Saleem & Khattak, 2019). Moreover, it only depends 

on minimum mean squared error (MSE) between target mask reference and estimated 

target mask without consideration about the distribution of clean speech and noise 

signal. 

 

 

1.3 Problem statement 

The performance of speech applications such as speech recognition systems and a 

hearing aid in achieving high recognition accuracy in a clean environment is somewhat 

better than in a noisy environment. Recent studies show that there is room for 

improvement for speech application during noisy conditions (Wang, 2015; Chen, 

2017; Odelowo, 2018). This is because, unlike the speech data of clean speech signals, 
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the contaminated speech signals have distinct thresholds in adverse environments and 

the speech signals vary in different environments with unexpected acoustic conditions 

(Zhang et al., 2018b). The contaminated speech signals consist of the utterance of 

words or phrases that may be included by different types of background noises and 

signal-to-noise-ratio (SNR) level values, which may lead to the noisy acoustic effect. 

The intelligibility of consonants sounds may be easily affected due to its lowest 

magnitude of intensity compared to that of the vowel sounds. Hence, the greatest 

challenge in speech application systems is mainly during distant speech perception or 

recognition, whenever the speaker far from the microphone and the acquisition of 

speech is degraded by non-stationary noise and low SNR value. 

Several researchers have proposed speech enhancement algorithms to tackle 

the issue of the noisy speech signal with background noise. However, most of them 

were capable of overcoming speech quality issues during high SNR and stationary 

noise rather than speech intelligibility issues in non-stationary noise and low SNR 

cases (Tseng, 2015; Chen, 2017). Then, supervised Deep Neural Network (DNN)-

based mask estimation has been proposed to tackle the speech intelligibility issue to 

replace the traditional approach. But, a majority of past related works focused on their 

targeted population (Tseng, 2015; Wang, 2015; Chen, 2017) and excluded the cross-

dataset model contains different language utterances due to the limited time of sound 

recording and the high cost. Thus, it is a good idea to generalize some conditions that 

have not been explored yet and observed during a training session using the DNN-

based mask approach. Otherwise, residual noise is also introduced after speech 

reconstruction that may cause some speech harmonic losses and hinder oral speech 

from the point of relevance. 

 

 

1.4 Research objectives 

This research aims to improve the enhancement of speech signal from background 

noise for single-channel microphone without distorting speech intelligibility using a 

supervised machine learning algorithm. The specific objectives of this research are as 

follows: 
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1. To design an algorithm for enhancement of speech using supervised Deep Neural 

Network (DNN)-based mask estimation with a new target mask.  

2. To propose a post-filtering algorithm that optimizes the speech estimation and 

reconstruction of residual noise. 

3. To evaluate the performance of the proposed algorithms with that of other speech 

enhancement algorithms. 

 

 

1.5 Research scopes 

The scopes of this research are set out as follows: 

1. The single channel-based speech enhancement is the focus of this research, which 

uses only a single microphone in the experiment. Basically, it is less affected by 

the room reverberation and spatial sources (Saleem et al., 2019a).  

2. Ten types of noise background are considered, namely subway noise, factory 

noise, train noise, car noise, station bus noise, street noise, restaurant noise, 

exhibition noise, babble noise, and airport noise to analyze the speech 

enhancement.  

3. Five audio datasets that are used in this research: (1) self-recorded audio from 

Universiti Tun Hussein Onn Malaysia (UTHM), (2) recorded audio from 

Universiti Putra Malaysia (UPM), (3) MASS dataset from Universiti Sains 

Malaysia (USM), (4) TIMIT dataset and (5) IEEE dataset. Noted that IEEE and 

TIMIT datasets are commonly used among researchers to validate speech 

enhancement algorithm. 

4. A supervised Deep Neural Network (DNN) is used to learn the proposed target 

mask algorithm, especially for the cross-dataset model and multi-speaker model. 

5. MATLAB 2020a software with Intel (R) Core (TM) i5-8250U CPU @ 1.6) GH, 

8 Gigabyte RAM is used in this research. 
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1.6 Research contributions 

This research involves designing an improved algorithm in a supervised speech 

enhancement framework to improve speech quality and speech intelligibility during 

noise background using a hybrid approach between supervised Deep Neural Network 

(DNN)-based mask estimation and Harmonic Regeneration Noise Reduction (HRNR). 

Specifically, the contributions of this research are as follows: 

1. An optimize DNN-cWf Masked Estimation is proposed to improve speech 

intelligibility and quality from noisy backgrounds. 

2. An effective post-filtering strategy based on the modified HRNR algorithm was 

proposed to rectify residual noise. 

3. Produce a MALISH model by training the DNN algorithm with cross-speech 

datasets, which consist of both Malay and English language utterances and 

different types of single channel microphones. 

4. Produce multi-speaker model by training the DNN algorithm with various 

speakers 

 

 

1.7 Thesis organization 

Chapter 1 describes the background and motivation of the research. The direction of 

the research such as research problems, objectives, significance, contributions, and 

scopes are also presented. 

Chapter 2 explains the theoretical study on a physiological signal of speech, 

acoustic environment, and past related works on speech enhancement algorithms. The 

speech signal characteristics and acoustic environment are briefly explained. Next, 

state-of-art speech enhancement algorithms and particularly, deep neural network 

(DNN)-based mask estimation for speech enhancement is presented to find room for 

improvement for speech intelligibility and quality during noisy conditions.  

Chapter 3 elaborates the system overview of the research study. A new 

framework of Deep Neural Network (DNN)-based mask estimation is also introduced. 
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A description of theoretical and research methodology is also explained briefly. 

Several experiments for model validation are also presented. 

Chapter 4 presents the results of the experiments presented in Chapter 3. The 

performance results of the proposed method based on the DNN-based mask estimation 

and post-filtering process are presented and discussed. The performance evaluation of 

enhanced speech using a performance metric based on two objective measures is also 

presented in this chapter. 

Chapter 5 concludes this study. Several future works related to this research 

are also discussed in this chapter. This study concludes with a summary of the main 

concepts related to this research. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 

 

 

This chapter provides an overview of past related works as background knowledge for 

this research. A brief discussion on the acoustic theories and speech enhancement that 

are relevant to this research is presented in Section 2.1 and Section 2.2, respectively. 

These include the speech physiology and speech enhancement algorithms that were 

used by researchers to handle non-stationary noise issues and intelligibility issues, 

particularly in the single-channel microphone. Subsequently, Section 2.3 explains an 

overview of supervised deep neural network-based mask estimation, in terms of their 

architectures, challenges, and limitations. 

 

 

2.1 Introduction 

Over the past few decades, speech-enabled mobile application had gained a surge of 

interest among researchers in the speech processing area. This is due to its wide use in 

many speech applications. For example, Automatic Speech Recognition (ASR) system 

has been used in telephony (Garberg & Yudkowsky, 1998), military (Beek et al., 

1977), and customer service (Gusler et al., 2005). The ASR system-based approaches 

are also increasingly demanded recently in rehabilitation helping people suffering 

from communication disorder such as aphasic patients to do speech therapy and 

cognitive exercise (Abad et al., 2013; Le et al., 2016; Lee et al., 2016). The hearing 

aid also is an example of a speech application that was invented to enable inaudible 

sound for the hearing impaired to be amplified and perceived by ear (Nossier et al., 
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2019). Although both applications were already used in several commercial 

applications, there are still challenges to be tackled inaccurate remote context or distant 

speech recognition (Wölfel & McDonough, 2009) since the ASR system is sensitive 

to the acoustical environments (Rabiner & Schafer, 2010; Vincent et al., 2017), similar 

to hearing aid application in clearly perceiving speech sound without any distortion of 

speech signal caused by background noise.  

Basically, to capture human speech signal, a single microphone is practically 

enough to be used as an input device to acquire audio signal while the computer will 

be the system to process the captured signal to realize human-computer interaction 

(HCI) in the ASR system and also in hearing aid applications which involve real-time 

situation. Even though most researchers proposed several mathematical models and 

digital signal processing techniques to overcome the issue of noise in these 

applications, there is still room for improvement to enhance speech signal from noisy 

background, especially involving non-stationary noise instead of stationary noise and 

to tackle the issue related to low Signal-to-noise ratio (SNR) (Loizou, 2013; 

Hurmalainen et al., 2013). For that reason, the following sections will provide a review 

on speech physiology and noisy speech signal. A review of previous related works for 

speech enhancement in a noisy environment is discussed in this chapter to discover the 

research gap. The detailed descriptions of the elements in the Deep Neural Network 

(DNN)-based mask estimation are also discussed. 

 

2.1.1 Physiology of speech and noisy speech signal 

Learning about the physiology and characteristics of speech, as well as the noisy 

speech signal is required in speech processing. Naturally, a human is more effective 

than machines at recognizing speech during aural conversations. While the machine-

recognized spoken language is transpired by human speech communication between 

two people as shown in Figure 2.1 (Tunali & Dogruel, 2005). The communication 

begins when a speaker delivers his speech by formulating the message and then, the 

listener will try to listen and understand the conversation (Lawrence, 2008). The 

machine can be very complicated and sensitive to the acoustical environment and 
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speech variants. To design a much more robust speech-enabled mobile applications, 

the fundamental knowledge of speech and noise are required. 

 

 

Figure 2.1: Schematic diagram of human speech communication (Tunali & 

Dogruel, 2005) 

 

Machine speech recognition has a higher error rate compared to humans 

(Huang et al., 2001). It showed that the machine is not robust enough to recognize 

speech tasks such as connected digits, alphabet letters, and spontaneous speech 

especially during distant speech recognition or remote condition using single 

microphone. The acquired speech signal by machine could be easily mixed with noise 

during that condition, which is known as noisy speech signal. Thresholds of noise may 

vary with frequency and from the environment-to-environment condition. Noise often 

impacts 3000, 4000, or 6000 Hz thresholds during speech in noisy environments, but 

not those at 500, 1000, or 2000 Hz (Le Prell & Clavier, 2017). Moreover, noise can 

distort the spectrum's shape, slope, and spectral dynamic range. However, the 

frequency positions of the lower formant peaks can be preserved to some extent. 

Statistically, speech signal or noise signal could be individually visualized based on 

its distribution in time domain and histogram chart as illustrated in Figure 2.2. In signal 

processing analysis, the speech signal is highly non-stationary compared to noise 

signal. Background noises or ambient noises do exist in our daily life in different 

forms. It was varied to be steady-state noise, noise that modulated with the amplitude 

envelope of speech, or a competing single talker (Brown & Bacon, 2010). 
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(a) Highly non-stationary speech 

  

(b) Stationary noise (white noise) 

  
(c) Non-stationary noise (babble noise) 

 

Figure 2.2: Characteristics of speech and noise with their distribution waveform 

(Toroghi, 2016) 
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Noises can be categorized into stationary noise and non-stationary noise forms 

(Wölfel & McDonough, 2009) as illustrated in Figure 2.2 according to their 

distribution pattern using histogram representation in time series. Stationary noise is 

represented as a highly normal distribution compared to non-stationary noise. Unlike 

stationary noise signals, the highly non-stationary speech signal is Laplacian 

distribution. So, noises from computer fans and white noise are examples of stationary 

noises, in which the event does not change over time. On the other hand, noises from 

train and babble sound are examples of non-stationary noise, in which event is keenly 

changing in time. Thus, noise is difficult to be removed from noisy speech signal and 

a challenging task due to different environmental characteristics, especially during 

higher intensity of non-stationary noise (Vincent et al., 2017; Yuan, 2020), which is 

constantly changing compared to stationary noise (Parchami et al., 2016). So, it can 

be concluded that speech signals could easily be distorted by noise during distant 

speech recognition or other speech applications and leads to a challenging speech 

recognition process faced by machines. Hence, the required speech enhancement is 

discussed in Section 2.2 in studying speech enhancement algorithms proposed by 

several researchers to overcome the degraded speech signal issue. 

 

 

2.1.2 Speech production process 

Speech is a mechanism to communicate and express thoughts and feelings in 

spoken words via articulated sounds, either in the form of an isolated word, continuous 

sentence, and spontaneous spoken word. It consists of combined lexical and names 

drawn from very large vocabularies. Each spoken word is created from the phonetic 

combination of a limited set of vowels and consonant speech sound units known as 

phonemes (Moore, 2000; Doire, 2016). Mouth is a main organ to generate informative 

speech signals. The human speech production process initially took place inside the 

vocal tract extending from the epiglottis to the lips as shown in Figure 2.3. 
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Figure 2.3: Vocal tract anatomical structure (Huang et al., 2001) 

 

Speech is produced by exhaled air from the lungs. The vocal tract is a chamber 

of an extremely complicated geometrical shape whose dimensions and configuration 

may continuously vary in time and whose walls consist of tissues with various 

properties. Thus, the speech sound begins at the epiglottis and ends at the lips. In short, 

speech wave production can be divided into three stages: sound source generation, 

articulation by vocal tract, and radiation from the lips or nostrils to produce different 

letter sounds and phonemes (Lawrence, 2008). Speech sound is determined by the 

position of articulators such as tongue, teeth, and lips that changes over time. It can be 

fricatives due to turbulent airflow and plosives due to constriction, then released in the 

vocal tract. So, characteristic of speech signals is non-stationary signals (Lawrence, 

2008).  

As illustrated in Figure 2.4, the acoustic waveform for segmented speech signal 

can be represented as silent, voiced, and unvoiced speech. A silent speech signal 

represents no speech activity or speech sound. Next, voiced speech normally occurs 

when vocal folds vibrate at a fundamental frequency or known as pitch, and air freely 

passes through articulators (Loizou, 2013). This voiced speech waveform is a quasi-

periodic sound. For example, vowels are the most prominent instances of voiced 

speech due to their periodicity and denote high energy when the vocal tract remains 

relatively open. The vowel sounds are normally dominant at low frequency.  
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Figure 2.4: Voice and unvoiced speech waveform in time domain and frequency 

domain for “satu” spoken word 

 

/sh/         /aa//th/         / uu/ 

Voiced speech /aa/ Unvoiced speech /sh/ 
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Different vowels are characterised mainly by tongue position on the axes front-

back and open-closed, and lip rounding (Juvela, 2015). While several consonants like 

‘s’ and ‘t’ sound are examples of unvoiced speech due to aperiodic sound, where air 

partially passes or is obstructed by one or more places as it passes through the 

articulators (Loizou, 2013). Fricatives voiceless and voiced, nasal-voiced, stop 

voiceless and voiced, glide voiced, and liquid voiced are the manner of articulation for 

consonant sounds (Lawrence, 2008). 

 

 

2.1.3 Speech perception process 

During the speech perception process, ear is the main organ involved in perceiving 

speech signals during speech conversation. The ear consists of an outer part, middle 

part, and inner part as depicted in Figure 2.5. The outer ear directs and transmits speech 

sound waves into the middle ear, which acts as a mechanical transducer. The inner 

then ear transduces the vibrations transmitted from the middle ear into neural firings 

or known as cochlea (Irwin, 2006). Noted that the function of the outer ear is to direct 

and amplify speech sound coming from the environment. While the middle ear is an 

air-filled cavity connected to the outer ear at the eardrum and to the inner ear at the 

oval window. In terms of hearing, the main functional part of the middle ear is the 

transduction system comprised of the ossicular bones. In the inner ear, the functional 

part relevant for hearing is the cochlea, an organ of 32–35 mm length resembling a 

snail, coiled in approximately 2.5 turns (Juvela, 2015).  

A linearised schematic of the cochlea where the coil has been unwound is 

depicted in Figure 2.6. The mechanical vibrations enter the cochlea via the oval 

window, which is connected to stapes in the middle ear. The motion of the oval 

window creates a traveling wave that reaches its maximum amplitude at a position 

depending on the frequency so that the maxima near the base of the cochlea correspond 

to high frequencies and the maxima near the apex to low frequencies. The majority of 

lower-frequency sounds between 250 and 500 Hz correspond to the first formant of 

vowel sounds, while most higher frequencies between 2000 and 4000 Hz correspond 

to the consonant sounds (Lazim et al., 2020).  However, some studies showed that the 

second and third formant of vowel sounds frequency range could reach up to 3000 Hz 
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(Lawrence, 2008; Monahan & Idsardi, 2010; Viegas et al., 2019). Frequency response 

for a specific position resembles a bandpass filter response centered at the 

characteristic frequency (Juvela, 2015). 

 

 

Figure 2.5: Anatomy of the human ear (Irwin, 2006) 

 

 

 
 

Figure 2.6: Regions of basilar membrane respond to the different frequency 

(Purves D, 2001) 
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Thus, studies have shown that human perception of the frequency content of 

sounds, either for pure tones or speech signals, does not follow a linear scale 

(Lawrence, 2008). The majority of the speech and speaker recognition systems have 

used the vector features derived from a filter bank that has been designed based on a 

non-linear scale according to the auditory system’s model (Rabiner & Schafer, 2010). 

As explained by (Wölfel & McDonough, 2009), human perception can be represented 

by physical representation for relevant information hence becomes measurable. For 

example, a pitch can be measured by fundamental frequency, loudness can be 

measured by sound pressure level or sound intensity in decibel (dB) unit, location can 

be represented by phase difference and timbre is indicated by spectral shape (Wölfel 

& McDonough, 2009). 

 

 

2.2 State-of-art speech enhancement in noisy environments 

Figure 2.7 shows an illustration of the speech research area that will be discussed in 

this section. Hearing aid, speaker recognition, and speech recognition are examples of 

speech applications. As technology advances, these applications are widely used by 

humans either as an assistive gadget or communication device to communicate with 

others. Specifically, speaker and speech recognition are basically used in human-

computer interaction while hearing aid is used to assist deaf people. Unfortunately, 

before these applications can be adopted and robustly utilized with being less sensitive 

to noise, there are still several unresolved design issues pertaining to this technology 

that needs to be addressed and rectified. Thus, it can be highlighted that there is 

emerging research in the field of speech separation to tackle the noise issue, especially 

related to supervised speech enhancement since speech in noise is still a remaining 

issue in speech research area. Noted that noise cannot be easily eliminated but it can 

be rectified and suppressed in many ways. So, speech enhancement algorithms are 

essential to reduce or suppress the background noise to some degree and at the same 

time speech signal must be intelligible to ensure speech application achieves higher 

accuracy in distant speech acquisition. 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



19 

 

 

Figure 2.7: Speech research area 

 

Numerous studies have attempted to enhance speech signal from background 

noise based on either single-channel (monaural) (Paliwal et al., 2010; So & Paliwal, 

2011; Mohammadiha et al., 2011; Mohammadiha et al., 2012) or multi-channel (array-

based) microphone (Florêncio & Malvar, 2001; Acero et al., 2009; Valin et al., 2004; 

Kawase et al., 2016; Tesch et al., 2019; Flores et al., 2018). Multiple channel 

microphones applied a beamforming approach to determine active speakers (Matheja 

et al., 2013). State-of-the-art speech enhancement mode is discussed in Section 2.2.1 

and Section 2.2.2 elaborates several speech enhancement algorithms proposed by a 

few researchers either to enhance speech signal or to remove noise signal. Finally, past 

related works on supervised speech enhancement which is superior to other speech 

enhancement algorithms are also discussed in this section to further understand how it 

works in increasing the speech quality and intelligibility as well in separating speech 

signal from background noise. 

 

 

2.2.1 Speech enhancement modes 

Speech enhancement or speech separation is one of the extensive researches in the 

audio processing research field. Wang & Chen (2018) reported speech separation as a 

source separation from the noisy background or mixture condition that is essential in 

speech applications. It can be categorized into two modes according to the number of 
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microphones used such as a single microphone (monaural) and an array-based 

microphone (Wang & Chen, 2018; Parchami et al., 2016) as illustrated in Figure 2.8. 

The number of microphones used basically depends on the development and function 

of applications. For example, the array-based microphone was applied in humanoid 

robots for surface enabled estimation of the robot motion (Tourbabin & Rafaely, 2015) 

and also used in real-time meeting recording for detection and separation of speech 

events (Asano et al., 2007). 

 

 

Figure 2.8: Microphone array with speech enhancement system for speech 

application (Parchami et al., 2016) 

 

While the single-channel microphone is basically applied in mobile phones, 

hearing aid, automatic speech recognition, and speaker identification for its portability 

and flexibility (Parchami et al., 2016). A higher number of microphone arrays will 

lead to the higher complexity of speech enhancement (Nahma, 2018) and cost of the 

microphone as well, which would not be practical (Ashwini & Kumaraswamy, 2013). 

Since a single-channel microphone is more ideal to be applied in a lot of speech 

applications, the improvement of single-channel speech enhancement captured 

researchers’ attention in achieving a reliable and robust speech processing system for 

adverse conditions (Mowlaee et al., 2012). Moreover, it is still a challenging task when 

the location of the microphone is far away from the sound source, which is known as 

a far-field sound acquisition or distant speech recognition (Ashwini & Kumaraswamy, 
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2013; Bentsen, 2018), but it is less affected by the room reverberation and spatial 

sources (Saleem et al., 2019a; Bao & Abdulla, 2018b).  

As a result, the speech signal is easily degraded by background noises that will 

lessen the speech quality and intelligibility as well. Thus, high degradation will affect 

the performance of speech intelligibility for hearing-impaired listeners (Alvarez, 2013) 

and recognition accuracy in automatic speech recognition systems (Wu & Liu, 2012). 

Speech quality is more related to the intensity of sound level while speech 

intelligibility is the comprehensiveness of speech signal or understanding the utterance 

(Gonzalez, 2013; Kandagatla & Potluri, 2020). Specifically, several researchers tried 

to simultaneously enhance speech signals in terms of their quality and intelligibility as 

well as various improvement in speech enhancement algorithms (Kandagatla & 

Potluri, 2020). 

 

 

2.2.2 Conventional single-channel speech enhancement  

The goal of the speech enhancement algorithm is to remove noise and recover the 

original signal with lesser distortion and residual noise (Nahma, 2018) as well as to 

improve speech quality and intelligibility (Alvarez, 2013). Previously, conventional 

speech enhancement algorithms such as spectral subtraction, Wiener filtering, 

statistical model-based approach, and subspace algorithm have shown improvement in 

speech quality but their capability in increasing the intelligibility of speech in the noisy 

background has remained a challenging task at low SNR (Loizou & Kim, 2010; 

Alvarez, 2013; Tseng, 2015; Chen, 2017; Kolbæk, 2018). One of the reasons that 

contributed to the lack of intelligibility improvement in single microphone speech 

enhancement is statistically assuming the noise and speech signal are normal 

distribution in noisy speech signal that may lead to lack of speech or noise estimation 

(Kim & Loizou, 2011; Loizou & Kim, 2010). Then, speech distortions introduced by 

the frequency-specific gain functions could at times be more damaging than the 

background noise itself, and removal of low-intensity speech sounds such as unvoiced 

consonants may hamper the oral speech (Kim & Loizou, 2011). Moreover, the main 

drawback of the conventional approach is the introduction of spectral artifacts (Shoba 

& Rajavel, 2020). Thus, the conventional speech enhancement algorithms did not 
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benefit from non-stationary noise and low signal-to-noise ratios (SNRs) conditions 

(Tseng, 2015; Chen, 2017).  

The spectral subtraction algorithm is the earliest speech enhancement algorithm 

(Pardede et al., 2019), widely used in numerous speech applications due to its 

simplicity. The general idea of spectral subtraction is simply by subtracting the noise 

power spectrum, |𝑁̂(𝜔)|
2
from the mixture power spectrum, |𝑌(𝜔)|2 to get the 

estimated speech signal, |𝑋̂(𝜔)|
2
 when there is no correlation between speech and 

noise is assumed since the noise is additive and stationary as shown in Equation 2.1 

(Upadhyay & Karmakar, 2015). The spectral subtractive method is often formulated 

in the power of the Short-Time Fourier transform (STFT) domain rather than in the 

amplitude domain (Parchami et al., 2016). However, it can easily fail when the noise 

is highly non-stationary (Srinivasan et al., 2006). Another problem with spectral 

subtraction is that the resulting speech spectrum after subtraction could be negative. In 

short, the spectral subtraction approach suffered some high residual noise when 

underestimating noise power (Ingale & Nalbalwar, 2019; Yao et al., 2016) and loss of 

useful information when overestimating noise power. Due to these constraints, 

extended spectral subtraction was proposed (Borský, 2016). 

 

|𝑋̂(𝜔)|
2
= |𝑌(𝜔)|2 − |𝑁̂(𝜔)|

2
 (2.1) 

 

Next, Wiener filtering is the optimal complex filter in the STFT domain since 

the spectral subtraction algorithm is difficult to claim its optimality (Parchami et al., 

2016). Several alternative methods such as square-root and parametric Wiener filtering 

have been proposed are shown in Equation 2.2 until Equation 2.3 for calculating the 

Wiener filter gain function, 𝑊̂(𝜔) from the noisy speech signal. The 𝑃𝑥(𝜔) denotes as 

power spectrum of noise free signal while 𝑃𝑛(𝜔) denotes as power spectrum of noise 

signal. 

Simplified square root: 

𝑊̂(𝜔) = 𝑃𝑥(𝜔) (2.2) 

 

Parametric: 

𝑊̂(𝜔) = (
𝑃𝑥(𝜔)

𝑃𝑥(𝜔) + 𝛼𝑃𝑛(𝜔)
)
𝛽

 
(2.3) 
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The concept of ratio masking in supervised speech separation is very similar to 

parametric Wiener filter when β and α parameters are set to 0.5 and 1, respectively 

(Wang, 2015). The use of parameter β allows the concession between noise reduction 

and speech distortion. Although the residual noise might considerably be reduced by 

increasing β, it is likely resulted in speech distortion too (Loizou, 2013). Another 

popular speech enhancement algorithm is a statistical model-based approach (Loizou, 

2013), which implements statistical distributions of speech and noise based on 

maximum likelihood estimator (Kuklasiński et al., 2016), minimum mean square error 

(MMSE) (Momeni et al., 2016) and maximum a posteriori estimator (MAP) (Su et al., 

2013). Generally, MAP and MMSE are also known as Bayesian estimators. The 

disadvantage of this algorithm is related to computational complexity in estimate noise 

distributions (Kawamura et al., 2012).  

Basically, statistical speech enhancement performs estimation based on the 

speech distribution conditioned on noise observation (Loizou, 2013). Like Wiener 

filtering, statistical speech enhancement typically relies on the precise estimation of 

speech or noise variances, which is a challenging task for non-stationary noises. 

Otherwise, a statistical approach is often difficult to deal with nonstationary noise in 

an unknown real environment (Liang et al., 2020). Hence, these approaches usually 

improve quality but not intelligibility (Li, 2016). While subspace algorithm applied 

linear Algebra theory which is best performed in most noise condition but more 

complicated to perform noise suppression. Particularly, single value decomposition is 

applied in subspace algorithm which is widely used in speech recognition application 

and image processing (Loizou, 2013). 

In short, spectral subtractive algorithms and statistical model-based algorithms 

are suitable for improving speech quality but not for intelligibility (Loizou, 2013). On 

the other hand, feature enhancement is applied for robust speech recognition 

applications. The feature-based approach includes enhancement of extracted features 

such as using enhanced Mel Frequency Cepstrum Coefficient (MFCC) 

(Ittichaichareon et al., 2012), Least Mean Square (LMS) filter and cochleagram (Dou 

et al., 2019) and Power Normalized Cepstral Coefficient (PNCC) (Chang, 2016; Kim 

& Stern, 2016) are widely proposed by researchers. Most researchers modified the 

auditory features to suppress noises (Tamazin et al., 2019). However, several 

researchers argued on the feature-based approach due to the selection of which type of 

auditory information is important for robust speech recognition (Li et al., 2014). 
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Otherwise, its performance is not always producing good results on speech recognition 

accuracy, especially at low SNR (Narayanan & Wang, 2014). 

 

 

2.2.3 Machine learning-based speech enhancement 

To alleviate the limitations in conventional speech enhancement algorithms, 

supervised speech enhancement has been recently proposed by several researchers due 

to numerous applications applying machine learning algorithms to operate them as an 

automated system (Wang & Chen, 2018) which is known as a data-driven approach. 

This supervised speech enhancement was inspired by time-frequency (T-F) masking 

in Computational Auditory Scene Analysis (CASA) (Wang & Chen, 2018), which 

determines either speech dominant or noise dominant in each T-F masking frame 

(Wang & Chen, 2018) without statistical assumptions (Kolbæk et al., 2018). This 

recent supervised-based mask estimation caught the attention of several researchers 

after vast development in the computing system since conventional supervised speech 

enhancement suffered limited memory and time training. The conventional supervised 

speech enhancement used fewer hidden nodes in Multilayer Perceptron (MLP) 

algorithm to predict a short window (Tamura, 1989) and log power spectra (Xie & Van 

Compernolle, 1994) of the clean speech signal from mixture signals. Otherwise, the 

performance of speech enhancement using more hidden layers and nodes without the 

mask is still not promising (Fu et al., 2017).  

The main advantage of CASA is that this method incorporates the auditory 

perception mechanism without assuming any properties or models of the noise (Lang 

& Yang, 2020a). Due to the advantages of CASA in numerous speech applications 

(Wang & Brown, 2006), several machine learning algorithms had been proposed to be 

operated with CASA. For example, Kim et al. (2009) proposed a Bayesian classifier 

based on Gaussian mixture models (GMM) in a speaker and masker-dependent way 

with amplitude modulation spectrum (AMS) features, and the performance of speech 

intelligibility is evaluated with normal-hearing (NH) listener. Next, (Chang et al., 

2008; Han & Wang, 2011) used the Support Vector Machine (SVM) classifier in the 

speech enhancement. Han & Wang (2011) classified the T-F units of the noise-masked 

signal into two classes: target-dominated and masker-dominated. The individual T-F 
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