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ABSTRACT 

   

 

  

  

 

 

 

 

 

  

This  project  develops an efficient  path-planning  algorithm for  an  unmanned  aerial 

vehicle  (UAV)  in  obstacle-rich  environments  considering  minimum  energy 

consumption. UAV is increasingly being used to replace humans in performing risky 

missions in adverse environments. UAV normally gets its energy from solar, hydrogen 

cell or li-ion batteries. However, these energy sources have limitations; for example, 

in a cloudy day, solar power might not be fully generated. This may result in the UAV 

to fail in accomplishing a given mission if its path is longer than necessary. Therefore, 

it is vital for the UAV to have a minimal path length which leads to the least energy 

consumption. The  proposed  path  planning  algorithm is called  Iterative  Elliptical- 

Convex  Visibility  Graph  (IECoVG)  which  is  based  on  visibility  graph  (VG)  and 

Dijkstra’s algorithm.  IECoVG limits the size of  the search space which  will in turn 

reduce the number of obstacles for path planning. Performance comparison through 

simulation in  terms  of  computational  time  and  path  length  between  IECoVG  and

conventional VG  as well as the Iterative Equilateral Space Oriented VG  (IESOVG)

has been executed. Identical scenarios have been applied in order to have a fair and 

conclusive result. The simulation shows that IECoVG improves the computation time 

up  to  86  %  due  to  its  efficiency  in  selecting  the  search  space. To  further  enhance 

IECoVG, flight cost, segment length, heading angle change and the UAV’s speed have 

also been considered as they proportionally affect the energy consumption of the UAV. 

The enhanced IECoVG named IECoVG+ can improve the energy consumption of the 

UAV by 10.42 %. 
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ABSTRAK 

 

Projek  ini  membangunkan  algoritma  perancangan  laluan  yang  efisyen  bagi  pesawat 

udara tanpa  pemandu  (UAV)  dalam  persekitaran  yang  banyak  halangan  dengan 

mengambilkira kadar penggunaan tenaga minimum. UAV semakin banyak digunakan 

untuk  menggantikan  manusia  dalam  melaksanakan  kerja-kerja  berisiko  dalam 

persekitaran  berbahaya.  UAV  biasanya  memperolehi  tenaga  daripada  solar,  sel 

hidrogen  atau  bateri  li-ion.  Walaubagaimanapun,  sumber  tenaga  ini  mempunyai 

hadnya;  sebagai  contoh,  dalam  keadaan  berawan,  tenaga  solar  mungkin  tidak  dapat 

dijana sepenuhnya. Ini mengakibatkan UAV gagal untuk menyempurnakan tugas yang 

diberi  jika  laluannya  adalah  lebih  jauh  daripada  yang  diperlukan.  Oleh  itu  adalah 

penting bagi UAV untuk mempunyai jarak laluan yang minimum bagi membolehkan 

penggunaan  tenaga  yang  paling  sedikit.  Algoritma  perancangan  laluan  yang 

dicadangkan  dipanggil  Iterative  Elliptical-Convex  Visibility  Graph (IECoVG)  yang 

berasaskan  kepada  graf  keterlihatan  (VG)  dan  algoritma  Dijkstra.  IECoVG 

menghadkan saiz ruang pencarian supaya bilangan halangan dapat dikurangkan ketika 

perancangan laluan dilakukan. Perbandingan prestasi melalui simulasi dalam bentuk 

masa  pengiraan  dan  panjang  laluan  di  antara  IECoVG  dan  VG  dan  juga  Iterative 

Equilateral  Space  Oriented  VG (IESOVG)  telah  dibuat.  Senario  yang  serupa  telah 

digunakan  bagi  memastikan  keputusan  yang  adil  dan  tuntas.  Hasil  simulasi 

menunjukkan bahawa IECoVG telah mempercepatkan masa pengiraan sehingga 86% 

hasil  daripada  keberkesanan  menentukan  ruang  pencarian. Untuk  menambah  baik 

IECoVG, panjang segmen, perubahan sudut tuju dan kelajuan UAV telah diambilkira 

kerana  ia  memberi  kesan  secara  langsung  kepada  penggunaan  tenaga  oleh  UAV. 

IECoVG  yang  ditambahbaik  digelar  sebagai  IECoVG+  boleh  memperbaiki  jumlah 

penggunaan tenaga sebanyak 10.42 %.
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INTRODUCTION 

1.1 Background 

The Unmanned Aerial Vehicle (UAV) is an aircraft without any pilot on board. It is a 

complex dynamic automated aircraft controlled remotely by a pilot at a ground control 

station or it flies autonomously based on pre-programmed flight plans [1]. UAVs can 

be used in many applications [2], like coastal surveillance, hurricane watch, traffic 

control [3] and still this area of research is backed by academic and industrial 

researchers since it has the potential in some other indispensable applications. UAV, 

which is now an essential companion for armed forces [4], [5] replaces humans and 

rescuers in performing risky mission as the first source in order to observe the affected 

area at adverse environments such as natural calamity.  

All these applications rely on a stable aerodynamic platform and reliable 

energy source. UAV must navigate a pre-planned path autonomously within s the 

permitted duration to minimise the consumption of energy from the battery. UAVs 

suffer from limited energy capacity because of only on-board energy storage. The 

ability to fly for extended period with less energy at very high altitudes has been an 

on-going goal for UAVs. For a successful mission, alternative energy sources [6] such 

as solar power [7], hydrogen cell [8], and li-ion batteries can be incorporated.  

Figure 1.1 shows PUMA UAV powered by hydrogen cell which has a power duration 

of 9 hours. Figure 1.2 displays a UAV for agriculture which capable of vertical take-

off and landing. Figure 1.3 presents “Helios” solar powered UAV developed by 

NASA. 
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Figure 1.1: PUMA UAV powerd by hydrogen cell [8] 

 

 
 

Figure 1.2: Vertical take-off and landing (VTOL) precision agriculture drone [9] 

 

 
 

Figure 1.3: "Helios" solar powered UAV, developed by NASA [7] 

 

Although various types of power systems are used in UAVs [10], [11], these 

sources have limitations. For instance, in a cloudy day, the amount of power generated 

from solar panel may not fulfil the requirement. This will lead to a crash, shorter time 
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surveillance or failure in the mission. On the other hand, UAV has a limited flying 

range and hence, the time spent over the surveying territory should also be minimized.   

In a mission, a UAV has to traverse a pre-planned path from a starting point to 

target point. To complete the mission, the UAV must have either sufficient on-board 

energy, or an energy efficient path planning algorithm to overcome the above-

mentioned constraints. Therefore, energy efficient path planning is one of the vital 

enablers for the development of autonomous systems such as UAV.Besides producing 

an optimal path that will minimize the energy consumption, a path planning method 

should also hold the completeness criterion. This means that it is guaranteed to find a 

path if one exists. 

1.2 Problem Statements  

There are several existing path planning methods such as combinatorial, sampling-

based, and biologically inspired. Among them, visibility graph (VG) coupled with 

Dijkstra’s algorithm, which are under combinatorial method, are capable of finding an 

optimal path and hold completeness criterion. In path planning, path optimality is an 

important criterion that makes a UAV to find the shortest path between two points. On 

the other hand, an optimal path can be a path that minimizes the number of heading 

changes, the amount of braking or whatever a specific application requires. 

Completeness is also the property of a path planning method that its guarantees to find 

a path if one exists. However, VG has a major problem, i.e., it is relatively slow in 

finding a collision-free path in obstacle-rich environments. This is because the entire 

obstacles in C-space are considered for path planning for which the computational 

complexity increases. This directly affects the computational time of VG. There are 

numerous methods that have been developed to address this issue such as Dynamic 

Visibility Graph (DVG) and Iterative Equilateral Space Visibility Graph (IESOVG). 

However, both methods cannot adequately determine the search space area for path 

planning which results in a high computation time. Therefore, it is crucial to design an 

algorithm that can minimize the computational complexity and consequently, the 

computation time. Another drawback of VG-based method is that the planned path 

consists of many sharp turns because of the resulting piece-wise linear path. This will 

lead to an increased energy consumption due to the acceleration and braking near 

waypoints. Thus, it is assumed that by limiting the number of sharp turns within the 
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allowable range of heading angle change, the energy consumption can be reduced 

throughout the UAV’s operation. 

1.3 Aim and Objectives  

The aim of this research is to develop an energy efficient path planning algorithm for 

an unmanned aerial vehicle (UAV) in an obstacle-rich environment so that the energy 

consumption could be minimised.  The objectives of these projects are: 

1. To develop an energy efficient path planning algorithm for a UAV based on 

visibility graph method. 

2. To develop a formulation for flight cost calculation based on path length, 

heading angle change and speed of UAV. 

        3. To validate the performance of the proposed algorithm through simulation. 

1.4 Research Scopes and Limitations   

The scopes of the study are as follows: 

1. A simulation-based project is considered to develop the energy efficient path 

planning algorithms for UAV in an obstacle rich environment. It is executed on 

a 64-bit computational PC with Intel(R) Core (TM) i7-4500U CPU @ 2.40GHz 

and 4 GB RAM. 

2.  The efficiency of the developed algorithm is simulated using the MATLAB 

R2020b software. 

3. The developed algorithm will be applied in C-space which contains rectangular 

shaped obstacles only. However, the planner will work with other shapes as well. 

In such a case in real time application, the images of high-altitude buildings, 

trees, transmission line etc, are considered as obstacles. 

4. The proposed algorithm is designed in two-dimensional (2-D) spaces. 

5. No hardware will be developed in this project and no hardware-based experiment 

will be conducted. It is a software-based simulation. 
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The limitations of the study are as follows: 

1. Static rectangular obstacles will be created randomly in a particular scenario. 

2. Some environmental conditions, such as rain, heat and aerodynamic issues are 

not measured to develop the algorithm. 

3. Energy loss during operation of a UAV due to altitude is not considered during 

the development of the algorithm. 

4. Cost calculation due to heading angle calculated is limited to 90o only. 

5. Safety issues are not considered for developing this algorithm. 

1.5 Outline of the Thesis 

This thesis is structured as follows: 

 Chapter 1 provides a thorough description of the general concepts required 

for the research, such as the overall goals to be achieved, current issues related to the 

research, scopes and limitations of this work and the requirement of further 

investigation for different techniques and instruments to be implemented.  

Prior to the algorithm development, the literature review in Chapter 2 provides 

a brief understanding of the theoretical knowledge and the basis of different energy 

efficient path planning algorithms along with their pros and cons. In addition, it is 

justified why particular algorithm such as visibility graph and Dijkstra’s algorithm are 

used for energy efficient path planning. We gain ideas about the typical practices and 

methodologies that can be used for guiding, managing, and organizing the 

investigations accordingly by reviewing the works conducted by earlier research.  

Chapter 3 explains the reason why the particular methodology was proposed 

for investigation. The proposed IECoVG is in 2D environments based on the VG 

method and Dijkstra’s algorithm. A new method is introduced to calculate the flight 

cost of an unmanned aerial vehicle (UAV) considering its changing heading angle. 

Then various measurement taken into account such as heading angle changes, the 

speed and segment length to advance methodological development of IECoVG+. 

In Chapter 4, methodological development proved by step by result and 

analysis.   

The thesis is finally ended in Chapter 5, by summarizing, and concluding the 

research works that have been discussed previously. In addition, significance of work, 

recommendations and suggestions for future works are also addressed.   
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LITERATURE REVIEW 

2.1 Introduction 

Unmanned Aerial Vehicle (UAV) is a type of autonomous vehicle for which energy 

efficient path planning is a crucial issue. The uses of UAVs have been increased for 

weather forecasting, image processing, traffic controlling, rescuing people [7] and 

replacing humans in performing risky missions at adversarial environments [8] such 

as 2001 World Trade Centre collapse, Hurricane Katrina in 2005 [10], and the 2011 

Tohoku tsunami and earthquake. Therefore, path planning is necessary to aid human 

operators in dangerous circumstances [11]. This Chapter analyses all the available 

path-planning algorithms in terms of energy efficiency for a UAV. At the same time, 

the consideration is also given to the computation time, path length and completeness 

because UAV must compute a stealthy and minimal path length to save energy. Its 

(energy) range is limited and hence, time spent over a surveyed territory should be 

minimal, which in turn makes path length always a factor in any algorithm. In addition, 

the path must have a realistic trajectory and should be feasible for the UAV. The 

mission may be in a messy and obstacle-rich environment, e.g., in an urban area and 

hence, it is important for a UAV to adopt a path planning algorithm to ensure that the 

traversed path is collision-free and optimal in terms of path length. However, only the 

optimal path is not enough as it may cause the UAV to consume more energy than a 

sub-optimal one. Most common problem of a UAV path planning is to fly from a given 

starting point to a target point through a set of obstacles [12]. These obstacles may not 

be fixed at one location and can pop up anywhere within the workspace during the fly.  

An energy efficient path planning must ensure that the method/algorithm can create a 
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safe and optimal path along with the simultaneous reduction in the travel duration to 

save energy/fuel. 

2.2 Energy Efficient Path Planning Issues 

Energy efficient path planning is a complex subject. Many entities need to be measured 

for calculating the energy efficient path planning. Some of them stated below are 

usually considered in the energy cost calculation for optimal energy efficient path 

planning concern[12]: 

i. Path Distance 

ii. Path Travel Time 

iii. Path Heading Change 

iv. Path Safety 

v. Obstacle Hostility 

vi. Weather (wind, Temperature) 

vii. UAV Flying Speed and Payload 

viii. Computational Complexity 

ix. Scalability 

x. Best Path 

xi. Local navigation 

 

i.   Path Distance: Completion of a mission depends on the arrival of a UAV to a 

target point after going through the planned waypoints. Thus, the core importance is 

given to path distance that is the travelled distance between the starting and the target 

point[12].  

ii.   Path Travel Time: Travel time is also another measure of optimal energy efficient 

path planning algorithm. For this instance, it considers that the quickest and the 

shortest paths are different. The quickest/fastest means the vehicle can reach its target 

within the least travel period. The quickest path may not be the same as the shortest 

path because of the traffic and haphazard incidences just as the flying or driving 

guidelines like limited range of speed. Additionally, the fastest path must be updated 

frequently throughout the vehicle trip as traffic circumstances change quickly, 

particularly in huge urban areas[12]. 
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iii.   Path Heading Change: If UAV travels in a straight path without any obstacle, 

its speed may be constant. However, if there is obstacle on the flight path, the UAV 

needs to take a suitable alternative route avoiding the obstacle by changing its direction 

starting from the nearest waypoint. Therefore, its speed must be slowed down while 

passing the waypoint to ensure that it is collision-free. The UAV may need to 

accelerate again after avoiding the obstacle to ensure that the mission is performed 

within the given time. Every time the UAV changes its speed, it will cause energy loss 

and hence, with the increasing number of obstacles, the loss will increase 

proportionally[12]. 

iv.   Safety :Most optimal energy efficient path planning algorithms emphasis on the 

shortest path finding when other qualities of service also deserve attention such as  

distance, obstacles, physical limitations of the vehicle, algorithm plan, environment, 

optimality, completeness, space and time complexity, dynamics etc.[12]-[13]. Among 

them, safety is always the first priority in a UAV mission. 

v.   Obstacle Hostility: Obstacles’ hostility is the ratio between the area blocked by 

obstacles in a given free space and the size of the total free space area. To find the 

available path that the UAV can follow, the description of the configuration space is 

required. Configuration space (C-space) is the common idea behind almost all path 

planning approaches and it mainly consists of three elements namely workspace, free 

space and obstacle [13]-[14]. The UAV must have prior knowledge about the obstacle 

area and the free space so that it can find its path from starting to target point ensuring 

no collision. Considering this matter, configuration space is the area where the UAV 

can fly by avoiding collision and find the shortest path and, as a result, it can save 

energy. Hence, the configuration space indicates the actual obstacle zone and free 

space region for the travers of UAV. If the total search area is A and the total area 

blocked by obstacles is Ό then the obstacles hostility = Ό/A. 

vi.   Weather :In open-air flight, UAVs distinctly need to deal with the stochastic of 

weather circumstances which can impact the energy feeding of UAVs [15], [16]. These 

ensure several characteristics that can potentially and powerfully influence the solution 

approach routing problem for a UAV. There are two key issues of weather that 

influence the UAV movement and they are described below.  

Wind: Wind is the foremost environmental influencer that disturbs the UAV because 

of its direction of flow and speed. Wind may give benefit to the energy consumptions 

or give bigger resistance to the movement in other scenarios [17]. 
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Temperature: The backdrops of temperature is able to disturb the UAV’s battery 

provision as it is interrelated to drain battery and its capability [18]. 

vii.   UAV Flying Speed and Payload: The relative and rational flying speediness of 

the UAV is a precarious issue to determine the fuel consumption. Direction of the 

Wind speed is related with the flying speed because wind direction disturbs the flying 

standard of the UAV, either positively or negatively. The flying position of a UAV can 

situate at any subsequent: a. hovering and b. level flight, cruising or horizontal moving 

also c. vertical moving-vertical take-off/ altitude adjustment /landing alteration. 

Therefore, the flying condition of the UAV must be measured along with the flying 

speediness in computing the energy feeding[17].  

Normally, UAVs carry specific forms of payloads, for instance, camera kit or 

parcels. Effect of the dissimilar masses of payloads might be significant when deriving 

the model of energy consumption [17], [18]. In aircraft engineering, it is recognized 

that the energy/fuel consumption is subject to certain factors. Perhaps, maximum flight 

time or flight distance of UAV may be constrained by takeoff total weight, overweight, 

empty weight and thrust to the weight ratio [19], payload, and fuel weight [20]. Since 

the UAV’s engineering/manufacturing, individual can get equivalent prototypes 

intended for flight for example, existing/obtainable fuel replicas for multi-rotor 

helicopters [21] which demonstrate the linear estimation of the energy ingesting is not 

appropriate aimed at huge deviations of the payload conveyed [18]. 

viii.   Computational complexity: This is a metric associated with computational 

performance of an algorithm. It is important that the computational complexity of 

every algorithm needs to be considered [12]. 

ix.    Scalability: The assessment of a path planning algorithm for an autonomous 

vehicle or UAV is considered as scalability. Scalability is a state when with a larger 

network, the performance of an algorithm declines. Hence, a well performed algorithm 

which is designed for trivial path network probably will not be appropriate for bigger 

path networks [12]. 

x.   Quality of the best path: This metric is utilized to compare the multiple finest 

paths that are planned and computed by altered heuristics and supportive to similar 

metrics (i.e. Travel time, travel distance etc.) with the aim of deciding which algorithm 

is manipulative in obtaining the nearest answer/clarification to the ideal or optimal 

path [12]. 
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xi. Local navigation: It is a process of avoiding obstacles by using only acquired data 

of the current surrounding environment. It is also a process of ensuring the vehicle’s 

stability and safety and runs in real time using a reactive path planning approach[12]. 

2.3 Autonomy in UAV 

Autonomy means the capability of a UAV to make its own decision based on the 

information presently available captured by sensors, and potentially covers the whole 

range of the vehicle’s operations with minimal human intervention [22]. International 

Civil Aviation Organization (ICAO) classifies unmanned air vehicle in two ways, 

either remotely piloted aircraft or fully autonomous. Actual UAVs may offer 

transitional degrees of autonomy. E.g., a vehicle that is remotely piloted in most 

contexts may have an autonomous return-to-base operation. Basic autonomy comes 

from proprioceptive sensors. Advanced autonomy calls for situational consciousness, 

knowledge about the environment surrounding the aircraft from exteroceptive which 

an integrators information from multiple sensors [23]. Figure 2.1 illustrates the 

autonomous control basics for an autonomous vehicle. 

 
 

Figure 2.1: Autonomous control basics [14] 

 

Autonomy increases system efficiency because all decisions are executed on 

board except for critical decisions such as launching a missile that has to be made by 

humans[24]. A UAV with autonomy would be able to execute a mission in 

environments with uncertainties. Furthermore, with autonomy, the UAV can perform 

a long-duration mission, which is beyond the capability of humans (operators). 
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UAV manufacturers often build in specific autonomous operations [25], such 

as: 

• Self-level: The aircraft stabilizes its altitude. 

• Hover: attitude stabilization on the pitch, roll, and yaw axes. The latter 

can be achieved by sensing global navigation satellite system (GNSS) 

coordinates, called alone position hold. 

• Care-free: Automatic roll and yaw control while moving horizontally. 

• Take-off and landing; automatically landing upon loss of control signal. 

• Return-to-home and Follow-me. 

• GPS waypoint navigation, communication, Path planning. 

• Pre-programmed tricks such as rolls and loops. 

• Sensor fusion and trajectory generation. 

• Task allocation, scheduling, and cooperative tactics. 

Additionally, there are ten UAV autonomy levels known as Autonomous 

Control Level (ACL) also introduced [25], [10]. The concepts of ACL as a metric to 

describe the autonomy in UAVs are widely accepted. Figure 2.2 illustrates the 

Autonomous Control Level and trends in UAV autonomy. 

 

 

Figure 2.2: Cutting-edge autonomous levels for existing systems [7-8],[25] 

 

However, autonomy technology is now in its moderate stage and still needs a huge 

development in the future [22]. 
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2.4 Path Planning Approaches  

Path planning algorithm is important to produce an optimal path that enables the 

shortest distance movement of a vehicle or robot from a starting point to a target point 

with minimum computational time. The path planning algorithm should also hold 

complete criterion so that it is able to find a path if one exists. Besides that, the 

vehicle’s safety, memory usage for computing and the real-time applicable algorithm 

are also significant [12],[26],[29]. Path planning approaches, in general, can be 

classifies in three ways, such as combinatorial method, sampling-based method, and 

bio-inspired method. Figure 2.3 illustrates the classification of path planning 

approaches. 

 

Figure 2.3: Classification of path planning approaches[12] 

2.4.1 Combinatorial Path Planning 

The combinatorial path planning creates a route by resolving queries along the way. 

Combinatorial path planning is already proposed in several techniques and classified 

by researcher, generally two types, they are (a) configuration space representation 

technique and (b) graph search algorithm. Combinatorial method applies C-space 

concept to the workspace representation methods such as cell decomposition (CD), 

potential field (PF) also visibility graph (VG), Voronoi diagram (VD) under road map 
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technique (RM). Again, with Graph Search algorithms like Dijkstra’s, A-star, Breadth 

First Search (BFS) and Depth First Search (DFS)[27] is associated. 

2.4.1.1 Configuration Space Representation Technique 

The configuration space (C-space), which is a most commonly used technique for path 

planning, provides detailed position information of all points in a system and this is 

the space for all configurations. It assumes that a UAV as a point and adds the area of 

the obstacles so that the path planning can be done more efficiently. C-space is 

obtained by adding the UAV radius while sliding it along the edge of the obstacles and 

the border of the search space. An illustration of a C-space for a circular UAV is shown 

in Figure 2.4. In Figure 2.4(a), the obstacle-free area is represented by the white 

background while the solid dark area represents the obstacles’ region. The UAV is 

denoted by a black dot circled with Gray color and three pre-planned paths are 

represented by dotted, semi-dotted and solid lines to reach the target/goal configuration 

Qgoal from start/initial configuration Qinit considering that the C-space is not created. 

Conversely, when the workspace is considered as C-space, as shown in Figure 2.4 (b), 

the UAV has only one feasible path. This also reveals that the free space Qfree has been 

reduced while the obstacles’ region Qobs has been increased. Therefore, C-space 

denotes the real free space area for the movement of UAV and ensures that the vehicle 

or UAV must not collide with the obstacle [28].  

 

Expand

Obstacles

Reduce

UAV

(a) (b)
 

Figure 2.4: Configuration space for a UAV[26]  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



14 

 

 

The popularity of C-space method in path planning is due to its use of uniform 

framework to compare and evaluate various algorithms. 

a) Road Map Technique 

The C-space representation allows efficient path planning techniques based on 

roadmap (RM) and cell decomposition (CD) to obtain a solution. The roadmap 

captures the connectivity within Qfree using a graph or network of paths. In a roadmap, 

nodes are considered as points in Qfree and two nodes are adjoined by an edge that must 

be within Qfree. A set of collision-free paths from an initial configuration Qinit to a goal 

configuration Qgoal builds the roadmap that uses several steps for path planning. 

Firstly, it connects the nodes with edges in free C-space area to build a network or 

graph. After that Qinit and Qgoal are associated with the network to conclude the 

roadmap. A series of line segments constructs a collision-free optimal path that can be 

explored within Qfree. Visibility graph and Voronoi diagram is the general classification 

of roadmap technique[12], [26]. 

i. Visibility Graph: 

Visibility graph (VG) is a path planning method based on combinatorial system [29] 

that finds out a path by solving queries along the way. VG is used in many applications 

such as graphics and robotics[12], [26]. It is a set of polygonal configurations in a 

plane (either two or three dimensional) at an undirected graph where vertices are the 

obstacles’ vertices, and the edges are the pairs of vertices. In VG, the vertices include 

starting point and target point [30]. An open line segment between two vertices does 

not intersect any obstacle [30], [31]. To proceed with the visibility graph in search 

space, the sets of vertices that are mutually visible need to be discovered. This implies 

that for each pair of vertices, it needs to be tested whether the connecting line segment 

hits any obstacle. Figure 2.5(a) shows visibility graph and connection of vertices. 

VG is a path planning method that produces optimal path, i.e., planned path 

has the least possible length. A shortest path is vital in energy saving for a UAV to 

accomplish its mission successfully. However, VG is slow in obstacle-rich 

environments as its computation time increases rapidly with the increment in obstacle 
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numbers. VG usually takes O(N3) computation time [29] where N is the total number 

of vertices. Figure 2.5 (b) shows the VG method that is used for a path planning.As all 

the vertices are used for path planning, a considerably long time is required to find a 

path in the C-space. This becomes more apparent in obstacle-rich environments where 

the computation time will be exponentially related to the number of vertices. 

 

(a) (b) 

 

Figure 2.5: (a) Vertices connected with canter p[13][26], 

(b)VG callculate all the obstacles inside C-space 

 

Extensive investigations have been done on VG to reduce the computational 

time. For instance, researchers applied VG in [32] based on the polygon aggregation. 

The main idea of this technique is to cluster small obstacles and merge the polygons 

after clustering. The shortest path was determined by integrating each partial minimum 

distance path. Besides that, a study in [33] enhanced the VG algorithm by sharing local 

information between multiple autonomous vehicles. The modified VG, named virtual 

rubber band visibility graph (VRBVG) method was developed to generate a VG under 

the assumption that C-spaces were unknown and located outside the vehicle of sonar 

coverage. They used torpedo-type under actuated vehicles to travel in an unknown 

underwater condition. Dynamic visibility graph (DVG) for path planning was 

introduced to get an efficient path planning where a rectangle shape was used to limit 

the c-space[34]. Again, Optimal path planning using equilateral spaces-oriented 

visibility graph (ESOVG) method was developed to get a computationally efficient 

path for autonomous vehicle [35]. Maini and Sujit designed two step algorithm to plan 

obstacle-free paths for a UAV where visibility graph was used for graphical 

environment representation [36]. 
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ii. Voronoi Diagram 

The aim of Voronoi diagram (VD) is to find a path far from the obstacles [37]. The 

idea behind the VD is to generate a line segment called Voronoi edge which is 

equidistant from all the points of the obstacle area in C-space [38], [39]. The point, 

where the Voronoi edge joins with each other, is called Voronoi Vertex. Figure 2.6 is 

an example of VD representation that is used for path planning where resulting path is 

shown in solid black line. As per the illustration, VD has edges to give a maximum 

clearance path among set of obstacles in the C-space. If a vehicle traverses the planned 

path, it is guaranteed that the vehicle must not intersect any obstacle. However, the 

VD generated paths are not optimal in terms of length. Figure 2.6 the dashed lines in 

Voronoi diagram are the set of points equidistant to obstacles. The path is shown in 

solid darker lines [13]. 

 

 

Figure 2.6: Voronoi diagram(edited) [12]  

 

In [38], improvements were done in VD to follow the kinematic constraint of 

an aircraft in three steps. Firstly, an initial diagram was generated by the fundamental 

VD. Secondly, the initial diagram was enhanced by smoothing the impractical corner 

of all paths from starting point to target point. Then, the cost of the edge of improved 

VD was modeled and weighted. Finally, the optimal path was selected using the 

Dijkstra’s algorithm from the smooth path. Improved VD was much lower weighted 

compared to the fundamental one. Another enhancement was done on the fundamental 
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VD in [37] with Delaunay triangulation. The algorithm was tested with 25 different 

settings. The outcomes revealed that the improved VD was computationally less 

expensive, and it responded in shorter time. But it produced a path that might not be 

the shortest one and this was the drawback of this algorithm. The modified VD was 

applied on unmanned air vehicle in a dynamic environment. Here, the path was created 

by using the radar threat field-based VD. To reduce the computational time, in [39] 

the images were captured and then clustered into a smaller group. A smooth path for a 

robot was also created from a path planning algorithm based on the fuzzy interference 

mechanism. 

 

b) Cell Decomposition Method 

Cell decomposition (CD) method mainly finds an obstacle-free cell and builds a finite 

graph for these cells. It breaks the environment into cells and ensures that each cell is 

discrete, non-overlapping and not occupied by any obstacle. A finite graph is built by 

relegating every cell as a hub. In cell decomposition method, the first step is to 

decompose the configuration space into cells. After that, the connectivity graph is 

built. Each node of the generated graph represents a cell, and they are between two 

nodes representing two corresponding adjoined cells. Then the connectivity graph 

from initial to end point is determined.  Figure 2.7 illustrates the Cell decomposition 

form a starting point to goal or target point. There are several types of cell 

decomposition methods such as regular grid decomposition (RG), adaptive cell 

decomposition (ACD) and exact cell decomposition (ECD)[12] . 

 

Figure 2.7: Showing path by Cell Decomposition (CD)(edited) [12] 
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To improve and to increase the efficiency of CD, a cell was divided quarterly. 

Then, the cell was checked to find out the presence of any obstacle. After that, the cell 

was divided again in quarter. This method was used to achieve the optimum path. 

Exact cell decomposition method and exhaustive path planning were used in [40]. The 

step for this algorithm began with the mineable area that was divided into an exact 

cell. Then, each cell coverage path was generated with covering direction and the 

generated graph paths were based on the adjacency graph. By considering all graph 

paths with all covering directions, a moving path was generated. Lastly, a shortest 

moving path for all graph paths was determined and the exhaustive path was generated. 

The non-optimal path is one of the drawbacks of CD. A research in [41] as an 

alternative to use the cell’s midpoints in the fundamental CD, this technique used 

formulas to define the metrics. A study in [42] generated CD directly into workspaces. 

They applied the path planning for palletizing and common handling jobs. The 

algorithm produced cylindrical cell decomposition in the workspace of a six degrees 

of freedom robot to speed up the time without any requirement of an obstacle’s 

transformation in a workspace into configuration spaces. 

c) Potential Field Method 

The potential field method (PF) was first suggested by Khatib [43]. This path planning 

algorithm is based on the attractive potential and repulsive potential in the 

configuration space consisting of a starting point, a target point, and obstacles. The 

vehicle is represented as a point that moves under the potential field. The target point 

acts as an attractive potential while the obstacles in configuration spaces simulate 

repulsive potential. Repulsive potential tasks in path planning are to prevent the 

vehicles that may collide with any existing obstacle in configuration spaces, moving 

under the influences of attractive forces [44], [45]. Figure 2.8 illustrates the potential 

field method [46]. 
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Figure 2.8: The potential field method  

(a) attractive forces; (b) repulsive forces; and  

(c) the sum of attractive forces and repulsive forces for potential filed [44]. 

  

 A global off-line path planning methodology was applied using an energy-

based approach recognized as Artificial Potential Field (APF) for Multi-Robot 

Systems (MRSs). Based on the potential field, a developed artificial potential field 

path planning technique was hosted and it was more operative in finding the shortest 

path [47]. Another potential field method used the kinematics of a six-wheel rover for 

motion on rough 3D terrain where comparative significance of the paths was obtained 

from four dissimilar cost functions with respect to energy, traction force, slip and 

deviation from a straight line. Wide experiments and simulations revealed that this 

technique was better in obtaining paths [48]. 

2.4.1.2 Graph Search Algorithms 

Graph search algorithms have been used extensively in past studies for energy efficient 

path planning [49]. It generally determines a path from starting to target points by 

checking some nodes/states. After the representation of an environment by a particular 

method, e.g., configuration space representation method, as a second step the graph 

search algorithms are implemented in path planning [36]. Figure 2.9 shows the 

classification of graph search method.  

 
Figure 2.9: Graph search algorithms (modified) [12]  
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  The graph search algorithms such as Dijkstra’s, A*(D* and M* are modified 

A*), Depth-first search, Breadth First, Best first) are applied to search for an optimal 

path among the generated path [50], [51]. Without any existing path, it will report 

failure. Several graph search methods are discussed below. 

 

a) Depth-first search 

Depth-first search (DFS) moves towards the goal as quickly as possible and 

searches a path till getting the dead end. DFS may miss large portions of the workspace 

[50], [51] since it tries to search several paths at a time before completing one path. 

Figure 2.10 shows that, DFS can be applied to find a path among many possible paths. 

However, DFS is an uninformed search since the cost function is not used in deciding 

the suitable direction and in estimating that how far is the target point from the current 

node. DFS may be slightly faster in case it picks the leaf node path that contains the 

required node. When numerous solutions are in the tree where everyone is at a 

comparable `depth', then there is a chance to miss a larger part of the tree from 

exploring. Conversely, there is a chance for it to stuck in the lengthy blind alleys, 

whereas fewer steps solution path exists and hence, it is not the best solution. When 

the depth values in the search are fixed, it prevents the above issue. But this method is 

not much effective. DFS is good in selecting one solution among many possibilities 

without any prior knowledge. DFS not suitable when only one or the shortest solution 

exits. In DFS, the required memory is linear against the search graph making it 

advantageous. It keeps the record of the nodes in the ‘current’ path leading to less 

memory requirement for tree search. It is an exhaustive and systematic search method 

that utilizes every node in the finite search-space. 
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Figure 2.10: Depth-first search (modified) [14]  

 

 DFS incorporated Genetic algorithm to discover the optimal processing 

sequence of features of a part (PSFP) that reduces the feature transitions’ energy 

consumption by 28.60 % [52]. A smaller search space was explored faster with 

reduced cost by another extended depth-first search (EDFS) algorithm [53]. 

 

 

b) Breadth-first Search 

 

Moore introduced the Breadth-first Search algorithm in 1957 [54]. It is a systematic 

search algorithm because it first expands the shallow nodes by searching all the next 

level nodes of the path and then it takes the next step [55]. However, like DFS, 

Breadth-first Search is an uninformed search to find the shortest path in first attempt. 

It is applicable in limited solutions that use comparatively minimum steps.  

Figure 2.11 shows that, Breadth-first Search can be applied to find a path 

among many possible paths. 
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START

 
Step 1: Explore paths A→B (Goal not found) 

Step 2: Explore paths A→B→E (Goal not found) A→B →F 

Step 3: Explore paths A→C (Goal not found) 

Step 4: Explore paths A→ C→G (Goal not found) 

Step 5: Explore paths A→ C→ G → GOAL (Goal found) 
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Step 1: Explore paths A→ B, A→ C, A→ D (Goal not found)  

Step 2: Explore paths A→B→E, A→B→F, A→C→G, A→D→H (Goal not found) 

Step 3: Explore paths A→C→G→ GOAL, (Goal found); In the event of tie, the left node is chosen first 

 

Figure 2.11: Breadth-First search (modified form) [14] 

 

Breadth-first Search algorithm uses more memory and traverses all nodes. It 

always provides first solution in finding shortest path or determines a path with 

minimum steps without getting stuck in any blind alleys. The main feature of Breadth-

first Search is that when all the graph’s edges have no weight or same weight, the 

shortest path lies within the first visited node and the source node. This algorithm is 

complete if one exists. It is also a systematic and exhaustive search technique that 

eventually tries all the nodes in the search space. Breadth-first Search is faster than 

DFS when the required information is closer to the root of the beginning of the search. 

However, the total speed depends on the information storage procedure. The memory 

requirement of Breadth-first Search is high because it saves each level record, and this 

is its main limitation. It is mainly used to find the shortest path between any two nodes 

in a graph such as road networks, computer networks: social networks (e.g., 

Facebook). 

c) Dijkstra’s Algorithm: 

Edsger Dijkstra’s introduced this systematic search algorithm in 1959 [56] to find an 

optimal path [57] in between the initial and all other points in the graph as per the costs 

associated with traversal. The priority queue saves the cost of the nodes which is non-

negative.  
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Dijkstra’s algorithm measures the distance of node n which is denoted by g(n) 

with respect to the starting node in the graph. The cost of the node is non-negative and 

stored in a priority queue. For example, a node n that is stored in priority queue has 

the cost of  

f(n)=g(n) 

f(n) is also called the backward cost or cost-to-come. The cost is calculated gradually 

during the algorithm execution. As the cost is non-negative, the cost is monotonically 

increased. For example, if the next node of n is n’, and the distance between them is l 

(n, n’), then the cost-to come is updated to  

     f(n’) =f(n)+ l(n, n’) =g(n’)                                (2.1) 

Since l(n, n’) is non-negative, f(n’) is therefore greater than f(n). 

Dijkstra’s algorithm visits all the nodes within the graph starting from an initial 

point (Sp) and extends outward within the graph, until all nodes are visited. Dijkstra’s 

is complete if a solution exists. It does not calculate the distance between each node 

and the target in optimal cases, if no prior knowledge of the graph exists. As a result, 

Dijkstra’s algorithm is a systematic search algorithm. To establish the steps in 

Dijkstra’s algorithm, let d(p) be the distance from a source node x to a node p; and let 

l(p,q) be the cost between adjacent/neighboring nodes p and q. The steps of Dijkstra’s 

algorithm are then as follows:  

Step 1: Set the priority queue, PQ={x}. For each node p not in PQ, set d(p) = l(x,p). 

For all nodes that are not adjacent to x, set their values to infinity.   

Step 2: At each subsequent step, find a node q that is not in PQ where d(q) is minimum. 

Then add q in PQ and set the parent of q to p. Subsequently update d(p) for all the 

remaining nodes which are not in PQ by finding its minimum cost using:                              

          d(p)=min [d(p), d(q)+l (p, q)]                               (2.2) 

 

Step 2 is done recursively until node q is the target point. Figure 2.12(a) to (f) 

show the working principle of Dijkstra’s algorithm. 
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Figure 2.12: Dijkstra’s algorithm illustrations (modified) [14]  

 

 

Considering a scenario in Figure 2.12(a) where Dijkstra’s algorithm 

demonstrates how it finds a path from source node A to goal node E. Dijkstra’s 

algorithm starts at node A and therefore, the node is set in the priority queue (PQ) as 

shown in Figure 2.12(b).  
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