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ABSTRACT 

 

 

Xylanase is a major hydrolysis enzyme that is important for xylan degradation in 

applications such as paper pulping, food additive production and animal feedstocks. It is 

typically found in fungi with low productivity and complex processes. As a result, an 

alternative method for increasing xylanase production that is simple and less time-

consuming is desired. The goal of this research is to produce a large-scale xylanase by 

immobilizing recombinant Kluyveromyces lactis with carbon nanomaterial and to apply 

a direct whole cell biocatalyst method for xylooligosaccharides production. Therefore, 

four carbon nanomaterials were screened using the pretreatment process that measured 

xylanase activity and cell growth. Carbon nanotubes (CNT) and graphene oxide (GO) 

were analyzed and their immobilization and culture condition factors were optimized 

using Response Surface Methodology (RSM) with different design models, as well as 

large-scale production process using a bioreactor. Analysis on the carbon nanomaterial 

was done using a Field Emission Scanning Electron Microscopy with Energy Dispersive 

X-ray (FESEM-EDX) and Fourier Transform Infrared spectroscopy (FTIR) while Ultra 

High-Performance Liquid Chromatography (UHPLC) was used to analyze the final 

sugar product. The most important factors in xylanase production with low cell leakage 

are cell loading and agar concentration. Following RSM screening and optimization, the 

xylanase production from free cells (1.39 U/mL) increased tenfold after cell 

immobilization (10.30 U/mL), and increased to 15 U/mL during the upscale process in 

the bioreactor. The immobilized cells can be reused for up to 7 fermentation cycles and 

stored at 4 ℃ for up to 90 days. The end products of lignocellulosic biomass 

bioconversion are xylobiose and xylotriose. Cell immobilization with carbon 

nanomaterials has been shown to successfully enhance xylanase production, opening up 

a new path to improved bioprocessing, particularly for the production of enzymes with 

reusability and long-term storage. 
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ABSTRAK 

 

 

Xilanase adalah enzim hidrolis utama yang penting untuk pendegradan xilan dalam 

aplikasi seperti mempulpa kertas, bahan tambahan makanan dan makanan ternakan. 

Xilanase biasanya dijumpai pada spesies kulat dengan penghasilan xilanase yang rendah 

dan proses yang rumit. Justeru, cara alternatif untuk meningkatkan penghasilan xilanase 

dengan proses yang senang dan kurang memakan masa diperlukan. Tujuan kajian ini 

untuk menghasilkan xilanase dalam skala besar dengan pengimobilisasian 

Kluyveromyces lactis dengan bahan nanokarbon dan untuk menggunakan kaedah 

langsung biokatalis seluruh sel untuk penghasilan xilooligosakarida. Oleh itu, empat 

jenis bahan nanokarbon disaring menggunakan proses prarawatan yang diukur oleh 

aktiviti xilanase dan pertumbuhan sel. Nanotiub karbon (NTK) dan grafin oksida (GO) 

dianalisis dan factor imobilisasi serta keadaan kultur dioptima menggunakan kaedah 

permukaan respon (RSM) dengan bentuk model yang berbeza, serta proses penghasilan 

xilanase yang banyak menggunakan bioreaktor. Analisis bahan nanokarbon dijalankan 

melalui Mikroskop Pengimbasan Elektron Pancaran Medan dengan Serakan Tenaga 

Sinaran-X (FESEM-EDX) dan spektroskopi Fourier Transform Infra Merah (FTIR) 

sementara Kromatografi Cecair Berprestasi tinggi ultra (UHPLC) digunakan untuk 

menganalisa produk gula akhir. Faktor yang paling penting di dalam penghasilan 

xilanase dengan kebocoran sel yang rendah adalah pembekalan sel dan kepekatan agar-

agar. Melalui saringan dan pengoptimunan melalui KSR, peningkatan xilanase daripada 

sel bebas (1.39 U/mL) adalah sepuluh kali ganda selepas imobilisasi sel (10.30 U/mL) 

dan meningkat kepada 15 U/mL di dalam bioreaktor. Sel yang diimobilisasi boleh 

diguna semula untuk 7 kitaran fermentasi dan boleh disimpan di 4 ℃ sehingga 90 hari. 

Xilobiosa dan xilotriosa adalah produk akhir biokonversi biojisim lignoselulosa. 

Imobilisasi sel dengan bahan nanokarbon berjaya meningkatkan penghasilan xilanase, 

menyediakan laluan baru untuk menambah baik biopemprosesan, khususnya 

penghasilan enzim dengan kebolehgunaan semula and penyimpanan jangka panjang.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of study 

 

Xylanase is an enzyme that cleaves the 1,4-glycosidic linkages in the xylan backbone, 

resulting in the formation of xylooligosaccharides (XOS). The use of xylanase as an 

important enzyme can be observed in industrial processes, such as bioethanol 

production, animal feed, food additives, baking industry, xylitol synthesis, and paper and 

pulp production (Kalim et al., 2015). Furthermore, xylanase also acts synergistically 

with other enzymes to produce commercial sugar through hydrolysis process (Gonçalves 

et al., 2015, Chakdar et al., 2016). Recently, the safety of materials used in industrial 

applications is now given more consideration. For example, traditional chemical food 

additives such as potassium bromate and azodicarbonamide were used in the baking 

industry to increase loaf volume, lengthen shelf life, and improve bread taste. 

Nevertheless, it is now known that these chemical food additives are carcinogenic to 

humans. It was discovered that xylanase contributes to the search for safe food additives 

(Zhan et al., 2014). Hence, the vast industrial applications have led to a significant 

investment in research aimed at enhancing xylanase productivity for improved 

performance of production. 

Attempts are made for high productivity of enzymes to meet specific industrial 

needs and economic viability. Most of the reported xylanases show low yield and 

incompatibility of the standard fermentation processes that do not meet the demand of 
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industries, which makes the process non-economical. Therefore, recombinant DNA 

techniques must be employed as excellent tool for the construction of genetically 

modified strains of microbes with selected characteristics for enzyme production. In this 

case, isolation and cloning of xylanase gene designate an important step in the 

engineering of the most efficient microorganisms. Till date, xylanase gene isolated from 

various microorganisms have been cloned and expressed into suitable hosts with various 

objectives. To attempt these processes for commercial purposes, cloning of xylanases 

gene have been reported in both heterologous and homologous protein expression hosts. 

Heterologous expression is the main tool for the xylanase production at industrial level. 

Protein engineering by recombinant DNA technology could be beneficial in refining the 

specific characteristics of present xylanases. Recombinant xylanases have shown better 

properties than the native enzymes, which can be employed in the fermentation industry 

(Walia et al., 2017). 

Historically, a type of yeast known as Saccharomyces cerevisiae has 

predominantly been utilized as a host to produce recombinant proteins. Nevertheless, 

this yeast is not always the optimal host for the large-scale production of foreign 

proteins as technical fermentation requires highly sophisticated equipment. 

Consequently, the development of expression systems using so-called “non-

conventional” yeasts, such as Pichia pastoris, Yarrowia lipoytica, and Kluyveromyces 

lactis are introduced into the system of heterologous protein production (Gomes et al., 

2018). Particularly, Kluyveromyces lactis is gaining attention as a credible alternative 

host for heterologous protein secretion, especially xylanase in a large-scale production 

(Fuzi et al., 2014). In this study, the recombinant K. lactis producing xylanase was used. 

Xylanase gene was originated from Trichoderma species of fungus and their limitations 

of extensive purification of pure enzyme and its low yield led to gene cloning in K. lactis  

(Chakdar et al., 2016).  

K. lactis is another respiratory Crabtree-negative yeast and also known for 

producing β-galactosidase on an industrial scale. K. lactis is primarily used in the food 

industry for lactose-free products. Bovine chymosin was the first recombinant protein 

produced using K. lactis as a host. To date, recombinant proteins with applications in the 

food and pharmaceutical industries have been produced more frequently. Unlike some 
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methylotrophic yeasts, K. lactis requires methanol-free media for growth, which does 

not necessitate the need for explosion-proof fermentation equipment and high-cost 

carbon sources (Fuzi et al., 2012). Nonetheless, the traditional technique of producing an 

enzyme has several drawbacks, which include low productivity, product separation 

issues, and the inability to be recycled (Ivanova et al., 2011; Szymańska et al., 2011). 

Although the traditional technique of producing an enzyme has several 

drawbacks, they can be overcome using cell immobilization as a solution to these 

challenges. Under this process, microbial cells are confined or localised in a defined 

region where they can be used repeatedly and increase productivity (Willaert, 2011). 

The immobilization of whole cells for extracellular enzyme production offers various 

advantages such as improvement in the production of target product, cell separation 

from bulk liquid for reuse, continuous operation for an extended period, and increased 

reactor productivity (Sankaralingam et al., 2016). Additionally, immobilized cells are 

noticed to have better operational stability, higher resilience to environmental 

perturbations such as pH, and adequate cell protection from shear damage (Dogan et al., 

2016). Furthermore, both cell immobilization techniques and support types, such as 

polymers, lignocellulosic material, silica, and hydrogel were found to be well-

established. Nonetheless, the use of nanomaterials has not been extensively studied as 

cell supports in the cell immobilization process. The use of nanomaterials offers 

promising potential as they are found to be an excellent candidate as matrix/support in 

cell immobilization due to their unique properties (Manaf et al., 2020).  

The utilization of nanomaterials, particularly carbon nanomaterials, has emerged 

in multiple fields, which includes the development of nanocarriers for drugs, proteins, 

DNA, cell imaging, and also for adsorption and degradation of environmental pollutants 

(Manaf et al., 2020). In addition to their excellent electronic, optical, thermal, and 

mechanical properties, carbon nanomaterials are gaining interest because of their high 

catalytic properties that can improve the production system (Zaytseva & Neumann, 

2016). An interesting part of carbon nanomaterials is their high surface area, which can 

contribute to the higher catalytic activity and reactivity towards biological interactions 

(Navya & Daima, 2016). Hence, the unique properties of carbon nanomaterials can be 

utilized as a matrix/support for cell immobilization studies.  
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Generally, calcium alginate beads have been the focus of multiple studies 

reporting on the production of xylanase through cell immobilization (Amani et al., 2007; 

Kundu & Majumdar, 2018). In terms of using cell immobilization to improve xylanase 

productivity, carbon nanomaterials were used as support in this study. The study that 

was most similar to this research was conducted using graphene oxide as a support for 

xylanase production from recombinant E. coli (Nor Ashikin et al., 2017). From the 

reported work, the improvement achieved by increased xylanase production allows it to 

be potentially used in this study. Thus, carbon nanomaterials including CNT and GO 

were chosen as the matrix/support for cell immobilization through recombinant K. lactis. 

To the best of our knowledge, there has been no study on xylanase production through 

recombinant K. lactis using a dual cell immobilization approach. The dual cell 

immobilization approach usually involves the adsorption of carbon nanomaterials and 

entrapment in a polymeric gel network. 

In immobilized cells, they are applied in the bioconversion of lignocellulosic 

materials into fermentable sugar. Additionally, the conversion of biomass into 

fermentable sugar applies to xylanase as a hydrolytic enzyme. Generally, there is an 

abundance of lignocellulosic waste as biomass in the agriculture sector, which requires 

proper waste management. Hence, this study applies the waste-to-wealth approach by 

using a single direct process where the biomass is used as a substrate for xylanase to 

produce fermentable sugars, such as xylose and XOS. Also, fermentable sugars have a 

wide range of applications such as for food additives, sweetener, probiotics and for 

bioethanol production (Abu Bakar et al., 2012). Therefore, this study focused on the 

development of the cell immobilization process through the implementation of carbon-

based nanomaterials for improved xylanase production, which includes a large-scale 

process and its bioconversion to sugar. 

 

1.2 Problem statement 

 

Xylanase is one of the hydrolytic enzymes that are normally found in fungi species. Yet, 

they always involved complicated large-scale production, which is also an expensive 

process. Hence, recombinant DNA technology can be applied for better production of 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



5 

 

proteins (Juturu & Wu, 2012; Zhan et al., 2014). In the production of proteins, the yeast 

system expression has the advantage of a platform for heterologous protein secretion. 

Yeast is an attractive host for heterologous protein expression with the benefits, such as 

high cell density growth, and extracellular proteins secretion with a Generally 

Recognized as Safe (GRAS) status. Nonetheless, there are limitations to the use of 

common yeasts in the production of proteins. To this extent, K. lactis proves itself as a 

promising host for gene cloning as it can grow on a variety of inexpensive carbon 

sources while efficiently secreting extracellular proteins, and also has a GRAS status 

(Fuzi et al., 2012; Zhan et al., 2014). Based on the advantages of K. lactis, the 

recombinant K. lactis was chosen in this study to produce xylanase. 

In the production process of enzymes, the traditional approach of the free cell 

system has a few limitations of low productivity and stability, and a complex product 

separation process (Beshay et al., 2011, Zhuang et al., 2017). Additionally, the free cell 

system cannot be reused, which is normally demanded for certain applications that need 

a cost-effective process (Szymańska et al., 2011). To improve xylanase production and 

overcome the limitations of the traditional free cell system, the cell immobilization 

approach can be implemented. The cell immobilization approach comes as an alternative 

as it may increase cell stability, improves the downstream process, reduce contamination 

risks, and protect cells from environmental stress.  

In this study, carbon-based nanomaterials have been chosen as the cell 

immobilization support due to the unique properties of high surface area, improved 

catalytic activity, and high electrical conductivity, which leads to enhanced 

immobilization efficiency (Abdul Manaf et al., 2021). Nonetheless, carbon-based 

nanomaterials were found to be only used in a very small number of studies to support 

the immobilization of cells, particularly in the production of enzymes. Although carbon-

based nanomaterials are beneficial for multiple applications such as drug delivery and 

cell imaging, there is still a need for an in-depth study on the potential of carbon-based 

nanomaterials as support in cell immobilization. A thorough investigation is required to 

screen and optimize the factors influencing the cell immobilization process. 

Additionally, cell immobilization studies using carbon-based nanomaterials for the 

fermentation aspect should also be investigated. 
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