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ABSTRACT 

 

Xenobiotic organic compounds (XOCs) originated from anti-microbial personal care 

products (PPCPs) including triclocarban (TCC) are emerging contaminants can cause 

hazardous effect on water environment. The study aims to measure the degradation 

of the XOCs which is TCC to promote water quality protection measures. Hence, 

objective of this research is to study the photocatalytic degradation of TCC in 

greywater. Photocatalytic degradation was enhanced by modification of 

photocatalyst which is TiO₂ nanotubes with the coating of zeolite (TNTs/Zeo). 

TNTs/Zeo catalyst were formed by application of electrochemical anodization (ECA) 

for TiO₂ nanotubes formation and electrophoresis deposition (EPD) in coating 

zeolite. The characteristics of catalyst were verified using FESEM/EDS, and XRD.  

In order to control the presence of TCC, the optimization of photocatalytic 

degradation of TCC was designed via factorize central composite design (FCCD) 

design matrix of RSM by depending on pH value (3 - 10), TNTs/Zeo catalyst loading 

size (0.5 cm² - 1.0 cm²) and irradiation time (10 - 60 minutes) as variables. The 

photocatalytic degradation experiments have been conducted under natural sunlight 

radiation. The overall finding has directed to the pH value 11, TNTs/Zeo catalyst 

loading 0.75 cm², and irradiation time 50 minutes were the optimum conditions of 

photocatalytic degradation on TCC that has provided the maximum efficiency of 

photocatalytic degradation up to 81.2 % removal of TCC concentration. Based on 

kinetic study by following Langmuir-Hinshelwood (L-H) model and pseudo first 

order, the significant constant rate obtained at pH 11 which was 0.048 ppm/min, 0.75 

cm² of TNTs/Zeo catalyst loading size achieved 0.047 ppm/min and 5 ppm of TCC 

initial concentration reached 0.037 ppm/min. Furthermore, there eleven intermediate 

products were detected after the whole process of photocatalysis. In addition, the 

photocatalytic degradation rate of TCC from first and fifth cycles were 94.2 % and 

77.4 % where it still can be considered as significant TCC degradation rate.  
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ABSTRAK 

Sebatian organik jenis xenobiotik (XOCs) yang terhasil daripada produk penjagaan 

diri termasuk triclocarban (TCC) adalah bahan yang boleh mendatangkan kesan 

sampingan kepada alam sekitar. Dengan itu, objektif kajian ini adalah untuk 

menyelidik penyingkiran TCC dalam air sisa daripada bilik mandi menggunakan 

kaedah penyingkiran fotopemangkin. Kaedah ini telah ditingkatkan dengan 

pengubahsuaian pemangkin iaitu penambahan zeolit pada tiub nano TiO₂ 

(TNTz/Zeo). Pemangkin TNTs/Zeo dihasil dengan menggunakan kaedah anodisasi 

elektrokimia (ECA) untuk pembentukan tiub nano TiO₂ serta kaedah pemendapan 

elektroforesis (EPD) bagi pemendapan zeolit. Ciri-ciri pemangkin TNTs/Zeo telah 

diklarisifikasi oleh analisis FESEM, EDS dan XRD. Bagi mengawal kewujudan 

TCC, faktor-faktor bagi proses penyingkiran fotopemangkin terhadap TCC ditentu 

dengan menggunakan rekabentuk FCCD daripada RSM dan pemilihan faktor-faktor 

tersebut bergantung kepada pembolehubah iaitu nilai pH (3-10), saiz pemangkin 

TNTs/Zeo (0.5 cm² - 1.0 cm²) dan tempoh masa proses fotopemangkin (10-60 minit). 

Eksperimen ini telah dijalankan di bawah penyinaran cahaya matahari. Secara 

keseluruhan kajian telah membuktikan nilai pH 11, saiz pemangkin 0.75 cm² dan 

masa proses fotopemangkin selama 50 minit adalah ciri-ciri terbaik proses 

fotopemangkin terhadap TCC di mana kadar penyingkiran kandungan TCC 

mencapai penyingkiran tertinggi iaitu 81.2 %. Berdasarkan kajian kinetik Langmuir-

Hinshelwood (L-H) dan susunan pertama pseudo mendapati kadar malar terbaik 

penyingkiran TCC adalah pada nilai pH 11 yang mana mencapai kadar malar 0.048 

ppm/min, saiz pemangkin 0.75 cm² dengan kadar malar 0.047 ppm/min dan 5 ppm 

kandungan awal TCC telah menjangkau kadar malar 0.037 ppm/min. Selain itu, 

sebelas produk perantara dikesan selepas satu proses fotopemangkin yang lengkap. 

Di samping itu, kadar penyingkiran terhadap TCC setelah kitaran pertama dan 

kelima adalah sebanyak 94.2 dan 77.4 % pengurangan di mana ia boleh 

diklarifikasikan sebagai kadar penyingkiran TCC yang memuaskan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The increasing population each year leads to the escalating of water demand that 

produces a huge amount of wastewater and greywater. It had estimated the number 

of the world population is about nearly 7.8 billion people in the year 2020 (Matzuk et 

al., 2020). Meanwhile, in Malaysia, the number of populations increase by year, and 

it was close to 32.7 million people based on the Department of Statistics Malaysia 

(2020). Since the population keeps increasing steadily every year, the possibility of 

producing wastewater is high. Recently, through RMK 11 in section 69 and 70, the 

Malaysian government has claimed that by 2020, 99% of the population would have 

sufficient and treated water.  

The production of greywater coming from residential increased dramatically 

with respect to the population (Tsoumachidou et al., 2016). It is estimated about 6 

million liters of domestic greywater were produced every year in Malaysia. The huge 

amount of domestic greywater production can impact the quality of life if it been 

freely released to the waterways such as to the river and stream. Mohamed et al., 

(2018) reported that, in some rural areas of Malaysia, domestic wastewater was 

discharged into the river directly. Hence, of the situation needs to be handled and 

mitigated wisely since domestic greywater considered a complex mixture containing 

water together with common constituents such as xenobiotic organic compounds 

(XOCs) influenced by personal care products (Noman et al., 2019; Huang et al., 

2017; Eriksson et al., 2003). Greywater that comes from ablution, sinks, laundry, the 

bathroom has a concentration of XOCs influenced by pharmaceutical and personal 

care products (PPCPs) and offer negative effects to the human health and human 
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health (Yang et al.,, 2017; Yang et al., 2008; Eriksson et al., 2002). Addressing these 

problems calls out for a tremendous amount of research to be conducted to identify 

new methods of purifying water preferably green method with less energy, while at 

the same time minimizing the use of chemicals and impact on the environment (Shen 

et al., 2012; Malato et al., 2009).  

The continuous persistence of TCC in rivers and streams is a major issue to the 

environment and humankind. TCC is a topical antiseptic but can end up in the food 

chain, which is neither regulated nor monitored. There are several types of XOCs 

especially TCC that would not be degraded after conventional treatment of 

greywater, and due to that case, advance treatment is needed (Thelusmond et al., 

2018; Gisi et al., 2016; Leal et al., 2010 Chu and Metcalfe, 2007). 

The application of advance treatments is very important because as the 

concentration and number of contaminants increase, the process becomes more 

complicated. The problems can be attributed to catalytic deactivation, slow kinetics, 

low photo efficiencies, and unpredictable mechanisms (Zhou et al., 2018) Some 

promising new method in the context of pollutant abatement in water is collectively 

respected to photocatalytic degradation system (Hunge et al., 2021; Ge et al., 2017). 

Photocatalytic degradation was widely used for decontamination of water containing 

organic pollutants that has been classified as recalcitrant compounds (Kurniawan et 

al., 2020). These photocatalytic degradation methods such as titanium dioxide (TiO₂) 

photocatalysis rely on the formation of highly reactive chemical species such as 

TiO₂, which degrade even the most recalcitrant molecules into biodegradable 

compounds (Wafi et al., 2021; Gulyas et al., 2009).  

TiO₂ photocatalysis is gradually developed as an affordable, effective, 

environmentally friendly, reusable, and sustainable technology in wastewater and 

greywater treatment (Priyanka et al, 2020). Titanium (Ti), well known as the world’s 

fourth most abundant metal and the ninth most abundant element, was discovered in 

1791 by Reverend William Gregor in England  (Kumar & Misra, 2020; Li, 2013). 

Pure TiO₂ does not occur in nature; it is primarily found in various minerals like 

rutile, ilmenite, leucoxene, anatase, brookite, perovskite, and sphene, and titanates 

and many iron ores as well (Li, 2013). TiO₂ remains one of the most promising 

materials due to its high oxidation efficiency, nontoxicity, high photostability, 

chemical inertness, and environmentally friendly nature (Reddy et al., 2020; Zhang 

et al., 2010; Di et al., 2007). Another advantage of TiO₂ is its low cost, owing to the 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



3 
 

abundance of Ti estimated 0.44% of Earth’s crust (Westerhoff et al., 2011; Robert, 

2007). Worldwide reserves over 600 million tons, the annual production of Ti metal 

is approximately 90,000 tons, and the annual production of TiO₂ is around 4.3 

million tons (Westerhoff et al., 2011). Previous research has shown that the TiO₂ 

semiconductor is an excellent photocatalyst that can perform under UV irradiation to 

mineralize a large range of refractory organic pollutants, for examples antibacterial, 

surfactant, herbicides, dyes, pesticides, and phenolic compounds, among others (Mao 

et al., 2017; Daghrir et al., 2013).  

However, the major drawback of such TiO₂ nanoparticle is the random 

pathway of photoinduced electrons during photocatalytic reactions, which eventually 

lead to the recombination through trapping or de-trapping of electron/hole pairs as 

well as a longer electron-transporting time in the particulate TiO₂. In addition, the 

probability of recombination losses of photoinduced charge carriers would be 

increased significantly due to the presence of defects or trapping sites, more grain 

boundaries, light scattering, and disordered contact areas (Malakootian et al., 2020; 

Mohamed and Rohani, 2011; Yan and Zhou, 2011; Lei et al., 2010; Sun et al., 2010; 

Kasuga et al., 1998). Meanwhile, it was found that TiO₂ nanotubes could eliminate 

the reusability of photocatalyst issues and ease the filtration procedure after 

photoreaction (Zhu et al., 2020; Sun dan He, 2010; Ghicov and Schmuki, 2009). In 

order to further maximize the specific surface area of TiO₂ nanotubes for better 

photons absorption from illumination, design and development of TiO₂ based 

nanostructure assemblies have gained significant interest and triggered enormous 

effort in physics, chemistry, and material science (Yan & Zhou, 2011; Ge et al., 

2017; Su et al., 2011; Sun et al., 2010; Ghicov & Schmuki, 2009; Chen & Mao, 

2007; Grimes, 2007). It is because TiO₂ nanotubes are becoming more popular due to 

their high photocatalytic activity for various types of degradation (Zhou et al., 2018; 

Lai et al., 2014). 

Highly ordered and vertically oriented TiO₂ nanotubes can be fabricated by 

anodization of Ti metal foil under suitable electrolyte and processing conditions. 

TiO₂ nanotubes are gained after the process that initially involves the formation of 

the barrier layer and followed by rather well defined nano-porous structure (Mohan 

et al., 2020;  Lai & Sreekantan, 2011; Macak et al., 2007; Grimes, 2007; Macak & 

Schmuki, 2006). The Ti metal foil was used as a substrate for TiO₂ nanotubes to 

grow. The amorphous TiO₂ nanotubes can be obtained at the end of the anodization 
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process. Other than that, to extend the spectral response of TiO₂ nanotubes into the 

visible region and to enhance its photocatalytic activity, several strategies have been 

developed. Coating pure TiO₂ nanotubes with metal cations such as zeolite is one 

way for sensitizing TiO₂ to visible light (Zhang et al., 2018; Zhang et al., 2012; 

Wang et al., 2006). The zeolite used as an adsorbent, an ion exchanger, and a catalyst 

zeolite significantly increased the adsorption capacity of the composite photocatalyst, 

resulting in a decrease in the concentration of intermediates that are desorbed from 

the photocatalyst surface and released to the gas phase during the advance oxidation 

processes (AOPs) (Koohsaryan & Anbia, 2016; Mao et al., 2017).  Since zeolite has 

potential in assisting the performance of TiO₂ nanotubes, this route promotes the use 

of the main part of the solar spectrum and also to ensure the charge traps to keep 

electron-hole photogenerated separate (Nguyen et al., 2020; Prakash et al, 2019; 

Faraji & Mohaghegh, 2016). Therefore, this study aims to establish the TiO₂ 

nanotubes coated with Zeolite (TNTs/Zeo) as a photocatalyst to enhance the 

photocatalytic performance of TCC degradation in artificial bathroom greywater 

(ABGW).  

 

1.2 Problem Statement  

TCC is acknowledged as one of the hazardous compounds and could lead to negative 

impact to the environmental and human health. TCC effects has been reported on a 

variety of mammals, for example rats and rabbits. The report showed the 

reproduction and survival rates of offspring decrease in rats, and it is proportional to 

the elevated TCC levels (Li et al., 2018). TCC is also known to cause 

methemoglobinemia in human. It can also cause cancer and baby blue syndrome, a 

condition of decreasing oxygen-carrying capacity of hemoglobin in babies leading to 

death (Bomar et al., 2017). Due to its side effects, in 2013 FDA has proposed the 

rulemaking regarding allowable TCC concentration in products and in September 

2017, FDA issued a final rule of banning the application of TCC in various personal 

care products. Nevertheless. In 2018, European Chemical Agency and British 

Environment Agency have reported TCC concentration in surface water has been 

found at risk level and could affect the aquatic life at the level of 3 μg/L to 10 μg/L 

of concentration that could end up in the food chain, which is neither regulated nor 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



5 
 

monitored. In addition, the information of TCC in Malaysia is still lacking in many 

ways, such as the actual detected of TCC concentration in bathroom greywater 

effluent in entire nation and due to that, there is yet no official standard and 

regulation provided by government of Malaysia in order to monitor TCC 

concentration in water bodies. 

The continuous persistence of TCC in water body is a major concern to the 

environment and human health due to its toxicity and hazardous effects. TCC in 

greywater are not only recalcitrant but can also be adsorbed on solid particles via 

electrostatic forces. TCC also has a strong chemical structure which makes TCC as a 

reactive compound. Hence, it complicates the degradation process of the compounds 

using biological water treatment or other conventional water treatment processes 

(Rogé et al., 2017; Rahman et al., 2009; Nakada et al., 2007; Eyers & Fantroussi, 

2004; ). The mentioned issue has led to the advance oxidation processes (AOPs) to 

improve the removal of TCC in greywater such as photocatalytic degradation 

technique (Lazar et al., 2012). Photocatalytic degradation is one of promising 

technique to degrade TCC according to its potential to degrade recalcitrant 

compounds. Other than that, in AOPs, the photocatalytic degradation can be 

customized by various selections of photocatalyst based on the characteristic of 

targeted compound or pollutant.  

TiO₂ is one of general and effective photocatalyst applied in photocatalytic 

degradation as the main role in the process. The position of titanium ions creates 

favorable reaction condition against organic compounds. Its strong resistance to 

chemical breakdown, high stability towards photo-corrosion, non-toxicity, low cost, 

long term stability are the main factors of photocatalyst selection.  However, the 

TiO₂ photocatalyst alone inadequate to degrade recalcitrant compounds especially 

TCC due to TiO₂ photocatalyst has high recombination of electron-hole where could 

decrease the photocatalytic performance activities. In consequences,  it is clear that 

unmodified TiO₂ usually needs a solution to undertake practical applications of 

industrial and environmental interest (Daghrir et al., 2013). This could lead to the 

loss of some of the operation effects. Therefore, the study intends to propose 

modification on the catalyst semiconductor, which requires metal cation (zeolite) as 

precursor to be coated on TiO₂ nanotubes to enhance the photocatalyst activity and 

the photocatalytic degradation of TCC in water since zeolite has the ability to 

separate the recombination of electron-hole. Zeolite is used as an absorbent, ion 
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