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ABSTRACT 

Classification refers to a predictive modeling problem where a class label is predicted 

for a given example of input data. Data is everywhere and the amount of digital data 

that exists is growing exponentially. However, data is rarely perfect and there are many 

inconsistencies that affect data quality such as noise data. Nowadays, the use of SVM 

is very perspective for the big data classification. SVM provides a global solution for 

data classification but SVM is highly sensitive to noise data and may not be effective 

when the level of noise data is high. When noise exists in training data, the decision 

boundary of SVM would deviate from the optimal hyperplane severely. To overcome 

SVM drawback for noise data problem, WSVM using KPCM algorithm was used but 

WSVM using kernel-based learning algorithm such as KPCM algorithm suffer from 

training complexity, expensive computation time and storage memory when noise data 

contaminate training data. Thus, through a simple pruning and speed-up method such 

as clustering method, WKM-SVM has been proposed. However, WKM-SVM has 

several limitations that are related to k-Means Clustering. One of the limitations of 

WKM-SVM is the clustering centers may not suitably represent original data 

structures which can potentially cause poor prediction results. Therefore, this research 

work proposes a modified WSVM utilized with instance selection method and 

weighted learning to improve WSVM training and classification accuracy. The 

modification of WSVM will reduce noise data by producing multiple hyperplanes and 

selecting the optimal hyperplane based on the lowest noise data. The overall result 

shows that the proposed method outperforms WSVM, OWSVM and WKM-SVM in 

all datasets in terms of classification accuracy. Specifically, the proposed method 

produces classification accuracy equal to or higher than 85% for three datasets and 

lower than 85% for six datasets. However, the performance of the proposed method 

for test data may not be as good as anticipated since most of the datasets produced 

classification accuracy lower than 85%. 
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ABSTRAK 

Pengkelasan merujuk kepada masalah pemodelan ramalan yang mana label kelas 

diramalkan untuk contoh tertentu bagi kemasukan data. Data ada di mana-mana dan 

jumlah data digital yang wujud telah berkembang dengan pesat. Walau bagaimanapun, 

data jarang sempurna dan terdapat banyak ketidakseragaman yang mempengaruhi kualiti 

data seperti hingar data. Masa kini, penggunaan SVM adalah sangat perspektif bagi 

pengkelasan data besar. SVM menyediakan penyelesaian umum untuk pengkelasan data 

tetapi SVM amat sensitif terhadap hingar data dan mungkin tidak efektif jika hingar data 

adalah tinggi. Apabila hingar wujud dalam data latihan, sempadan keputusan SVM akan 

tersasar jauh dari sempadan optimum. Bagi mengatasi kekurangan SVM dalam masalah 

hingar data, WSVM yang menggunakan algoritma KPCM telah digunakan tetapi WSVM 

yang menggunakan algoritma pembelajaran berasaskan kernel seperti algoritma KPCM 

mempunyai masalah dalam latihan, masa pengiraan yang tinggi dan ruang memori apabila 

hingar data mengubah data latihan. Dengan demikian, melalui kaedah mempercepat dan 

pengurangan mudah seperti kaedah pengelompokan, WKM-SVM telah dicadangkan. 

Namun begitu, WKM-SVM mempunyai beberapa kekangan berkaitan dengan k-Means 

Clustering. Salah satu kekangan tersebut adalah pusat pengelompokan tidak sesuai 

mewakili struktur data asal yang berpotensi menyebabkan keputusan ramalan yang 

rendah. Lantaran itu, kerja penyelidikan ini mencadangkan agar WSVM diubah suai 

menggunakan kaedah instance selection dan weighted learning untuk meningkatkan 

latihan WSVM dan ketepatan pengkelasan. Pengubahsuaian WSVM akan mengurangkan 

hingar data melalui penghasilan sempadan keputusan yang pelbagai dan pemilihan 

sempadan keputusan berdasarkan jumlah hingar data yang rendah. Hasil keseluruhan 

keputusan menunjukkan bahawa kaedah yang dicadangkan mengatasi WSVM, OWSVM 

dan WKM-SVM berdasarkan pada ketepatan pengkelasan dalam semua set data. Secara 

khususnya, kaedah yang dicadangkan memperoleh ketepatan pengkelasan sama atau lebih 

tinggi dari 85% untuk tiga set data dan lebih rendah dari 85% untuk enam set data. Namun 

begitu, pencapaian bagi kaedah yang dicadangkan untuk data ujian tidak sebaik yang 

dijangkakan kerana kebanyakan set data memperoleh ketepatan pengkelasan lebih rendah 

dari 85%.
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1CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Research 

Machine learning (ML) is a continuously developing field, given that some 

considerations need to be taken into account in working with machine learning 

methodologies or analysing the impact of machine learning processes (Tagliaferri, 

2017). ML applications are highly automated and self-modifying and continue to 

improve over time with minimal human intervention as they learn with more data. 

According to a recent study, ML algorithms are expected to replace 25% of global jobs 

in the next decade (Mathews & Aasim, 2021). The basic objective of ML is to allow 

computers to automatically learn to recognise complex patterns, make intelligent 

decisions, and improve performance over time based on the input data. Most often, 

this involves using a set of historical outcomes to make predictions about future 

outcomes. ML is also seen as a discipline in artificial intelligence (AI) that consists of 

designing and developing algorithms. Generally, ML aims to find patterns in data and 

subsequently use a model that recognizes those patterns in making predictions on new 

data. 

However, ML has its own unique challenges compared to other approaches 

(Nair, 2017); the first challenge is understanding which processes need automation. 

Intelligent process automation is about robotic process automation fundamentals 

combined with ML capabilities to robotize the tasks and learn to perform a job even 

better (Joshi, 2019). The most straightforward processes to automate are the ones that 

are performed each day manually with no variable output. The complicated processes 
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require further self-analysis before automation. Though, while ML can help automate 

some processes, not all automation problems need ML. The second challenge is the 

lack of good data. Noise in data is a significant concern for many ML techniques used 

in modeling data (Atla et al., 2011). The solution is to evaluate data through data 

acquisition, data integration, and data exploration until generating a good dataset. The 

third challenge is the inadequate infrastructure. For most organisations, managing the 

various aspects of the infrastructure surrounding ML activities can become a 

significant challenge (Dean, 2017). The solution to handle ML is to upgrade storage 

accompanied by hardware acceleration and distributed computing. 

The fourth challenge is implementation. Various data driven organizations 

have spent many years developing successful analytics platforms for implementing 

ML. Implementing a ML algorithm will provide a deep and practical appreciation for 

how the algorithm works. This knowledge can also help to internalize the 

mathematical description of the algorithm (Novikov, 2020). Moreover, integrating 

newer ML methodologies into existing methodologies is a complicated task. Though 

maintaining proper interpretation and documentation is an excellent solution to ease 

the implementation of new methodologies, the last challenge results from the limited 

skilled resources. With the rapid growth of big data and the availability of 

programming tools, ML is becoming increasingly popular for data scientists (Mathews 

& Aasim, 2021). Data scientists often need a combination of domain experience and 

in-depth knowledge of science, technology, and mathematics. Consequently, the 

recruitment for data scientists requires companies to pay large salaries since these jobs 

are often in high demand. This is due to the emergence of big data and how data is 

being generated and consumed by companies (Das, 2020). 

Given these challenges, the second challenge is related to this research as, over 

the last few decades, noise data has attracted a considerable amount of interest and 

attention from researchers. The research community has developed several techniques 

and algorithms to address this issue (Prati et al., 2019). ML can assist people who are 

frequently susceptible to making mistakes during analyses and trying to establish 

relationships between multiple features and improve the efficiency of systems and the 

designs of machines. ML also provides knowledge on making more informed, data 

driven decisions faster than traditional approaches. Having said that, there are three 
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types of ML: supervised learning, unsupervised learning, and reinforcement learning 

(Atul, 2019). 

In supervised learning, the algorithms are designed to learn by example. When 

training a supervised learning algorithm, the training data consists of inputs paired with 

the expected outputs. The training data can accept any type of data as an input, such 

as values of a database row, the pixels of an image, or an audio frequency histogram. 

During training, the algorithm searches for patterns in the data that correlate with the 

expected outputs; then, after training, the algorithm will take in new unseen inputs and 

determine the label for the new inputs classified based on prior training data. The 

supervised learning model aims to predict the correct label for newly presented input 

data (Wilson, 2019a). 

Unlike supervised learning, unsupervised learning does not use labeled data 

but focuses on the data’s attributes. Unsupervised learning will frequently find 

subgroups or detect hidden patterns based on the typical characteristics of the input 

data within the dataset. In unsupervised learning, the targeted outputs are not subjects 

of concern as making predictions is not the desired outcome of unsupervised learning 

algorithms (Wilson, 2019b). 

On the other hand, reinforcement learning is considered a hit and trial method 

of learning. This type of ML is the training of ML models to make a sequence of 

decisions. To get the machine to do what the programmer wishes, the AI gets either 

rewards or penalties for the actions. The goal is to maximise the total reward. 

Moreover, the model has to determine how to perform the task to maximize the reward, 

beginning from random trials and finishing with advanced tactics (Błażej & Konrad, 

2018). 

The majority of practical ML uses supervised learning (Brownlee, 2016). There 

is also no single learning algorithm that works best on all supervised learning 

problems. A broad range of supervised learning algorithms is available, each with 

strengths and weaknesses. Supervised learning has been successful in real world 

applications, divided into two categories: classification and regression (Jaiswal, 2018). 

Classification predicts discrete values such as true or false and male or female, while 

regression predicts continuous values such as price, salary, or age. This research 

focuses on classification because classification is an important technique used in data 

mining and data analysis applications (Pruengkarn et al., 2015). 
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In classification, reliability depends on correctly detecting the class label 

(Sarangam, 2021). Classification refers to a predictive modeling problem where a class 

label is predicted for a given input data example (Brownlee, 2020). The success of 

prediction values for the class label aims to measure the overall accuracy, percentage 

of data for which the class label is correctly predicted. Moreover, classification 

algorithms have been designed to achieve the maximum possible number of correct 

class label predictions. In addition, classification seek to predict the target class by 

analyzing the training data (Priyadarshiny, 2019) and make good predictions on unseen 

data (Pérez-Ortiz et al., 2016). Attributes and class labels typically characterize the 

quality of training data, in which the quality of attributes represents how well attributes 

describe the data for the training purposes. 

In contrast, the quality of the class label indicates whether the label of each 

data is correctly assigned (Nazari et al., 2018). However, having said that, data is rarely 

perfect, as many inconsistencies affect data quality, such as noise data (Garcia, 2016). 

Noise data is also considered one of the most challenging classification problems 

(Farid et al., 2013). Even with extreme efforts to avoid noise, it is challenging to ensure 

a data acquisition process without errors. Noise data tend to increase the complexity 

of the classification problem (Napolitano, 2009) within a wide range of research areas. 

Several studies have concluded that, even in controlled environments, there are at least 

5% of noise and errors in a dataset (Maletic & Marcus, 2000). Even though there are 

various strategies and techniques to manage and deal with noise data, it is often 

difficult to determine if a given data is indeed noisy or not. 

Support Vector Machine (SVM) is a promising and powerful tool for solving 

practical binary classification problems (Cervantes et al., 2020) and provides a global 

solution for data classification (Abdiansah & Wardoyo, 2015). One way to learn 

classification algorithms in the presence of noise data is to correct the labels on the 

noise data and subsequently to learn the classification algorithm. SVM treats all 

training data of a given class equally and relies on convex quadratic programming 

(QP), whose computational complexity is commonly subject to data size. Various 

studies have indicated that noise data have several consequences, such as significantly 

reducing the classification accuracy of the classifier (Li et al., 2019), increase in the 

numbers of necessary training data, increase the classification model building time, 

alterations in the observed frequencies of the possible classes (Frénay & Kabán, 2014) 
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and increasing the size and interpretability of the classifier (Rani & Rao, 2019). 

Therefore, this research emphasizes dealing with noise data by using SVM and 

reducing the high computational complexity of SVM training. 

1.2 Problem Statement 

Nowadays, the use of SVM is very perspective for the big data classification 

(Demidova et al., 2016). Training SVM from extremely large and difficult datasets has 

become an issue given the high training time and memory complexity of SVM training 

(Nalepa & Kawulok, 2018). SVM requires all training data to be stored in memory 

during the training when the model's parameters are learned. Once the model 

parameters are identified, SVM only depends on a subset of training data commonly 

referred to as support vectors (SV) that lie near the margin. Here, the complexity of 

the classification task with SVM depends on the number of SV rather than the 

dimensionality of the input space (Awad & Khanna, 2015). The number of SV retained 

from the original dataset is data-dependent and varies depending on the complexity of 

the data, which is captured by the data dimensionality and class. When the data have 

noise, it is possible that these SV could be construed as noise as well. 

Noise data causes decreased performance on SVM given SVM is highly 

sensitive to noise data (Almasi & Rouhani, 2016) and may not be effective when the 

level of noise data is high (Li et al., 2013). The performance of SVM can also 

dramatically decrease with a relatively small number of noise data, which will make 

the decision boundary deviate from the optimal hyperplane severely (Zhu et al., 2016). 

Figure 1.1 shows that the noise data influences the decision boundary severely. The 

thin solid line is the decision plane with no noises, while the bold dotted line is the 

decision plane with some noises. Circles denote noise data. 
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Figure 1.1: Noise data influence the decision boundary severely (Zhu et al., 

2016) 

 

In addressing SVM drawback for noise data problem, Yang et al. (2007) 

discovered one of the considered solutions by proposing Weighted SVM (WSVM) 

using a Kernel-based Possibilistic C-Means (KPCM) algorithm. The KPCM algorithm 

generates the weights used in WSVM, and these weights will be given to noise data to 

reduce the effect of noise data as if they do not exist in training data. Indeed, different 

data have different impacts on the learning of the decision boundary, and the function 

of weight can make noise data contribute differently. If the data are already associated 

with the weights, the information can be directly utilized to train the data. As a result, 

the effect of noise data on the decision boundary is reduced during the training. 

However, WSVM using kernel-based learning algorithms such as the KPCM 

algorithm suffer from training complexity, expensive computation time and storage 

memory when noise data contaminate training data. Nevertheless, it can be reduced 

through a simple pruning and speed-up method. 

Thus, through a simple pruning and speed-up method such as the clustering 

method, WSVM using k-Means Clustering (WKM-SVM) was proposed by Bang & 

Jhun (2014) and Kim (2016) to reduce noise data. However, WKM-SVM has several 

limitations related to k-Means Clustering. Considering the limitations of WKM-SVM, 

the intention of scaling down the training data by selecting support vector candidates 

using a small subset to reduce SVM training time while assigned weight of each noise 

data for a different penalty of misclassification is considered in this work. The instance 

selection method is a set of techniques that reduce the quantity of data by selecting a 
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subset of data that resembles the original data. Instance selection method is also 

intended to reduce the computational complexity by reducing the number of data in 

training data (Leyva et al., 2015). The reduction of training data reduces both the space 

requirements of the system and the processing time of learning tasks. In a weighted 

learning scenario, each training data comes with a positive weight. If classes have 

different misclassification errors that incur different penalties, prior knowledge can be 

applied in the form of instance weights. Assigning high weight to data suggests that 

the learning algorithm should attempt to correctly classify the data (Lapin et al., 2014).  

Additionally, the weighted classifier can deliver better classification 

performance than the unweighted classifier (Wu & Liu, 2013). Thus, the weighted 

classifier could refine the decision boundary with robustness to noise data. In 

conjunction with the advantages of both the instance selection method (reduce high 

computational complexity) and weighted learning (classify the data correctly), this 

research aims to propose a modified WSVM utilized with an instance selection method 

and weighted learning. 

1.3 Research Objectives 

The main objectives of this research are: 

(a) To propose a modified WSVM using the instance selection method and 

weighted learning to improve WSVM training. 

(b) To design Multiple Hyperplanes and Instance-weighted (MHI) and incorporate 

modified WSVM to improve classification accuracy. 

(c) To evaluate the performance of the proposed method with other existing 

methods of WSVM based on classification accuracy and weighted learning 

performance. 

1.4 Research Scope 

The study will focus on the implementation of the modified WSVM using MHI for 

class noise. This research focuses on binary classification and reduction of class noise 

in training data. The class noise focused on in this research is class noise located on 

and near the margin of the hyperplane. Four binary classification datasets, four multi-
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class classification datasets and a real flood dataset with 20% of class noise are used 

for training data. The results are compared with WSVM, OWSVM and WKM-SVM 

and evaluated based on their classification accuracy and weighted learning 

performance. 

1.5 Significance of Research 

This research provides the following contributions to misclassification in the field of 

ML, especially WSVM; 

(a) The modification of WSVM will reduce class noise by producing multiple 

hyperplanes, selecting the optimal hyperplane based on the lowest class noise, 

and achieving high classification accuracy.  

(b) The proposed modified WSVM can reduce the computational complexity of 

SVM training by searching and choosing appropriate subsets of data as if the 

overall data has been used. It can also handle a large amount of training data 

which related to big data problems.  

(c) The weight for each class noise of the proposed modified WSVM that makes 

the class noise tend to become error SV produced optimal weight values that 

can helped obtain better performance on weighted learning. 

1.6 Organization of Thesis 

This thesis is organized and divided into five chapters. The background of the research, 

problem statement, research objectives, research scope and significance of the research 

is highlighted in the first chapter. The second chapter presents the classification task, 

an overview of class noise, the theoretical concept of SVM that consists of hard margin 

and soft margin, the theoretical concept of WSVM, determination of SVM training 

and weighted learning, and the research gap. The third chapter addresses the research 

framework, introducing the proposed method named modified WSVM using MHI. 

The fourth chapter presents the experimental results and discussions, followed by the 

last chapter concluding the research and providing suggestions for future work.
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2CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter introduces content related to the research. ML is the process of finding 

valuable results from real world datasets. Usually, real world datasets contain noise 

data that can significantly affect various data analysis tasks such as classification. The 

need to address noise data is evident since it is detrimental to almost any form of data 

analysis. This chapter describes one of the noise data, which is class noise. The 

theoretical concept of SVM and WSVM used in this research are also described in 

detail. SVM training and the learning process of weight are determined by the instance 

selection method and weighted learning. Also discussed in this chapter are the related 

works in existing studies of WSVM presenting the research gap(s) in line with the 

problems revealed from existing studies of WSVM. 

2.2 Classification Task 

Classification is the task of assigning objects to one of several predefined categories, 

which requires the use of ML algorithms that learn how to assign a class label to data 

samples from the problem domain. Classification refers to a predictive modeling 

problem where a class label is predicted for a given input data sample (Brownlee, 

2020). From a modeling perspective, classification requires training data with many 

samples of inputs and outputs from which to learn. 
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Figure 2.1: A schematic illustration of a classification task (Tan et al., 2019) 

 

The function concerning classification can be explained by mapping each 

attribute set (x) to one of the predefined class label (y). Figure 2.1 illustrates the general 

idea surrounding classification. A classification model is an abstract representation of 

the relationship between the attribute set and the class label, in which the model will 

classify data correctly if f(x) = y. A classification model offers two important roles in 

data mining, and this model is created using a given set of data known as training data. 

First, it is used as a predictive model to classify previously unlabeled data. Second, it 

is used as a descriptive model to identify the characteristics that distinguish data from 

different classes (Tan et al., 2019). Classification models that implement classification 

are known as classifiers. A classifier utilizes some training data to understand how 

given input variables relate to the class. The general intention of a classifier is to 

separate the classes of the problem using only training data. 

Generally, there are two types of classification problems: binary classification 

problems and multi-class classification problems (Jha et al., 2019). In binary 

classification, there are only two possible label classes in which an algorithm utilizes 

some training data to understand how given input variables relate to the class. Multi-

class classification refers to cases where there are more than two label classes (Asiri, 

2018). However, the difficulty of classification problem can be attributed to three main 

aspects: uncertainty among the classes, the complexity of the separation between the 

classes and the data sparsity and dimensionality (Garcia, 2016). Table 2.1 shows 

examples of attribute sets and class labels for various classification tasks. Spam 

filtering and tumor identification are examples of binary classification problems, while 

Galaxy classification is example of multi-class classification problem. 
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Table 2.1: Examples of classification tasks 

Task Attribute set Class label 

Spam filtering 
Features extracted from email message 

header and content 
Spam or non-spam 

Tumor 

identification 

Features extracted from magnetic 

resonance imaging (MRI) scans 

Malignant or 

benign 

Galaxy 

classification 

Features extracted from telescope 

images 

Elliptical, spiral or 

irregular-shaped 

 

This research focuses on binary classification problems, given that it has a 

discrete value as its output. The problem is standard practice to represent the output of 

a classification as an integer number such as 0 or 1. Various classifiers are developed 

for binary classification: Decision Tree, Artificial Neural Network, K-Nearest 

Neighbors and Support Vector Machine (Ortner, 2020). 

Decision Tree (DT) is an easily interpretable method with fast prediction, can 

be adapted to deal with missing data and follows a similar pattern to that of human 

thinking (Ganegedara, 2018). This method can also be constructed from any size of 

dataset with many attributes. DT has three main components: nodes, leaves and edges. 

Moreover, DT could be applied for a random number of decision nodes, and each 

branch should end with a leaf node. Occasionally this method is a relatively unstable 

model leading to a complex tree structure (Sen et al., 2020).  

Artificial Neural Network (ANN) is an example of a non-linear prediction 

method that is frequently applied to various fields (Nkoana, 2011). ANN is a 

mathematical model of human perception which can be trained for performing a 

particular task based on available empirical data that includes a number of neurons or 

nodes working in parallel to transform the input data into output categories. However, 

one of the disadvantages of ANN is that it is challenging for a decision-maker to 

analyse the structure of the resulting ANN and relate it to the outputs (Solomatine & 

Dulal, 2003). 

K-Nearest Neighbors (KNN) is an example of instance based learning based 

on the similarity between the new data and available data and places the unique data 

point into the most similar category to the general categories. This method also 

assumes that similar things exist in close proximity (Prem, 2021). The classification 
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rule of KNN is simple. For each new data, the class will be assigned according to the 

majority vote of its KNN in training data, if K = 1, the algorithm only considers the 

nearest neighbor. Usually, this method leads to consuming high computational time, 

and the value of K needs to be determined correctly for a lower error rate (Sen et al., 

2020). 

Another widely used classification model is SVM, which is a representation of 

the training data since points in space separated into categories by a clear gap that is 

as wide as possible (Jiang et al., 2012). However, the training time of SVM is relatively 

high, and if the dataset is very large, then the prediction task is slow (Sen et al., 2020). 

SVM is ahead of other methods mentioned because SVM is specifically designed for 

binary classification (Stanevski & Tsvetkov, 2005; Mushtaq & Mellouk, 2017; 

Brownlee, 2020) and generates the best overall accuracy result from research, as 

mentioned by Sen et al. (2020). 

Data is everywhere and the amount of digital data that exists is growing 

exponentially (Monnappa, 2021). Moreover, there are many indications in which data 

will play a significant role in the success of companies. Large companies such as 

Facebook, Amazon and Google use the power of ML models to give customers a better 

user experience (Jadari, 2019). The development of high-end technologies has resulted 

in higher rate in proportion of data that data volume, variety, velocity, and veracity 

refers as big data. 

Big data is a datasets that are so large and complex where traditional data 

processing technologies are inadequate (Demidova et al., 2016). Traditional ML 

techniques does not give accurate results for massive datasets, thus many techniques 

were proposed to detect and eliminate noise so that the efficiency of the algorithm 

increases (Rani & Rao, 2019). For example, stock market data are constantly 

generating a large quantity of information in every single seconds. This information 

impact on different factors such as domestic and international news, government 

reports and natural disasters, hence it is crucial that the stock market data should be 

classified appropriately.  Big data is also special application of data science. 

Data science refers to the extraction of knowledge from data involving a wide 

range of techniques and theories drawn from many research fields within mathematics, 

statistics and information technology (Pérez-Ortiz et al., 2016). Data science 

algorithms also are of great value to improve the performance of different applications, 

particularly the areas where data are collected daily and extracted to improve current 
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systems. For the task of ML, data scientists study the data structure first and approach 

the given problem in the best way possible. Usually, the steps involved in data mining 

are data acquisition, pre-processing, selection and application of ML tools, evaluation, 

interpretation and presentation of the results obtained, and finally, dissemination and 

use of new knowledge. 

The generation of noise data can be characterized differently (Nettleton et al., 

2010). First, it can be characterized by its distribution, such as Gaussian noise. 

Secondly, it can be characterized by where it is introduced, as input attributes or output 

class. Finally, it can be characterized by distinguishing whether the magnitude of the 

generated noise values is relative to each data value of each variable. Thus, noise data 

make it more difficult for ML algorithms in forming accurate models from the data. 

However, producing good training data or high classification accuracy often leads to 

high computational complexity (Blachnik, 2015). 

There are several definitions of what noise is in the context of data. One 

definition draws a distinct line between two main categories: attribute noise and class 

noise (Abdel Maksoud et al., 2019). Attribute noise is defined as errors that affect the 

observed values of the attribute, whereas, in contrast, class noise alters the observed 

labels assigned to instances by incorrectly setting a negative label on a positive 

instance in binary classification. Frénay & Verleysen (2014) revealed that class noise 

is potentially more harmful than attribute noise. 

2.3 Class Noise 

Class noise is known as labelling error when the incorrect class label is assigned to 

data (Nazari et al., 2018) and may significantly impact the learning process. Class 

noise usually occurs on the boundaries of the classes where the samples may have 

similar characteristics. Most of the research on class noise tends to focus on the 

influence of the classification performances (Pelletier et al., 2016). 

Class noise exists due to various reasons such as errors or the subjective nature 

of the data labeling process, inadequate information to determine the true label of a 

given example and mistakes made during data entry (Prati et al., 2019). The subjective 

nature of data labeling process may arise when observations need to be ranked, such 

as when the information used to label an object is distinctly different from the 
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information to which the learning algorithm will have access. The problem of 

information adequacy in determining the true label of a given example arises when the 

information used to label each observation is not sufficient, and there is an inadequate 

amount of information to determine the true class label of a given example. The most 

frequent errors are mistakes made during data entry that eventuate when transforming 

information on paper to computerized forms due to illegible or unclear handwriting. 

Occasionally experts often make mistakes during labeling though nowadays, since 

automated classification devices are increasingly used, classification errors are not 

always due to human experts. Figure 2.2 shows the class noise. 

 

Figure 2.2: Class noise (Burgos & Lorite, 2001) 

 

There are two possible sources for class noise: contradictory samples and 

misclassifications (Morales et al., 2017). Contradictory samples signify data that 

appear more than once in the dataset but with different class labels, while 

misclassifications are data are labeled with the incorrect classes. This research focuses 

on misclassification since this type of noise is more common and disruptive than 

contradictory samples (Nazari et al., 2018). 

A taxonomy of class noise mechanisms was offered by Frénay & Verleysen 

(2014), based on four random variables: X is the feature vector, Y is the true class, Ý is 

the observed class, and E is a binary variable that indicates if the noise is present or 

not. This taxonomy is only applicable to binary and multi-class problems. According 

to the statistical dependencies among these four variables, the class noise occurrence 

is believed to be a stochastic process, and the probability of a data mislabeled is 

categorized into three groups (Prati et al., 2019) as follows: 
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(a) Noise Completely at Random (NCAR) 

This type of noise occurs in a completely stochastic way, and the probability of data 

mislabeled does not depend on the class nor the other predictive attributes. 

(b) Noise at Random (NAR) 

The probability of a data mislabeled is dependent on the value of the actual class (it 

can assume different values for different classes). NCAR class noise is a particular 

case of NAR class noise where the probabilities are the same for all classes. 

(c) Noise Not at Random (NNAR) 

Both NCAR and NAR models assumed that class noise applies to all data, but this is 

not always the case. The probability of data mislabeled depends on the feature space. 

For example, the data near class boundaries are likely to be noisier. 

 

For a real world dataset, endeavouring to cleanse the data in some way or form 

is entirely out of the question, given the amount of person hours involved. A manual 

process of data cleansing is also time consuming, requires hard work and is prone to 

errors (Zhu & Wu, 2004). Powerful tools that can manage and assist in the data 

cleansing process are necessary and may be the only practical and cost effective means 

in achieving a reasonable quality level in an existing dataset. 

 Having said that, the problem of learning in noisy environments has been the 

main focus of many research studies in ML. Most learning algorithms have a 

mechanism to enhance their learning abilities in a noisy environment (Nazari et al., 

2018). However, despite the strategies and techniques in dealing with noisy data, some 

research studies reveal that the presence of class noise can still can have a negative 

impact on the performance of ML algorithms concerning classification accuracy 

(Saseendran et al., 2019; Gupta & Gupta, 2019; Nazari et al., 2018).  

The consequences of class noise on the behavior of a classifier can be relatively 

severe such as the performance of the classifier may be significantly deteriorated, the 

learning algorithm can be easily affected given cardinality of the training data may 

increase to compensate for class noise, and the final model of the algorithm can be 

more complex than it should be (Nalepa & Kawulok, 2018). Class noise can also lead 

to severe overfitting and dramatically reduce accuracy (Yi & Wu, 2019). 

There are three main approaches to address the class noise (Frénay & 

Verleysen, 2014): class noise-robust, class noise cleansing, and class noise-tolerant 

methods. The first approach relies on an algorithm that is naturally robust to class 
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noise. The learning of the classifier is presumed to be not too sensitive to the presence 

of class noise. Several studies have indicated that some algorithms are less influenced 

than others by class noise, and the performances of classifiers inferred by class noise-

robust algorithms continue to be affected by class noise. 

The second approach is to improve the quality of training data using filter 

approaches. Noisy data can either be relabeled or simply removed. Filter approaches 

are relatively cheap and easy to implement, but some of them are likely to remove a 

substantial amount of data. Several studies have observed that by simply removing 

noisy data is more efficient than relabeling the data. However, research from Matić et 

al. (1992) revealed that over cleansing might reduce the performances of classifiers. 

The third approach is that there exist algorithms that directly model class noise 

during learning or the model, modified to consider class noise in making existing 

methods less sensitive to the influence of class noise. The advantage of this approach 

is in separating the classification model and the class noise model. However, the main 

problem of this approach is that the complexity of learning algorithms will be 

increased given the additional parameters of the training data model. 

Accordingly, different models should be used for training and testing in the 

presence of class noise. A complete model of the training data will consist of a class 

noise model and classification model, both used during training, but only the 

classification model is helpful for prediction. The learning process of the classification 

model is intended to be robust or tolerant to class noise in producing a good 

classification model. 

One of the important issues for some of the approaches mentioned above is to 

prove their efficiency. Most experiments assess the efficiency of the approaches in 

dealing with class noise regarding accuracy (Brodley & Friedl, 1996; Brodley & 

Friedl, 1996) since a decrease in accuracy is one of the main outcomes of class noise. 

Another issue is the model complexity. Less complex models are considered better 

since they are less susceptible to overfitting. 

Overfitting occurs when the ML model aims to achieve zero error on training 

data. SVM uses Structural Risk Minimization (SRM), an inductive principle that 

selects a model for learning from a finite training data. When SVM is being trained, 

SV will also be optimized; minimizing the SRM, SVM avoids overfitting. 
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2.4 Theoretical Concept of Support Vector Machine (SVM) 

SVM became a popular and effective algorithm in ML given its high ability in 

generalization and good performance (Nazari & Kang, 2015) in many real-life 

applications such as bioinformatics, electrical load forecasting, pattern recognition, 

image processing and field of hydrology (Parikh & Shah, 2016). SVM is also one of 

the best-known margin-based learner models (Sabzevari, 2015) based on statistical 

learning theory (Vapnik, 1995). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Approximation and estimation error (Luxburg & Schölkopf, 2011) 

 

The goal of modeling the statistical learning theory refers to two error terms, 

as shown in Figure 2.3. The two error terms include: 

(a) Approximation Error 

This error term is not influenced by any random quantities but deals with the error 

made by looking for the best function in a small function space rather than looking for 

the best function in the entire space of all functions. 

(b) Estimation Error 

This error term deals with the uncertainty introduced by the random sampling process. 

This error measures the variation of the risk of the function fn estimated on the sample. 
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 The goal of SVM is to find an optimal separating hyperplane so that data with 

different labels are located on different sides of the hyperplane, and the margin of 

separation is maximized (Ding & Xu, 2015). Consider the example in Figure 2.4. 

Many possible linear classifiers can separate the data, but there is only one that 

maximizes the margin. One particular linear classifier, the linear SVM, turns out to be 

particularly well suited with high dimensionality (Bersimis & Varlamis, 2019). 

Figure 2.4: Possible linear classifiers (Welch, 2017) 

 

 For SVM, w, b and x are the weight vector, bias and input vector of the optimal 

hyperplane, respectively. The separating function can be written as follows: 

𝑤𝑇𝑥 + 𝑏 = 0  (2.1) 

 where T denotes transpose, and according to function (2.1) there can be infinite 

number of solutions using various scaling factors. The boundary function of the 

separating margin from function (2.1) can be defined with (2.2): 

𝑤𝑇𝑥 + 𝑏 = 1,  

𝑤𝑇𝑥 + 𝑏 = −1 
(2.2) 

SVM was introduced by Vapnik (1995) for the initial idea of the separable case 

(hard margin SVM), where SVM constructs a hyperplane with the maximum margin 

that correctly classifies all the input (Figure 2.5). The maximum margin hyperplane is 

determined by the parameters w and b through solving the convex optimization 

problem as follows: 

Legend: 

Red dots Class 1 

Blue dots Class 2 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



 19 

min

𝑤, 𝑏
 
1

2
||𝑤||2   (2.3) 

 For all the data in training data, the following constraints must be satisfied: 

 

Subject to: 𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1, 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 (2.4) 

 

 where the constraints ensure that each example is correctly classified and 

minimizing ||𝑤||2 is equivalent to maximizing the margin. The formula above 

describes a quadratic optimization problem to efficiently solve such optimization 

problems for millions of examples or dimensions. 

 

 

 

 

 

 

 

 

Figure 2.5: Hard margin SVM (Duong & Truong Hoang, 2019) 

 

Maximizing the value of the separating margin is equal to minimizing the value 

of ||𝑤||2. Generally, to solve the constrained optimization problem is carried out by 

using Lagrange multiplier. The following Lagrange function has been constructed as 

follows: 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
||𝑤||

2
− ∑𝛼𝑖[

𝑛

𝑖=1

𝑦𝑖(𝑤𝑥𝑖 + 𝑏) − 1] (2.5) 

The following function can be obtained: 

𝑤 = ∑𝛼𝑖

𝑛

𝑖=1

𝑦𝑖𝑥𝑖 

𝑏 =
1

𝑆
∑(𝑦𝑖 −

𝑆

𝑖=1

𝑤𝑇𝑥) 

(2.6) 

Legend: 

 Class 1 

 Class 2 
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 where 𝛼 denotes the Lagrange multiplier. 𝑆 is determined by finding the indices 

𝑖 where 𝛼𝑖 > 0. The data point with 𝛼𝑖 > 0 is called SV. Function (2.6) will be 

substituted into the Lagrange function (2.5) to obtain the corresponding dual problem 

as follows: 

W(α) = ∑𝛼𝑖

𝑛

𝑖=1

− 
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑛

𝑖,𝑗=1

  (2.7) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

 𝑎𝑛𝑑 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 (2.8) 

 

The dual problem is a typical convex QP optimization problem. Although, in 

many real world problems, a clear separating hyperplane could not be found to 

differentiate the data given the complexity of dataset (noise data). 

 

 

 

 

 

 

 

 

 

Figure 2.6: Soft margin SVM (Duong & Truong Hoang, 2019) 

 

Thus, Cortes & Vapnik (1995) expand the idea of the separable case to the non-

separable case by introducing positive slack variables referred to as soft margin SVM 

or standard SVM (Figure 2.6). For non-separable case, SVM maps the data to a higher 

dimensional feature space using an appropriate kernel function. Soft margin SVM 

makes it extremely effective in many applications given its high capability in 

generalization. Generalization refers to the ability to correctly classify unseen data 

(Bagchi, 2014). In such circumstances, a few data that exist on the wrong side of the 

separating hyperplane is allowed. The goal of soft margin SVM is to improve the 
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generalization ability of SVM. The soft margin SVM optimization problem with slack 

variables can be formulated as follows: 

min

𝑤, 𝑏
 
1

2
||𝑤||2 +  𝐶 ∑𝜉𝑖

𝑛

𝑖=1

 (2.9) 

Subject to: 𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖  ≥ 0 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 (2.10) 

 where slack variables (𝜉𝑖) is used to control the penalty associated with class 

noise, and parameter 𝐶 is the regularization parameter that controls the tradeoff 

between the complexity and the number of allowed class noise. The penalty term 

∑ 𝜉𝑖
𝑛
𝑖=1  can be considered as a measure of the number of total misclassifications of the 

model. The objective function of (2.9) has two goals: (1) to maximize the margin and 

(2) to minimize the number of misclassifications. When trained with noise data, the 

decision hyperplane might deviate from optimal hyperplane due to the slack variables. 

The dual problem of soft margin SVM is equivalent to the dual problem of (2.7). 

 

 The constraint 𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 can be written more concisely as 

𝑦𝑖𝑓(𝑥𝑖) ≥ 1 − 𝜉𝑖 where together with 𝜉𝑖  ≥ 0 is equivalent to: 

𝜉𝑖 = [1 − 𝑦𝑖𝑓(𝑥𝑖)] (2.11) 

  

SVM can also be fit in the general regularization framework using loss function 

as follows: 

min

w, b
     

1

2
||𝑤||2 + C ∑[1 − 𝑦𝑖𝑓(𝑥𝑖)]

𝑛

𝑖=1

 (2.12) 

 

 where [1 − 𝑦𝑖𝑓(𝑥𝑖)] is known as the hinge loss function. Function (2.12) is 

equivalent to function (2.9). Finally, the decision function, decided by the Lagrange 

multiplier and SVs, is represented as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖

𝑛

𝑖=1

𝑦𝑖(𝑥𝑖, 𝑥) + 𝑏)   (2.13) 
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where 𝛼𝑖 is the Lagrange multiplier and the data points with 𝛼𝑖 > 0 is called 

SV. SV identification is referred to in Section 2.4.2. 

 

Figure 2.7: The pseudo-code of SVM 

 

Figure 2.7 shows the pseudo-code of SVM. The data representation is in dot 

products, and a kernel is a function that calculates the dot product of two training 

vectors. The kernel function enables operations to be performed in the input space 

rather than the potentially high dimensional feature space. Different kernel functions 

are listed below: 

(a) Linear kernel 

The linear kernel is the simplest kernel function. It is given by the inner product <x,y> 

plus an optional parameter C. 

(b) Polynomial kernel 

The polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited 

for problems where all the training data is normalized. 

(c) Exponential Radial Basis Function kernel 

The exponential kernel is closely related to the Gaussian kernel. It is also known as 

radial basis function (RBF) kernel. 

For a given training data, 

Input: training data 𝑥𝑖, labels 𝑦𝑖 , 

Output: sum of weight vector, α array, b and SV 

1. Initialize: 𝛼𝑖 = 0, 𝑓𝑖 = −𝑦𝑖  

2. Compute: 𝑏ℎ𝑖𝑔ℎ , 𝐼ℎ𝑖𝑔ℎ, 𝑏𝑙𝑜𝑤 , 𝐼𝑙𝑜𝑤 in (2.14 and 2.15) 

3. Update 𝛼𝐼ℎ𝑖𝑔ℎ
 and 𝛼𝐼𝑙𝑜𝑤

 

4. Repeat 

5. Update 𝑓𝑖 in 2.13 

6. Compute: 𝑏ℎ𝑖𝑔ℎ , 𝐼ℎ𝑖𝑔ℎ, 𝑏𝑙𝑜𝑤 , 𝐼𝑙𝑜𝑤 

7. Update 𝛼𝐼ℎ𝑖𝑔ℎ
 and 𝛼𝐼𝑙𝑜𝑤

 

8. Until 𝑏𝑙𝑜𝑤 ≤ 𝑏ℎ𝑖𝑔ℎ + 2𝜏 

9. Update the bias b 

10. Store the new α1 and α2 values 

11. Update the weight vector w 

Return: SVM model 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



 23 

(d) Gaussian Radial Basis Function kernel 

The Gaussian kernel is an example of a RBF kernel. The adjustable parameter sigma 

plays a significant role in the performance of the kernel and should be carefully tuned. 

The exponential will behave almost linearly if overestimated, and the higher-

dimensional projection will begin to lose its non-linear power. If underestimated, the 

function will lack regularization, and the decision boundary will become highly 

sensitive to noise in training data. 

 

The kernel function plays a critical role in SVM and its performance using 

Kernel Hilbert Spaces (Paulsen & Raghupathi, 2016). The kernel symbolises a 

legitimate inner product in the feature space. The training data is not linearly separable 

in the input space, but are linearly separable in the feature space, referred to as “kernel 

trick”. Using the kernel function, the inner product in the mapped feature space can be 

replaced with the kernel. The principle is to substitute the inner products in the feature 

space with inner products in the original data space. 

2.4.1 SVM Parameters 

In SVM, the parameter w, b and C are very important as these parameters will be 

computed to produce a hyperplane. Parameter w is the weight vector that can be 

explicitly retrieved and signifies the separating hyperplane between the two classes. 

Parameter b is a special parameter in SVM, called the bias value. Parameter b is the 

intercept of the hyperplane from the origin. SVM does not give the optimal separating 

hyperplane if it does not happen to pass through the origin unless it has the bias term. 

Bias 𝑏ℎ𝑖𝑔ℎ and 𝑏𝑙𝑜𝑤 can be defined with their associated indices: 

 

𝑏ℎ𝑖𝑔ℎ = min{𝑓𝑖: 𝑖 ∈ 𝐼0 ∪ 𝐼1 ∪ 𝐼2} 

𝐼ℎ𝑖𝑔ℎ = argmin
𝑖

𝑓𝑖 

𝑏𝑙𝑜𝑤 = max{𝑓𝑖: 𝑖 ∈ 𝐼0 ∪ 𝐼3 ∪ 𝐼4} 
𝐼𝑙𝑜𝑤 = arg𝑚𝑎𝑥

𝑖
𝑓𝑖 

(2.14) 

 

Parameter C adds a penalty for each class noise. The value of parameter C is 

fixed, and all training data are treated equally throughout the training. There is no rule 

of thumb in choosing the value of parameter C. If the value of parameter C is large, a 
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large penalty is assigned to misclassified data, the margin decreases, and the classifier 

may overfit the data resulting in low generalization ability. In contrast, if the value of 

parameter C is small, the penalty for misclassified data is low, thus the margin 

increases and many errors occur. The effect of parameter C on the decision boundary 

is shown in Figure 2.8. 

  

Figure 2.8: The effect of the parameter C on the decision boundary (Ben-Hur et al., 

2008) 

2.4.2 SV Identification 

The Lagrange multipliers in the context of SVM, usually denoted as 𝛼, is a vector of 

the weights of all the training data referred to SV. SV are the training data that obtain 

a non-zero coefficient. These data are the most difficult data to classify and provide 

the most information regarding classification (Samanta, 2018). Assumed that there are 

𝑛 training examples. Then 𝛼 is a vector of size 𝑛, and any 𝑖th element of 𝛼 is 𝛼𝑖. A 

higher value of 𝛼𝑖 means that 𝑖th training example has a higher contribution to the 

weight vector. Most 𝛼𝑖 = 0 is a direct consequence of the Karush-Kuhn-Tucker (KKT) 

dual complementarity conditions. The following index set I is defined denoting the 

training data pattern as follows: 

 

 

 

 

Legend: 

Red circle Class 1 

Blue cross Class 2 
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