ASSESSMENT AND OPTIMISATION OF HUMAN WALKING AND TRAFFIC INDUCED VIBRATION OF FLOORS IN OFFICE BUILDINGS

TUAN NORHAYATI TUAN CHIK

A thesis submitted in fulfilment of the requirement for the award of the Doctor of Philosophy of Civil Engineering

Faculty of Civil Engineering and Built Environment Universiti Tun Hussein Onn Malaysia

JUNE 2022

MY BELOVED FAMILY

(My husband Azizi, my son Hakimi and my daughter Fatini) who are always behind me to give invaluable support and care during my critical time my loving Chek and my siblings who are always support me

ACKNOWLEDGEMENT

I would like to acknowledge Universiti Tun Hussein Onn Malaysia for the opportunity to further my study in this university, also to thank to ALLAH S.W.T, for all the blessings that I have received in wisdom, health and strength that enables me to finish this research study despite all the difficulties and challenges in my personal life. I would also like to express my sincere appreciation to my supervisor, Prof. Madya Ir. Ts. Dr. Mohd Haziman bin Wan Ibrahim and co-supervisors which are Prof. Ir. Dr. Taksiah binti A. Majid and Prof. Madya Ir. Dr. Norwati binti Jamaluddin for the support and guidance given throughout the duration of this research and thesis writing.

The help and support from all my families and friends who have helped me for the amazing support and encouragement given during the ups and downs that I experienced in completing my study journey. Appreciation also goes to everyone involved directly and indirectly towards the completion of this thesis. Last but not least, I would also to express my gratitude to my beloved husband, son and daughter for giving me the support that I need.

Thank You.

ABSTRACT

Rapid development in office building construction and advanced technologies installed in sensitive structures such as high-tech equipment leads to requirements for very low levels of vibration and become more important in structural design. Therefore, this thesis presents an investigation of vibration criteria assessment and optimisation of the effect of low amplitude ground vibrations induced by human walking and traffic on the floors in office building. Two office buildings were chosen as the case study at two different places namely OB1 and OB2. Field measurement was carried out by using Laser Doppler Vibrometer (LDV100) to obtain vibration inputs. Vibration inputs were transferred into finite element analyses by using ANSYSv14 to simulate the structure dynamic response. MATLAB software also utilized to perform Vibration Criteria (VC) curve and plot. The results obtained were then checked against the generic VC curve from Gordon and Malaysia guidelines, to determine the vibration sensitivity level of each building. As a result, OB1 indicated under VC-A level due to vehicles at Singapore and OB2 at Malaysia fall under VC-E due to vehicles and increased to VC-C, VC-A and ISO level due to peoples walking. It is also showing which location on floor is suitable to accommodate the sensitive equipment, but not at the middle of the floor because of the peak response. After the modification process on structural elements such as slab thickness, beam and column sizes, and adding extra elements, the vibration response also changed either increased or decreased from the earlier VC curve and plot. OB1 shows almost similar vibration level under VC-A. While for OB2, it is also indicating similar response under VC-E. Therefore, from the iterative process in finite element modelling from the optimisation method, a VibroTable is proposed to be a new guideline or quick review to the client or structure analyst engineer to investigate the proper size of certain element of structure. The difference of vibration velocity values between Gordon and Malaysian guidelines were found, where Gordon guideline covers very low level of vibration effect, while Malaysian guideline only considers high level of vibration.

ABSTRAK

Kemajuan pesat dalam pembinaan bangunan pejabat dan teknologi termaju dalam pembinaan bangunan sensitif yang berteknologi tinggi memerlukan tahap getaran yang sangat rendah dan menjadi semakin penting dalam merekabentuk struktur. Oleh itu, tesis ini menerangkan tentang penyelidikan ke atas penilaian kriteria getaran dan pengurangan kesan getaran tanah yang beramplitud rendah yang disebabkan oleh manusia yang berjalan dan kenderaan pada ruang lantai di dalam bangunan pejabat. Dua bangunan pejabat telah dipilih sebagai kajian kes di dua lokasi yang berbeza, iaitu OB1 dan OB2. Pengukuran di lapangan telah dijalankan dengan menggunakan "Laser Doppler Vibrometer (LDV100)" untuk mendapatkan input getaran. Input getaran ini dipindahkan ke analisis unsur terhingga menggunakan ANSYSv14 untuk proses simulasi tindakbalas dinamik struktur. Perisian MATLAB juga turut digunakan untuk menghasilkan lengkung dan plot kriteria getaran. Keputusan yang telah dihasilkan kemudian disemak dengan lengkung kriteria getaran generik berdasarkan garis panduan Gordon and Malaysia, untuk menentukan tahap kesensitivitian getaran pada setiap bangunan. Hasil keputusannya ialah, OB1 menunjukkan pada tahap VC-A yang disebabkan oleh kenderaan di Singapura dan OB2 di Malaysia berada pada VC-E disebabkan oleh kenderaan dan meningkat ke tahap VC-C, VC-A dan ISO berdasarkan kepada penghuni yang berjalan. Keputusan juga menunjukkan di mana lokasi yang sesuai di lantai, untuk diletakkan peralatan sensitif, tetapi tidak di tengah lantai kerana tindak balas puncak yang berlaku. Setelah proses pengubahsuaian pada elemen struktur seperti ketebalan papak, saiz rasuk dan tiang, dan penambahan elemen tambahan, tindak balas getaran juga berubah samada meningkat atau menurun daripada lengkung VC dan plot VC sebelumnya. OBI menunjukkan tahap getaran yang hampir serupa di bawah VC-A. Manakala untuk OB2, ia juga menunjukkan tindak balas yang sama di bawah VC-E. Oleh itu, daripada proses berulang pemodelan elemen terhingga ini daripada proses pengoptimuman, satu JadualGetar dicadangkan untuk menjadi garis panduan baharu atau semakan secara pantas kepada pemilik bangunan

atau jurutera penganalisis struktur untuk menyiasat saiz yang tepat bagi sesuatu elemen struktur. Perbezaan nilai halaju getaran di antara garis panduan Gordon dan Malaysia telah ditemui, di mana garis panduan Gordon merangkumi tahap kesan getaran yang sangat rendah, manakala garis panduan Malaysia hanya mempertimbangkan tahap getaran yang tinggi.

CONTENTS

TITLE	i
DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
CONTENTS	x
LIST OF TABLES	xv
LIST OF FIGURES	xvii
LIST OF SYMBOLS ABD ABBREVIATIONS	xxiv
LIST OF APPENDICES	xxviii

CHAPTER 1 INTRODUCTION

1.1	Background of the study	1
1.2	Problem statement	2
1.3	Objectives of study	5
1.4	Scope of study	5
1.5	Significance and contribution of study	6
1.6	Thesis layout	7

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	9
2.2	Basis concepts of ground borne vibration	9
	2.2.1 Vibration propagation or path	11

2.3	Vibrat	ion theory	13
	2.3.1	Dynamic equilibrium	14
	2.3.2	Response to ground acceleration	15
	2.3.3	Frequency	17
	2.3.4	Natural frequency and mode shapes	19
	2.3.5	Damping	22
2.4	Vibrat	ion sources	24
	2.4.1	Internal sources	26
		2.4.1.1 Internal vibration induced by	
		humans walking	27
	2.4.2	External sources	34
		2.4.2.1 External vibrations induced	
		by traffic or vehicles	34
2.5	Vibrat	ion receivers	38
	2.5.1	Effect on building	38
	2.5.2	Effect on humans	41
	2.5.3	Effect in equipment	42
2.6	Vibrat	ion guidelines	44
	2.6.1	Generic Vibration Criteria (VC)	
		curve	44
	2.6.2	Malaysia Vibration Guidelines	
		(DoE)	47
	2.6.3	Other standards	52
	2.6.4	ISO 2631-2 (1989) for human	53
	2.6.5	U.S. Bureau of Mines (USBM)	54
2.7	Finite	element modelling (FEM)	55
	2.7.1	FEM in ANSYS	55
		2.7.1.1 Modal analysis	56
		2.7.1.2. Transient analysis	58
	2.7.2	Analysis in Mathematic Laboratory	
		(MATLAB)	59

	2.7.2.1 ModalV software	60
	2.7.2.2 VSATs (Vibration	
	Serviceability Analysis Tools)	61
2.8	Review on previous studies	62
2.9	Summary	63

CHAPTER 3 EXPERIMENTAL AND FINITE ELEMENT MODELLING TECHNIQUES

3.1	Introd	uction	66
3.2	Phase	1: Field testing	67
3.3	Phase	2: Finite element modelling	71
	3.3.1	Pre-processing	72
	3.3.2	Numerical analysis	72
	3.3.3	Post-processing	72
	3.3.4	Modelling process in ANSYS	72
		3.3.4.1 Parameter	73
		3.3.4.2 Geometry	74
		3.3.4.3 Meshing	75
		3.3.4.4 Degree of freedom (DOF)	76
		3.3.4.5 Modal Analysis	77
		3.3.4.5.1 Modal participation factors	78
		3.3.4.6 Transient analysis	78
		3.3.4.6.1 Full method	79
		3.3.4.6.2 Reduced method	79
		3.3.4.6.3 Mode superposition method	79
		3.3.4.7 Final COMMAND RUN	81
3.4	Phase	3: MATLAB analysis	82
	3.4.1	MoadalV software development	83
		3.4.1.1 ModalV analysis procedure	85
	3.4.2	VSATs software development	88
		3.4.2.1 VSATs analysis procedure	89

3.	5 Phase	e 4: Comparison with Vibration Criteria (VC)	
		guideline	92
3.	6 Phase	e 5: Optimisation process (VibroTable)	95
3.	7 Sum	nary	96
CHAPTER 4 V	IBRATIO	ON CRITERIA ASSESSMENT ON FLOORS	
4.	1 Introd	luction	98
4.	2 Offic	e Building 1 (OB1)	98
	4.2.1	Description of Office Building 1 (OB1)	100
	4.2.2	Material properties	101
	4.2.3	Modal analysis of OB1	103
	4.2.4	Transient analysis of OB1	106
	4.2.5	Vibration assessment in ModalV (MATLAB)	107
	4.2.6	ModalV analysis (VC Curve)	108
	4.2.7	VSATs analysis (VC Plot)	111
4.	.3 Offic	e Building 2 (OB2)	112
	4.3.1	Description of Office Building 2 (OB2)	114
	4.3.2	Field testing	114
	4.3.3	Vibration measurement due to vehicle	115
	4.3.4	Material properties	117
	4.3.5	Modal analysis for OB2	118
	4.3.6	Transient analysis for OB2	122
	4.3.7	ModalV analysis due to vibration	
		from vehicle	124
	4.3.8	VSATs analysis due to vibration	
		from vehicle	126
4.	4 Resul	lts summary	129
4.	5 Vibra	tion analysis procedure or framework	130

CHAPTER 5 OPTIMISATION STRATEGIES DUE TO VIBRATION SOURCES

	5.1	Introdu	uction	134
	5.2	Office	Building 1 (OB1)	134
		5.2.1	Column modification on the OB1	135
		5.2.2	Beam optimisation on the OB1	139
		5.2.3	Slab thickness modification on the OB1	145
		5.2.4	Additional columns on the OB1	149
		5.2.5	Summary of structural optimisation on OB1	153
	5.3	Office	Building 2 (OB2)	155
		5.3.1	Vibration measurement on peoples	
			walking	156
		5.3.2	Vibration data due to number of	
			peoples walking	157
		5.3.3	Vibration criteria curves due to	
			number of peoples walking	160
		5.3.4	Vibration criteria plots due to number	
			of peoples walking	163
		5.3.5	Vibration criteria comparison	168
		5.3.6	Summary of peoples walking on OB2	170
	5.4	Result	s summary	173
	5.5	Lessor	ns learnt from structural modification	174
	5.6	Vibro	Гаble	175
	5.7	Gordo	n guideline versus Malaysian guideline	177
CHAPTER 6	CON	ICLUS	IONS AND RECOMMENDATIONS	
	6.1	Conclu	isions	179
	6.2	Recom	nmendations for further research	180

REFERENCES

182

LIST OF TABLES

Table 2.1	Recommended values of damping	22
Table 2.2	Common values of damping ratio $\boldsymbol{\zeta}$ for machine	
	supporting floors of industrial buildings	23
Table 2.3	Damping ratios in practical structures	23
Table 2.4	Frequencies and amplitudes associated with the	
	vibration sources	26
Table 2.5	Footfalls rate	32
Table 2.6	Step frequencies for different activities	32 A A
Table 2.7	Comparison of vibration levels (mm/sec ² , RMS) induced by	
	a bus and a truck, to demonstrate the effect of different	
	suspension systems at different speeds*	36
Table 2.8	Recommended limit values for traffic	37
Table 2.9	Standard values of frequency and maximum velocity for piling,	
	sheet piling, vibratory compaction and traffic	37
Table 2.10	Guideline values of vibration velocity for evaluating	
	the effects of short-term vibration on structures	40
Table 2.11	Damage classification terminology	41
Table 2.12	Application and range of the vibration criteria curve	
	of Figure 2.26	46
Table 2.13	Recommended limits for potential structural damage in	
	buildings from steady state vibrations	48
Table 2.14	Recommended limits for damage risk in buildings	
	from short term vibration	48
Table 2.15	Recommended limits for damage risk in buildings	
	from single event impulsive excitation	49

Table 2.16	Acceptable road traffic induced vibrations in buildings	49
Table 2.17	Recommended Limits for human response and annoyance from	
	steady state continuous vibrations for Curve 1 to Curve 16	51
Table 2.18	Recommended limits for human response and annoyance from	
	short term vibrations	51
Table 2.19	Simplified USBM vibration criteria for peak particle velocity	54
Table 2.20	Summary of publications from previous researchers on	
	vibration problem	62
Table 4.1	Material properties for OB1	102
Table 4.2	Definition of colours on mode shape	103
Table 4.3	Material properties for OB2	118
Table 4.4	Natural frequency from theory and modelling	119
Table 4.5	Results summary for two office buildings	129
Table 5.1	Summary of VC levels and RMS velocity for all sizes of column	139
Table 5.2	Summary of VC levels and RMS velocity for sizes of	
	beam for both floors	143
Table 5.3	Summary of VC levels and RMS velocity for all sizes	
	of slab for both floors	149
Table 5.4	Summary of VC levels and RMS velocity for the	
	original building and additional columns	153
Table 5.5	Summary of VC levels and peak RMS velocity for	
	all proposed strategies	153
Table 5.6	Summary of VC levels and peak RMS velocity for	
	all proposed strategies	155
Table 5.7	Results summary for vibration response from passing vehicle	170
Table 5.8	Results summary for vibration response from peoples walking	172
Table 5.9	Results summary for two office buildings	173

LIST OF FIGURES

Figure 2.1	System of sources, propagation path and receiver	10
Figure 2.2	Propagation of ground borne vibration	11
Figure 2.3	Propagation of ground borne vibration into buildings	12
Figure 2.4	Vibratory motion	14
Figure 2.5	(a) Building frame, (b) Tower	15
Figure 2.6	Influence of support excitation on single degree of freedom	
	(SDOF) equilibrium. (a) Motion of system;	
	(b) Equilibrium forces	16 17
Figure 2.7	Frequency, amplitude and wavelength	17
Figure 2.8	Simple vibration profile	18
Figure 2.9	Typical vibration mode shape on a floor system	20
Figure 2.10	Common vibration sources in building	24
Figure 2.11	Common sources of noise and vibration	25
Figure 2.12	Example of dynamic load function for walking activity	27
Figure 2.13	Types of dynamic loading	28
Figure 2.14	Schematic description of human walking patterns	29
Figure 2.15	Different phases during one complete cycle of one footstep	29
Figure 2.16	Forcing patterns for walking	30
Figure 2.17	Typical forcing pattern for walking	30
Figure 2.18	(a) Single footfall forcing time history for normal walking,	
	(b) Single footfall forcing time history for fast walking	31
Figure 2.19	Phases of legs and feet during walking	31
Figure 2.20	Typical velocity response time due to walking loads	32
Figure 2.21	Traffic vibrations can be characterised by a source-path-receiver	
	scenario	34

Figure 2.22	Source of vibration caused by a truck	35
Figure 2.23	Vibration levels induced by a transit bus and a truck	36
Figure 2.24	Block diagram for ground borne vibration model	
-	from railway track	39
Figure 2.25	Curves for guideline values specified in Table 2.6 for	
-	velocities measured at the foundation	40
Figure 2.26	Generic vibration criterion (VC) curves for	
	vibration-sensitive equipment, showing also the ISO	
	guidelines for people in building	45
Figure 2.27	Foundation vibration velocity limiting values for vectorial	
	sum of vibration levels in three orthogonal axes	49
Figure 2.28	Building vibration z-axis curves for peak velocity	50
Figure 2.29	Building vibration x- and y-axis curves for peak velocity	51
Figure 2.30	Vibration Criteria for human occupants of buildings-combined	53
	direction	53
Figure 2.31	USBM Vibration Criteria	54
Figure 2.32	Classification of problems in structural dynamics	55
Figure 2.33	Dynamic behaviour of structure	59
Figure 2.34	(a) Vertical acceleration signal due to road vehicles at edge of	
	a fab footprint, with (b) Corresponding octave velocity spectra	60
Figure 2.35	Result obtained using VSATs	61
Figure 3.1	Flowchart of the study	67
Figure 3.2	(a) Laser Doppler Vibrometer (LDV), (b) LDV setting	
	for vibration measurement at site	68
Figure 3.3	An example one of the raw data captured during field testing	70
Figure 3.4	The structural vibration analysis process	71
Figure 3.5	Example of parameter command code of the office building	73
Figure 3.6	Example of the geometry command code of the building	74
Figure 3.7	Example modelling of office building from ANSYS	74
Figure 3.8	Example of the meshing command code of the building	75
Figure 3.9	Assigned of meshing for the modelling	76

Figure 3.10	Assigned degree of freedom for modelling	76
Figure 3.11	Degree of Freedom (DOF) command code for the building	77
Figure 3.12	Modal analysis command code for the building	78
Figure 3.13	Transient analysis command code for the building	81
Figure 3.14	New run command code for the building	82
Figure 3.15	The final output of ModalV analysis in MATLAB	83
Figure 3.16	Conversion of acceleration time series (a) to one third	
	octave velocity spectra (c) via discrete Fourier transform (b)	84
Figure 3.17	ModalV analysis procedures	85
Figure 3.18	Imported file needed for ModalV	85
Figure 3.19	Analysis using Log Dec/.DEC data	86
Figure 3.20	ModalV GUI display	86
Figure 3.21	Graph response against time and frequency that was plotted	87
Figure 3.22	The FFT button	87
Figure 3.23	Vibration Criteria graph produced in ModalV	87
Figure 3.24	Vibration criteria plot of floor	89
Figure 3.25	VSATs analysis procedures	89
Figure 3.26	Main menu in VSATs	90
Figure 3.27	The Path = FEM + modes menu	90
Figure 3.28	File loaded using Load UFF geometry	90
Figure 3.29	Calculate Response menu selection Ground-borne and	
	walking option	91
Figure 3.30	Compare result in View Response option inside VSATs	91
Figure 3.31	Example of vibration criteria obtained using VSATs	92
Figure 3.32	Example of RMS value obtained using VSATs	92
Figure 3.33	The Gordon guidelines	93
Figure 3.34	Malaysian guideline road traffic induced vibration	93
Figure 3.35	Malaysian guideline for human annoyance induced by vibration	94
Figure 3.36	New parameter in finite element modelling for optimisation	
	process	95
Figure 3.37	VibroTable for optimisation process on structures	96

	Figure 3.38	Five phases to develop VibroTable as a new guideline for				
	1 12010 5.50	structural analyst and client	97			
	Figure 4.1	·	99			
Figure 4.1 Figure 4.1		Location of measurement (PT1 and PT2)99Time history (top), frequency content (middle) and one third				
	I iguic 4.1	octave band velocity spectra (bottom) of the acceleration input,				
		VC-D	100			
	Figure 4.3		101			
	C	Structural drawing for the OB1 OB1 model in ANSYS	102			
	Figure 4.4					
	Figure 4.5	Summary of first tenth modes for OB1	104			
	Figure 4.6	The arrangement of vibration level based on vibration	107			
		criterion curve	107			
	Figure 4.7	A step of calculation of absolute response for third floor;				
		relative acceleration (top) is adding back to ground acceleration				
		(middle) to get absolute response (bottom)	108			
	Figure 4.8	Frequency content (top) and one third octave band				
		velocity spectra (bottom) for (a) second floor (VC-C level)	109			
	Figure 4.8	Frequency content (top) and one third octave band				
		velocity spectra (bottom) for (b) third floor (VC-B level)				
		(continue)	110			
Figu	Figure 4.9	The locations of four additional points to perform				
		one-third octave spectra VC curve	111			
	Figure 4.10	VC curve at four additional points	111			
	Figure 4.11	VC plot for the floor and VC Curve at middle of the floor,				
		(a) Second floor, (b)Third floor	112			
	Figure 4.12	Location of measurement at OB2; (a) first floor,				
		(b) second floor, (c) third floor	113			
	Figure 4.13	Layout and location of building; (a) Outside view of the OB2,				
		(b) Inside view of the OB2, (c) Layout of the OB between				
		two main roads A and B	114			
	Figure 4.14	Measurement points on floor	115			
	Figure 4.15	(a) Passing vehicle in front of the office building and				
	-					

	(b) Example of data obtained from measurement	116
Figure 4.16	Acceleration-time history input due to ground borne vibration	
	(a) first floor, (b) second floor, and (c) third floor	117
Figure 4.17	Pattern of deformation for the first tenth modes for OB2	120
Figure 4.18	Method of establishing coordinates of point of analysis on	
	each of the building floor	122
Figure 4.19	Point of analysis on each building floor	123
Figure 4.20	Frequency content (a) First floor, (b) Second floor and	
	(c) Third floor	124
Figure 4.21	One third octave band velocity spectra showing VC-E curve	
	(a) First floor, (b) Second floor and (c) Third floor	125
Figure 4.22	First floor: (a) Vibration response due to passing vehicle	
	at VC-E, (b) RMS value due to passing vehicle at 0.1µm/s	126
Figure 4.23	Second floor (a) Vibration response due to passing vehicle	126 127
	at VC-E, (b) RMS value due to passing vehicle at $0.07 \mu m/s$	127
Figure 4.24	Third floor: (a) Vibration response due to passing vehicle	
	at VC-E, (b) RMS value due to passing vehicle at $0.06 \mu m/s$	128
Figure 4.25	Comparison vibration criteria between ModalV and VSATs	
	for all floors at VC-E	129
Figure 4.26	Steps by steps of vibration analysis procedure	132
Figure 4.27	Summary of vibration analysis procedure	133
Figure 5.1	The vertical mode shapes for both floors with different	
	sizes of column	136
Figure 5.2	Comparison of VC plots for all sizes of column for	
	second and third floor	137
Figure 5.3	Comparison of RMS plots for all sizes of column for	
	second and third floor	138
Figure 5.4	Size of the main beams in the beam optimisation analysis	140
Figure 5.5	The vertical mode deformations for second and third floor	
	with different sizes of beams	141
Figure 5.6	Comparison of VC plots at second and third floor for all	

	beam sizes	142
Figure 5.7	Comparison of RMS plots for second and third floor	144
Figure 5.8	The vertical mode deformations for second and third floor	
	with different thickness of slab	146
Figure 5.9	Comparison of VC plots for second and third floor	147
Figure 5.10	Comparison of RMS plots for second and third floor	148
Figure 5.11	FE model and location of additional columns on OB1	150
Figure 5.12	The vertical mode deformations for both analyses and for	
	both floors	150
Figure 5.13	Comparison of VC plots for second and third floor	151
Figure 5.14	Comparison of RMS plots for second and third floor	152
Figure 5.15	(a) Humans walking inside the office building and	
	(b) Example of data obtained from the measurement during	
	walking	157
Figure 5.16	Acceleration-time history input due to one people walking	158
Figure 5.17	Acceleration-time history input due to three people walking	158
Figure 5.18	Acceleration-time history input due to five people walking	159
Figure 5.19	VC curve due to one people walking at VC-C	160
Figure 5.20	VC curve due to three peoples walking at VC-A	161
Figure 5.21	VC curve due to five peoples walking at ISO range	162
Figure 5.22	Structural plan of office building floor	163
Figure 5.23	VC-C range on first floor due to one people walking	164
Figure 5.24	VC-C range on all floors due to one people walking	165
Figure 5.25	VC-A range on all floors due to three people walking	166
Figure 5.26	ISO range on all floors due to five peoples walking	167
Figure 5.27	Graph of number of people versus RMS value	168
Figure 5.28	Graph of floor level versus RMS value due to passing vehicle	169
Figure 5.29	Results summary for one person walking at VC-C level	171
Figure 5.30	Results summary for three persons walking at VC-A level	171
Figure 5.31	Results summary for five persons walking at ISO level	172
Figure 5.32	VibroTable for optimisation process on OB1	176

Figure 5.33	VibroTable for optimisation process on OB2	176
Figure 5.34	(a) The Gordon guideline (Amick et al, 2005), (b) Malaysian	
	guideline (DoE, 2007)	178
Figure 5.35	Comparison between Gordon and Malaysian guidelines	178

LIST OF SYMBOLS AND ABBREVIATIONS

[M]	-	mass matrix
[C]	-	damping matrix
[K]	-	stiffness matrix
{ ü }	-	nodal acceleration vector
{ u }	-	nodal velocity vector
<i>{u}</i>	-	nodal displacement vector
$\{F(t)\}$	-	load vector
С	-	viscous damping
Ct	-	moment-resisting frames
f	-	viscous damping moment-resisting frames frequency (Hertz)
f	-	footfall pace
$\mathbf{f}_{\mathbf{n}}$	-	natural frequency
f(t)	-	external loading
$\mathbf{F}(t)$	DU	vector of externally applied loads
F(t)D		vector of damping, or energy dissipation, forces
$F(t)_I$	-	vector of inertia forces acting on node masses
F(t)S	-	vector of internal forces carried by the structure
Н	-	height of the building
Ι	-	unit vector
Ieff	-	effective impulse
k	-	stiffness of the spring
Κ	-	static stiffness matrix
L_n	-	modal earthquake excitation
m	-	mass
m _n	-	scales storey masses by mode shape squared

М	-	mass matrix
M_n	-	modal mass
Ν	-	number of degrees of freedom (DOF)
Nm	-	number of modes considered
Т	-	time (second)
u_g	-	ground displacement
μ_i	-	mode shape coordinate corresponding to the point i where the
		impulse(footfall) is applied
μ_j	-	the mode shape coordinates corresponding to the point j where the
		impulse (footfall) is applied
$\mathbf{X}(t)$	-	displacements
$\mathbf{X}(t)_g$	-	free field ground displacements
$\dot{x}(t)$	-	velocities
$\ddot{x}(t)$	-	accelerations particle velocity maximum resultant velocity
Vi	-	particle velocity
Vi	•	maximum resultant velocity
V _x	-	vibration velocity in the X direction
Vy	-	vibration velocity in the Y direction
V _z		vibration velocity in the Z direction
V _{max}	511	vertical velocity
x pER	r u	natural coordinates
Y	-	vector of modal amplitudes
Y_n	-	modal amplitudes
$\ddot{Y}_n(t)$	-	model acceleration response on the structure in mode n
ϕ	-	modal matrix
ϕ_n	-	mode shape
ω	-	number circular frequency [rad/s]
ω _n	-	radian frequency
ζ	-	damping ratio
λ	-	wavelength
γ	-	concrete density

XXV

μm	-	micrometer
μm/s	-	micrometer per second
µm/sec	-	micrometer per second
mm	-	milimeter
mm/s	-	millimeter per second
mm/sec ²	-	millimeter per second square
m	-	meter
m/s^2	-	meter per second squared
kg	-	kilogram
kg/m ³	-	kilogram per cubic metre
N/m^2	-	Newton per square metre
kHz	-	kilohertz
km/h	-	kilometer per hour
in	-	inches
2D	-	inches two dimension
3D	-	three dimension
AFM	-	Atomic Force Microscope
BBN	-	Bolt Beranek and Newman's
BRE		Building Research Establishment
BS	-11	British Standard
DOEDER	<u>r</u>	Department of Environment
DIN	-	German Standard
E	-	Modulus Young
FE	-	Finite Element
FEA	-	Finite Element Analysis
FEM	-	Finite Element Modelling
FE-SEM	-	Field Emission Scanning Electron Microscope
FFT	-	Fast Fourier Transform
GUI	-	Graphical User Interface
Н	-	Horizontal
Hz	-	Hertz

xxvi

OB1	-	Office Building 1
OB2	-	Office Building 2
IEST	-	Institute of Environmental Sciences and Technology
ISO	-	International Standards Organization
LDV	-	Laser Doppler Vibrometer
Max	-	Maximum
Min	-	Minimum
MRI	-	Magnetic Resonance Imaging
MDOF	- 7	Multi Degree of Freedom
MDOF	⁷ s -	Master Degree of Freedom
PPV	-	Peak Particle Velocity
PF	-	Participation Factor
R&D	-	Research and Design
RMS	-	Research and Design Root-Mean-Square Single Degree of Freedom Scanning Electron Microscopes
SDOF	-	Single Degree of Freedom
SEMs	-	Scanning Electron Microscopes
Т	-	Torsional
TFT-L	CD -	Thin Film Transistor Liquid Crystal Display
USBM		U.S. Bureau of Mines
UTHM	DU	Universiti Tun Hussein Onn Malaysia
V	EKE	Vertical
VC	-	Vibration Criteria
Modal	V -	Modal Version
VSAT	s -	Vibration Serviceability Analysis Tools

REFERENCES

- American Institute of Steel Construction (2009). Design of Lightweight Footbridges for Human Induced Vibrations, Chicago.
- Amick, C. H., Bayat, A., & Kemeny, Z. A. (1998). Seismic Isolation of Semiconductor Production Facilities. In Seminar on Seismic Design, Retrofit, and Performance of Nonstructural Components. San Francisco: ATC-29, pp. 297-312.
- Amick, C. H., Gendreau, M., Busch, T. & Gordon, C. G. (2005). Evolving Criteria for Research Facilities: I–Vibration, SPIE Conference 5933: Buildings for Nanoscale Research and Beyond. California: SPIE. pp. 1 – 13.
- Amick, H., Xu, T. & Gendreau, M. (2004). The Role of Buildings and Slabs-on-grade in the Suppression of Low Amplitude Ambient Around Vibrations, *Proceeding of* the 11th International Conference on Soil Dynamics and Earthquake Engineering (11th ICSDEE) and The 3rd International Conference on Earthquake Geotechnical Engineering (3rd ICEGE). 7-9 January, Berkeley, CA, pp. 877-881.
- Andersson, A & Malm, R. (2004). *Measurement Evaluation and FEM Simulation of Bridge Dynamics*. Royal Institute of Technology. Master's Thesis.
- ANSYS Inc. (2004). ANSYS Structural Analysis Guide. Canonsburg: ANSYS publishing.
- Allen, P (2002). Volume 3: Environmental Impact Assessment Social and Socio-Economic Environment. Johannesburg, South Africa: Environmental Impact Assessment for the Proposed Gaultrain Rapid Rail Link. pp. 12-27 – 12-53
- Arup, O. (2004). Hospital Floor Vibration Study. Comparison of Possible Hospital Floor Structures with Respect to NHS Vibration Criteria. London: Ove Arup and Partners Ltd.
- Athanasopoulos, G.A. & Pelekis, P.C. (2000). Ground vibrations from sheetpile driving in urban environment: measurements, analysis and effects on buildings and occupants. *Soil Dynamics and Earthquake Engineering*, 19, pp. 371-387.

- Avci, O., Bhargava, A., Al-Smadi, Y. & Isenberg, J. (2019). Vibration serviceability of a medical facility floor for sensitive equipment replacement: evaluation with sparse in situ data, Practice Periodical on Structural Design and Construction. ASCE, ISSN 1084-0680.
- Azmi, M.Y. & Junidah, R. (2009). Body Mass Index (BMI) of Adults: Findings of the Malaysian Adult Nutrition Survey (MANS). *Mal J Nutr*. 15(2): 97 – 119.
- Bachmann, H. (1995). Vibration Problems in Structures: Practical Guidelines, Basel, Boston, Berlin, Birkhäuser Verlag.
- Baldock, R. (2007). Structural Optimisation in Building Design Practice: Case Studies in Topology Optimisation of Bracing Systems. Cambridge University, United Kingdom: Ph.D. Thesis,
- Barker, T. (2009). *Collapse Analysis of Masonry Structures Under Earthquake Actions*. Technische Universität Dresden. Ph.D. Thesis.
- Bensons, J. (2014). Amplitude and frequency. from https://jasbenson.wordpress.com/
- Blaauwendraad, J. (1995). Approaches towards computational modelling of masonry structures. Two approaches for the analysis of masonry structures: micro and macro-modelling. 4(40): 315-316.
- Booth, W. (2010). *How to Determine Your Equipment Needs*. Laser Focus World. Vibration Control Product Group, Newport, CA.
- Braconi. A & Tremea. A. (2013). Steel Solutions for Seismic Retrofit and Upgrade of Existing Constructions. *Research Fund for Coal and Steel*. Luxembourg: European Commission. pp. 53-59.
- BRE 403. (1995). *Damage to Structures from Ground Borne Vibration*. BRE Digest 403. 1995. Building Research Establishment.
- Brownjohn, J.M.W. & Pavic, A. (2006). Vibration Control of Ultra-Sensitive Facilities. *ICE Proceedings: Structures and Buildings*. 159, (SB5) pp. 295-306.
- BS 5228-2 (2009). BSI British Standards, Code of Practice for Noise and Vibration Control on Construction and Open Sites. Vibration – Part 2: Vibration. London.
- BS 6472 (1992). BSI British Standards, Evaluation of Human Exposure to Vibration in Buildings (1 Hz to 80 Hz). London.

- BS EN 1998-1 (2004). Eurocode 8: Design of Structures for Earthquake Resistance of Structures-Foundations, Retaining Structures and Geotechnical Aspects. European
- BS ISO 14837-1 (2005). Mechanical Vibration: Ground-Borne Noise and Vibration Arising from Rail Systems: Part 1: General Guidance. BS ISO 14837-1:2005. British Standards Institution.
- Cantieni, R. & Biro, T. (2005). *Modal Parameter Identification and Vibration Monitoring*. Dubendorf: Seismic Systems.
- Chopra, A. K. (2001). *Dynamic of Structures: Theory and Applications to Earthquake Engineering*. Second edition. Prentice Hall.
- Clough, R. W. & Penzien, J. (2003). *Dynamics of Structures*. Third edition. Computers and Structures, Inc. USA.
- Crowley, H. & Pinho, R. (2004). Period height relationship of existing European reinforced concrete buildings. *Journal of Earthquake Engineering*.123(11). pp. 1454-1461.
- Davenny, B. (2010). *Footfall induced vibrations healthcare facilities*. Retrieved on February13,2014,<u>http://www.healthcaredesignmagazine.com/blogs/acentech/footfall-induced vibrations-healthcare-facilities</u>
- Debney, P & Willford, M. (2009). Footfall vibration and finite element analysis. *Journal* of Sound and Vibration. 2009. 11(2009). pp. 11-14.
- DIN4150-3 (1999). Structural Vibration, Part 3: Effects of Vibration of Structures. Germany Standard.
- Department of Environment Malaysia (DoE). (2007). *The Planning Guidelines for Vibration Limits and Control in the Environment: Book 3 of 3*. Kuala Lumpur: Department of Environment Malaysia.
- Ejenstam, J & Floden, O. (2011). Vibration Analyses of a Wooden Floor-Wall Structure-Experimental and Finite Element Studies. Lund University. Master's Thesis
- Elsevier Science Ltd. (2000). The Influence of Traffic Induced Vibrations on Seismic Resistance of Historic Stone Masonry Buildings. *12th European Conference on Earthquake Engineering*. Paper Reference 631.
- Encyclopedia Britannica. (2014). *Seismic Wave*. Encyclopædia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica.

- Eriksson, P. (1994). Vibration of Low-Frequency Floors: Dynamic Forces and Response Prediction. Department of Structural Engineering, Chalmers University of Technology. ISBN 91-7032-953-2
- Ethiopian Standard (2007). Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations. ES ISO 10137:2007.
- Eurocode. (2004). Part 1. Design of Structures for Earthquake Resistance of Structures-Foundations, Retaining Structures and Geotechnical Aspects. London, EC 1.
- Eurocode 2. (1992). Design of Concrete Structures. EN1992-1-1. London, EC 2.
- Evans, J. B. (2003). Structural floor design for a magnetic resonance imaging (MRI) system, *In Tenth International Congress on Sound and Vibration*, Stockholm, Sweden: pp. 493-500.
- Feldman, M. Heinemeyer, C. Butz, C. & Caetano, E. (2009). Design of Floor Structures for Human induced Vibrations. Office for Official Publications of the European Community. Luxembourg: Eurocode.
- Felippa, C. A. (2004). *Introduction to Finite Element Methods*. Colorado: University of Colorado.
- Frequency, amplitude and wavelength (2014). Retrieved January 30, from <u>http://www.answers.com/topic/frequency</u>.
- Goel, R. K. & Chopra, A.K. (1997). Period formulas for moment resisting frame buildings. *Journal of Structural Engineering*. ASCE 123(11). pp. 1454-1461.
- Gordon, C. G. (1987). The Design of Low Vibration Buildings for Microelectronics and other Occupancies, In First International Conference on Vibration Control in Optics and Metrology, SPIE Proceeding, London, February 1987, Vol. 732, pp. 2-10.
- Gordon, C. G. (1991). Generic Criteria for Vibration-Sensitive Equipment, International Society for Optical Engineering (SPIE), *Proceedings of the SPIE*, Volume 1619, pp.71-85.
- Gordon, C. G. (1998). Dynamics of Advanced Technology Facilities a Historical Perspective, *In Proceedings of 12th ASCE Engineering Mechanics Conference*, La Jolla, California.
- Gordon, C. G. (1999). Generic Vibration Criteria for Vibration-Sensitive Equipment, Colin Gordon & Associates, 411 Borel Avenue Suite 425, San Mateo, CA 94402

- Griot, M. C. (2009). *Fundamental of Vibration Isolation*. Albuquerque: Melles-Griot publication.
- Gutierez, F. S. (2008). Vibration Serviceability of Floors for Sensitive Occupancies. University of Sheffield. Master's Thesis.
- Hanagan, L. M. & Murray, T. M. (1997). Active control approach for reducing floor vibrations. *Journal of Structural Engineering*, 1997, Vol. 123, No. 11, pp. 1497-1505
- Hajek, J. (2007). Analysis of Micro Vibration in Buildings. Proceedings of the 2007 Earthquake Engineering Symposium for Young Researchers. Seattle: MCEER publishing. pp. 61-72.
- Hajek, J.J., Blaney, C.T. & Hein, D.K. (2006). Mitigation of Highway Traffic induced Vibration, Annual Conference of the Transportation Association of Canada, Charlottetown, Prince Edward Island.
- Hamdan, S., Hoque, M. N. & Sutan, N. M. (2011). Dynamic property analysis and development of composite concrete floor (CCF) and vibration serviceability: A review. *International Journal of the Physical Science*. 6(34). pp. 7669-7693.
- Hanson, C. E., Towers, D. A. & Meister, L. D. (2006). *Transit Noise and Vibration Impact Assessment*. Report Federal Transit Administration.
- Hao H., Ang, T.C. & Shen, J. (2001). Building vibration to traffic induced ground motion. *Building and Environment*. 36(3): 321-336.
- Harris Miller Miller, Hanson Inc. (2006). *Transit Noise and Vibration Impact Assessment*. Manual.
- Head, J. M. & Jardine, F. M. (1992). *Ground-borne Vibrations Arising from Piling*. CIRIA, TN142M- Technical Note 142.
- Henwood, J.T & Haramy, K.Y. (2002). Vibrations Induced by Construction Traffic: A Historic Case Study. *Geophysics 2002 Conference*. California: California Department of Transportation. pp. 1-9.
- Heyden, S., Dahlblom, O., Olsson, A. & Sandberg, G. (2005). Introduction to Structural Mechanics (Introduktion till strukturmekaniken) Lund University. ISBN: 9789144051253
- Hunaidi, M. O. (1995). Control of traffic-induced vibration in buildings using vehicles suspension systems. Soil dynamics and Earthquake Engineering. Great Britain: Elsevier Science Limited. pp. 245-254.

186

- Hunaidi, O. (2000). *Traffic Vibration in Buildings*. Construction Technology Update No. 39: Ottawa: Institute for Research in Construction.
- Hunaidi, O. (2000). Traffic vibrations in building. *Canadian Journal of Civil Engineering*. (39). pp. 1-6.
- Hunt, H.E.M. (1988). *Measurement and Modelling of Traffic-Induced Ground Vibration*. Cambridge University, United Kingdom. PhD Thesis.
- Ian Smith. (1995). Vibration of Timber Floors: Serviceability Aspects. Timber Engineering, First Edition, Centrum Hout, The Netherlands, pp. 243-266
- Ilias, M. E. (2013). Kajian Prestasi Bangunan Penyelidikan Shamsuddin-Mikroelektronik dan Nanoteknologi (Mint-SRC) Terhadap Input Getaran Bawah Tanah. Universiti Tun Hussein Onn Malaysia. Bachelor Degree Thesis.
- ISO 2631-2:1989. (1989). Evaluation of Human Exposure to Whole-Body Vibration -Part 2: Continuous and Shock-Induced Vibrations in Buildings (1 to 80 Hz). Geneva, ISO 2631.
- ISO 8569 (1996). Mechanical Vibration and Shock Measurement and Evaluation of Shock and Vibration Effects on Sensitive Equipment in Buildings. International Standard.
- ISO/TS 10811-1 (2000). Mechanical vibration and shock Vibration and shock in buildings with sensitive equipment Part 1: Measurement and evaluation
- Johansson, P. (2009). Vibration of Hollow Core Concrete Elements Induced by Walking. Avdelingen for Konstruktionsteknik. Lund Institute of Technology. Master 's Thesis.
- Jones & Stokes. (2004). Transportation and Construction-Induced Vibration Guidance Manual. June. (J&S 02-039.) Sacramento, CA. Prepared for California Department of Transportation, Noise, Vibration, and Hazardous Waste Management Office, Sacramento, CA
- Kazmierski, A. (2006), Vibration Isolation for Optical Science and Engineering, Tutorial. University of Arizona College of Optical Sciences, US.
- Kenneth Medearis. (1995). Rational vibration and structural dynamics evaluations for advanced technology facilities. *Journal of the Institute of Environmental Sciences and Technology*. October 1995.
- Kim, J. J. & Amick, C. H. (1997). Active vibration control in fabs. *In Semiconductor International*.

- Klein, G. & Rainer, J. H. (1995). *Vibration Problems in Structures: Practical Guidelines*. Birkhauser: Deutsche Bibliothek Catalog. pp. 66-71.
- Lancaster, F. D. (2011). No such thing as good vibration in science. *Facilities Manager*. July August 2011, pp. 28-35.
- Lande, G. & Ammann, W. (1995). Vibrations Induced by Traffic and Construction Activity, Vibration Problems in Structures: Practical Guidelines. Birkhauser.
- Lee, S. L., Koh, C. G. & Chua, D. K. H. (2005). Conceptual Design of Micro-Vibration Sensitive Buildings. Proceedings of the IES/IEM/PII Tripartite Conference on Major Buildings and Infrastructural Construction Projects, pp.1-30.
- Lievens, M. & Brunskog, J. (2007). Model of a Person Walking as a Structure Borne Sound Source. *International Congress on Acoustics*. Madrid, 2-7 September 2007.
- Liu, Y. (2013). Choose the best element size to yield accurate FEA results while reduce FE model's complexity. *British Journal of Engineering and Technology*. 1(7). pp. 13-28.
- Ljunggren. F. (2006). *Floor Vibration-Dynamic Properties and Subjective Perception*. Lulea university of technology. Ph.D. Thesis.
- Lombaert, G. & Degrande, G. (2001). *Study of Determining Factors for Traffic Induced Vibrations in Buildings*. DWTC Research Programme Sustainable Mobility Research Project MD/01/040.Kasteelpark: Katholieke Universitieit Leuven.
- Lorant, G. F. (2012). *Seismic Design Principles*. Retrieved on February 5, 2014, from <u>http://www.wbdg.org/resources/seismic_design.php</u>.
- Medearis, K. (1978). Rational Damage Criteria for Low Rise Structures Subjected to Blasting Vibrations, *Proceeding Institution Civil Engineers*, Part 2, 65, Sept., pp. 611-621.
- Meixner, K. (2008). Analysis of Vibrations in Precast Concrete Slabs, Theory and Practice. Lund Institute of Technology. Thesis.
- Menziane, Y. A., Lazalli, F. & Farsi, M. N. (2014). Ambient Vibration Experimental Testing to Evaluate Seismic Damage. Second European Conference on Earthquake Engineering and Seismology. Kanpur: Indian Institute of Technology. pp. 97-106.
- Milošević, J., Bento, R. & Cattari, S. (2014). Seismic Assessment of a Placa Building in Lisbon. *Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology*. Istanbul: Turkey. pp. 3.

- Mobley, R.K. (1999). *Vibration Fundamentals*. 1st Edition. Heinemann: Butterworth-Heinemann.
- Mohamed. M. H. (2014). Vibration Response on Floor Laboratory due to Ground Borne Vibrations. Universiti Tun Hussein Onn Malaysia. Bachelor Degree Project,
- Murray, T. M., Allen, D. E. & Ungar, E.E. (2003). *Floor Vibration due to Human Activity*. Steel Design Guide Series, American Institute of Steel Construction.
- Murray, T. M., Charney, F. A., Easterling, W. S., Plaut, R. H., & Wicks, A. L. (2006), Dynamic Testing of In-Situ Composite Floors and Evaluation of Vibration Serviceability using the Finite Element Method. Virginia Polytechnic Institute and State University. Ph.D. Thesis.
- Papalambros, P.Y. & Wilde, D.J. (2000). *Principles of Optimal Design*, Cambridge University Press.
- Pavic, A., Brownjohn, J. M. W. & Zivanovic, S. (2010). VSATs Software for Assessing and Visualling Floor Vibration Serviceability Based on First Principles. *Structures Congress 2010.* American Society of Civil Engineers, Orlando, Florida. pp. 902– 913
- Pavic, A. & Reynolds, P. (2002). Vibration Serviceability of Long-Span Concrete Building Floors. Part 1: Review of Background Information. The Shock and Vibration Digest, Vol. 34. Massachusetts: EBSCO Publishing.
- Pavic, A. & Reynolds, P. (2006). Vibration performance of a large cantilever grandstand during an international football match. *Journal of Performance of Constructed Facilities*. 2006. 20(2006). pp. 202-212.
- Pridham, B., Meszaros, S. & Chin-Quee, D. (2007). *MRI Noise and Vibration Effects on Building Design*, TECHNOTES, Issue No.33.
- Rainer, J.H. (1984). Vibrations in Buildings. Canadian Building Digests, CBD-232.
- Rockhill, D. J., Bolton, M. D. & White, D. J. (2003). *Ground-Borne Vibrations due to Press-In Piling Operations*, Report, Cambridge University, United Kingdom.
- Saar, O. S. (2006). *Dynamics in the Practice of Structural Design*. Southampton, United Kingdom: WIT Press.
- Schwartz, S. (2008). *Linking Noise and Vibration to Sick Building Syndrome in Office Buildings*. Em-Pittsburgh. Florida: Air and Waste Management Association.

- Silva, J. G. S., Vellasco, P. C. G., Andrade, S. A. L., Lima, L. R. O. & Figueiredo, F. P. (2007). Vibration analysis of footbridges due to vertical human loads. *Computers & Structures*, pp. 1693-1703.
- Singh, P.K. & Roy, M.P. (2008). Damage to surface structures due to underground coal mine blasting: apprehension or real cause?, *Environmental Geology*. 53. pp. 1201-1211.
- Siskind, D.E., Stachura, V.J., Stagg, M.S. & Kopp, J.W. (1980). *Structure Response* and Damage Produced by Air Blast from Surface Mining, Technical Report, Bureau of Mines, Twin Cities, MN (USA). Twin Cities Research Centre.
- Smith, J.W. (1988). *Vibration of Structures: Application in Civil Engineering Design*, London, UK, Chapman and Hall.
- Steel Design Guide Series 11. (2003). *Floor Vibrations due to Human Activities*, American Institute of Steel Construction, Canadian Institute of Steel Construction.
- Svinkin, M.R. (1997). Drawbacks of Blast Vibration Regulations, VibraConsult, 13821 Cedar Road, No. 205, Cleveland, OHIO 44118.
- Svinkin, M.R. (2004). Ground Vibrations: Minimizing Construction Vibration Effects. 9(2): 108.
- Talbot, J.P. & Hunt, H.E.M. (2003). A computationally efficient piled-foundation model for studying the effects of ground-borne vibration on buildings. *Journal Mechanical Engineering Science*. pp. 975-989.
- Talja, A. & Toratti, T. (2006). Classification of human induced floor vibrations. *Journal of Building Acoustics*. Vol. 13. No. 3. pp. 211-221.
- The Railway Association of Canada. (2013). *Guidelines for New Development in Proximity to Railway Operations*. J.E. Coulter Associates Limited. Ontario, Canada. pp. 86-87.
- Tuan Chik, T.N., Brownjohn, J.M.W. & Petkovski, M. (2010). Finite element analysis of ground borne vibrations in sensitive buildings using inputs from free field measurements. *Proc. of the 24th Int. Conf. on Noise and Vibration Engineering,* Leuven: University of Leuven. pp. 795-772.
- Ungar, E. E. (2004). Predicting footfall-induced vibrations of floors. *Journal of Sound and Vibration*.2004. 11. pp 16-22.
- Ungar, E. & White, R. (1978). Footfall-induced vibrations of floors supporting sensitive equipment. *Journal of the Acoustical Society of America*. 1. 16-22.

- Ungar, E.E., Sturz, D.H., & Amick, C.H. (1990). Vibration control design of high technology facilities. *Sound and Vibration*. pp. 20-27.
- Ungar, E., Zapfe, J. & Kemp, J. (2004). Predicting footfall-induced vibrations of floors. *Journal of Sound and Vibration*. Acoustical Publications Inc. 2004. 11. pp. 17-22.
- Wang, C.Y & Wang, C.M. (2014). *Structural Vibration*. 1st Edition. Boca Raton: CRC Press.
- Wang, E. & Nelson, T. (2001). *Structural Dynamic Capabilities of ANSYS*. Munich: ANSYS publishing.
- Wang, X. (2010). Vehicle Noise and Vibration Refinement. Cambridge, UK. Wood Head Publishing. pp. 120-128.
- Watts, G. R. (1987). *Traffic-Induced Ground-Borne Vibrations in Dwellings*. Berkshire: Department of Transport.
- White, D., Finlay, T., Bolton, M., & Bearss, G. (2002). Press-In Piling: Ground Vibration and Noise During Pile Installation, *In ASCE Special Publication 116*, Orlando, USA. pp. 363-371.
- Williams, S. N., Rimrott, B. & Cho, J. (2010). The Vibration of a High-Rise Building's Columns due to Rhythmic Activity. *Internoise 2010*. Lisbon: Spacustica. pp. 104-111.