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ABSTRACT 

 

Photovoltaic (PV) systems suffer from significant thermal energy loss, inextricably 

linked to the photo-electric conversion process due to the high PV operating 

temperature above the 25 oC standard test conditions (STC). The direct contact of TEG 

with PV in the PV-TEG hybrid system also increases the temperature, this always 

decreases about 30 % in the system output power and about 0.1-0.5% efficiency drop 

for every 1 oC rise above STC. A Hybrid Photovoltaic-Thermoelectric Generators (PV-

TEG) are system that can generate both electricity and heat. The TEG in the hybrid 

system provides a solution to significant temperature increases by cooling the PV cells 

and therefore increasing electrical power output. An integrated hybrid system where 

the PV modules are placed on the top of a shingle while the TEGs were attached to the 

attic side of the shingle for improved performance is proposed and investigated in this 

study. The objectives of the study are therefore to simulate the system using ANSYS 

and MATLAB Software, develop a hybrid PV-TEG system called sandwich shingle 

configuration for a housing roof experimentally so as to analyse the effect of the 

operating temperature, output voltage, and output current on TEG alone and PV alone 

on the system performance and to investigate the hybrid PV-TEG system power and 

efficiency using a single layer positioned between the PV and TEG through real-time 

experiment. The system consists of two-unit 100W PV panels in series, 192 TEGs (40 

mm x 40 mm) placed in both series and parallel to extract excess heat-accumulating 

on the PV cells and 96 heatsinks at the TEG cold junction. The results indicate that the 

hybrid system can perform better than the PV stand-alone system in sunny, rainy, and 

cloudy weather conditions with an average maximum power of 185 W, 173 W, and 

67.3 W. The system also achieved efficiencies of 23.72 %, 22.66 % and 21.78 %, 

respectively. In the field of PV surface absorptivity and photon management of hybrid 

PV-TEG, more research is recommended using heat pipes, nanofluid and incorporated 

technology to develop the TEG directly onto the backside of the PV for efficiency 

improvement. In conclusion, the hybrid PV-TEG system using a shingle was 

developed for enhanced electrical energy generation and is beneficial to both scientific 

and rural communities as the quest for clean and sustainable energy increased. 
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ABSTRAK 

Sistem fotovoltaik (FV) mengalami kehilangan tenaga haba yang ketara, berkait rapat 

dengan proses penukaran foto-elektrik disebabkan oleh suhu operasi PV yang tinggi 

melebihi syarat ujian standard (STC) 25 oC. Sentuhan langsung TEG dengan PV dalam 

sistem hibrid PV-TEG juga meningkatkan suhu, ini sentiasa mengurangkan kira-kira 

30 % dalam kuasa keluaran sistem dan kira-kira 0.1-0.5% penurunan kecekapan untuk 

setiap kenaikan 1 oC melebihi STC. Penjana Fotovoltaik-Termoelektrik Hibrid (PV-

TEG) ialah sistem yang boleh menjana kedua-dua elektrik dan haba. TEG dalam 

sistem hibrid menyediakan penyelesaian kepada peningkatan suhu yang ketara dengan 

menyejukkan sel PV dan oleh itu meningkatkan output kuasa elektrik. Sistem hibrid 

bersepadu di mana modul PV diletakkan di bahagian atas sirap manakala TEG 

dipasang di bahagian loteng sirap untuk prestasi yang lebih baik dicadangkan dan 

disiasat dalam kajian ini.Oleh itu, objektif kajian adalah untuk mensimulasikan sistem 

menggunakan Perisian ANSYS dan MATLAB, membangunkan sistem PV-TEG 

hibrid yang dipanggil konfigurasi sirap sandwic untuk bumbung perumahan secara 

eksperimen untuk menganalisis kesan suhu operasi, voltan keluaran dan arus keluaran. 

pada TEG sahaja dan PV sahaja pada prestasi sistem dan untuk menyiasat kuasa dan 

kecekapan sistem PV-TEG hibrid menggunakan satu lapisan yang diletakkan di antara 

PV dan TEG melalui percubaan masa nyata. Sistem ini terdiri daripada dua unit panel 

PV 100W secara bersiri, 192 TEG (40 mm x 40 mm) diletakkan dalam kedua-dua siri 

dan selari untuk mengekstrak lebihan terkumpul haba pada sel PV dan 96 unit haba di 

persimpangan sejuk TEG. Keputusan menunjukkan bahawa sistem hibrid boleh 

berprestasi lebih baik daripada sistem bersendirian PV dalam keadaan cuaca cerah, 

hujan dan mendung dengan purata kuasa maksimum 185 W, 173 W, dan 67.3 W. 

Sistem ini juga mencapai kecekapan 23.72 %, 22.66 % dan 21.78 %, masing-masing. 

Dalam bidang penyerapan permukaan PV dan pengurusan foton PV-TEG hibrid, lebih 

banyak penyelidikan disyorkan menggunakan paip haba, cecair nano dan teknologi 

yang digabungkan untuk membangunkan TEG terus ke bahagian belakang PV untuk 

peningkatan kecekapan. Kesimpulannya, sistem PV-TEG hibrid menggunakan sirap 

telah dibangunkan untuk penjanaan tenaga elektrik yang dipertingkatkan dan 

bermanfaat kepada masyarakat saintifik dan luar bandar kerana usaha untuk tenaga 

bersih dan mampan meningkat. 
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  CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the Study 

Renewable energy sources, such as hydroelectric energy, wind energy, solar 

energy, bioenergy, and geothermal energy, are energy sources replenished 

continuously throughout human existence [1]. These energies can be harnessed 

directly or indirectly from the sun for human use, they are called renewable energy 

sources because they are naturally replenished. Day after day, the sun shines, plants 

grow, wind blows, and rivers flow. While geothermal energy is heat within the earth. 

The word geothermal comes from the Greek words geo (earth) and therme (heat). 

Geothermal energy is a renewable energy source because heat is continuously 

produced inside the earth. People use geothermal heat for bathing, to heat buildings, 

and to generate electricity. In 2020, renewable energy was around 181 gigatonnes 

(GW), accounting for more than 29 % of global electricity production [2]. Renewable 

energy is a form of energy that is both clean and abundant. It emits a minimal quantity 

of carbon dioxide and greenhouse gases. It is also widely recognized for its potential 

depletion as a sustainable energy source [3]. Other energy sources, such as fossil fuels, 

are finite resources depleted in the future. Renewable energy can benefit developing 

nations by reducing their reliance on fossil fuels [4]. 

 

Solar energy is radiant Sunlight and heat used as photovoltaic or solar thermal 

energy. It has distinctive properties which are clean, limitless, environmentally 

friendly and inexhaustible. Such features has attracted the energy sector to renewable 

energy sources. It is the most effective option for meeting energy requirements 
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responsibly and ensuring energy security while minimizing greenhouse gases 

substantially [5]. 

Various power generation systems can be combined to improve the conversion 

efficiency of solar irradiation into energy. Hence, creating more efficient systems and 

combining energy harvesting mechanisms to extract solar energy is one of the most 

exciting research areas as a hybrid PV-TEG system becomes necessary [6].  

 

Thermoelectric generators (TEGs) are bi-directional energy converters that can 

be used as generators or coolers [7]. The TEG can convert electrical energy to thermal 

energy and vice versa depending on the operating configuration. Solid-state 

operations, gas-free emissions, maintenance-free operation, enormous scalability, zero 

pollution, and long-term operational reliability are some of the benefits of 

thermoelectric energy converters [8]. 

 

Photovoltaic (PV) and thermoelectric generators (TEG) are semiconductor 

devices that can be integrated to convert solar energy sources into electrical power, 

improving power output and system efficiency. A PV-TE hybrid system is comprised 

of a PV panel and a TEG that can both be used to generate electricity. Using the 

Seebeck effect, a temperature difference between the hot and cold sides of 

thermoelectric devices would result in increased electrical power output from the TEG 

[9]. 

1.2 Problem Statement 

Hybrid Photovoltaic Thermal Electric Generator (PV-TEG) system's energy 

output is improved energy with electricity and heat. One of the critical concerns 

available to the photovoltaic (PV) technologies is the efficiency drop caused by 

relatively high operating temperatures of the PV panel when exposed to high solar 

irradiation during the day [10][11]. The major weakness of PV panels is the efficiency 

drop of 0.1-0.5% whenever the PV operating temperatures is above standards test 

condition (STC) values of 25°C and 1000 W/m2 valves for every 1°C rise [12]. 
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 Therefore, the essential factors for attaining good performance and efficiency 

enhancement of the PV system depend primarily on effective PV cell cooling, 

converting the excess heat into additional power output and thermal energy [13][14]. 

Consequently, the following PV-TEG system problems have been identified: 

 

1. Due to the direct contact of TEG with PV in the PV-TEG hybrid system, the 

thermal contact resistance between the photovoltaic-thermoelectric interfaces 

are the most critical to reduce PV lifespan with the operating temperature 

increased as the irradiance increases. 

 

2. The high PV operating temperature decreases the output power and efficiency 

of the hybrid system up to 30 % power reduction and about 0.1-0.5% efficiency 

drop for every 1 ◦C rise above 25°C.  

3. The positioning of the TEG with the PV module in the hybrid system using the 

shingle is a significant problem, which is critical to heat reduction and thermal 

energy generation.  

1.3 Aim and Objectives of the Study 

To develop, characterize, and analyse the hybrid PV-TEG system, converting 

the thermal energy created in the photovoltaic cell into useful electrical power and 

evaluating the combined system's energy efficiency using the roofing shingles. 

Based on the identified research problem, the research focused on the following 

research objectives. 

1. To simulate a unit TEG and the hybrid PV-TEG system using ANSYS and 

MATLAB Software and investigate the power and efficiency of the PV alone 

and TEG alone system. 

 

2. To develop a hybrid PV-TEG system called sandwich shingle configuration 

using a for a housing roof experimentally so as to analyse the effect of the 

operating temperature, output voltage, and output current on TEG alone and 

PV alone systems as the solar irradiance is increased on a system performance. 
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This is to address the power reduction efficiency drop of 0.1-0.5% due to every 

1°C rise above 25°C. 

 

3. To investigate and recommend the hybrid PV-TEG system power and 

efficiency using a single layer positioned between the PV and TEG with an 

improved efficiency for enhanced energy generation. 

1.4 Scope of the project 

This study's scope is limited to the overall performance and efficiency 

evaluation of the hybrid PV-TEG system through experiments under real-life 

atmospheric conditions and simulation.  

 

The materials used for the experiment are two (2) units of PV panels, each 100 

W, One hundred and ninety-two (192) units of TEGs, ninety-six (96) units of 

heatsinks, thermal pastes. Arduino based and National Instrument (NI-DAQ 9014) was 

used for data acquisition, while LabView was used for data monitoring and 

visualization. RA-RS-N01-JT pyranometer was used for solar radiation measurement, 

while a K-type thermocouple was used for temperature monitoring.   

 

The hybrid PV-TEG system was developed and installed for real-time 

monitoring at the Block B10 Laboratory, Universiti Tun Hussein Onn Malaysia 

(UTHM) in Parit Raja, Batu Pahat, Johor, Malaysia (1.8586° N, 103.0856° E) from 

1st November 2020 to 3oth June 2021. The research will be done with the following; 

 

i. Two (2) units of 12V, 100W monocrystalline PV cell and a metal deck shingle 

will be used for the research [13].  

ii. One hundred and nine-two (192) units of 40 by 40 Bismuth Telluride TEG with 

cold junction temperatures (TC) of 25 °C and hot junction temperatures (TH)of  

65°C [14].  

iii. The types of software for this research :  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



5 

 

a.  LabView Software, this software will be used during the laboratory 

experiment to serve as the data recording interface to access the 

experimental data from the National Instrument through the DAQ for 

data visualization before the analysis 

b. MATLAB Software will be used to perform the data analysis and 

system simulation. 

1.5 Outline of the Thesis 

This thesis contains five chapters. The contents of each chapter are presented 

in the following paragraphs. 

 

Chapter 1 discusses the motivation behind the research. The chapter contains 

background to the study, the problem that warrants the study, the aim of the research, 

the research objective, and finally, the scope of the research. 

 

Chapter 2 reviewed the relevant literature for the achievement of the research 

aim. The chapter reviewed the general renewable energy sources, photovoltaic 

systems, thermoelectric generators, and hybrid PV-TEG. Previous studies and research 

done on the PV-TEG have also been reviewed. 

  

Chapter 3 presented the methodology used in the research. This includes 

outdoor experiments and modelling, data collection and instrumentation. Lastly, the 

analysis and Simulation were done with MATLAB software. 

 

Chapter 4 presented the result of the study based on experimental and 

simulations in terms of the PV, TEG and the hybrid system power and efficiency. 

 

Chapter 5 presents the conclusion, recommendation and direction for further 

research is also provided in the chapter.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

This section's primary purpose focuses on the reviews of renewable energy 

sources, photovoltaic systems, thermoelectric generators, and hybrid PV-TEG. In 

addition, some previous studies and research done on the PV-EG will be reviewed. 

The various forms of renewable energy studies such as solar, TEG, and hybrid PV-

TEG systems have been conducted to determine the potential and efficient power 

output performance. The increasing global demand and the adverse effect of non-

renewable fossil fuels on the environment motivated considerable research. Attention 

in a wide range of engineering applications of renewable sources is on the increase. 

This chapter presents a comprehensive of the previous work done on PV-TEG and its 

associated challenges.   

2.2 Contribution of Renewable Energy in 2020 

Renewable energy use increased by 3% in 2020, while demand for all other 

fuels decreased [15]. The percentage increase of renewable energy sources in 2020 is 

depicted in Figure 2.1. 
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Figure 2.1: The contribution of renewable energy sources in 2020 

 

The global energy consumption trend, as shown in Figure 2.2, predicts that the 

contribution of fossil fuels (petroleum, natural gas, coal) in the energy mix in 2040 

will be 78% despite the faster-growing trend of non-fossil fuels (renewable and nuclear 

energy) [16]. This clearly indicates that more work is urgently required in the 

renewable energy sector for clean and sustainable energy sources.  

 

 

Figure 2.2: World energy consumption by source up to 2040. 

 

The world's energy resources include traditional fossil fuels such as petroleum 

,coal, natural gas,  coal, oil, gas, modern solar energy and nuclear energy [17]. Fossil 

fuels meet the majority of energy needs [18]. These are relatively inexpensive and 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



8 

 

simple to explore and exploit, and they will continue to be the dominant form of 

energy, accounting for roughly 60% of additional energy in 2035 [19]. However, the 

major issue with fossil fuels is that they contribute to climate change by emitting tons 

of carbon dioxide (CO2) and other pollutants during combustion. According to Figure 

2.3, global energy-related CO2 emissions are expected to hit 43.2 billion metric tons 

by 2040 [20]. 

 

Furthermore, the fossil fuel-based power generation system is non-renewable; 

the consumed reserves are not naturally replenished. The amount of available energy 

resources on this globe is minimal. The primary energy sources, such as coal, mineral 

oil, and natural gas, rapidly disappear due to ever-increasing usage [21]. 

 

The international energy outlook 2017 (IEO) Reference case forecasts 

increased global consumption of commercially available energy across all fuel sources 

through 2040, except for coal, where demand is flat. Renewable energy sources are the 

world's fastest-growing energy source, with demand increasing by an average of 2.3 

% per year between 2015 and 2040. Nuclear power is the world's second-fastest-

growing energy source, with consumption rising by 1.5 % annually during that period. 

 

Although non-fossil fuel usage is projected to grow quicker than fossil fuel 

consumption, by 2040, fossil fuels would account for 77 % of total energy 

consumption. Natural gas is anticipated to witness the fastest fossil fuel in the coming 

years. Natural gas consumption worldwide is increasing at a rate of 1.4 % per year. 

Natural gas has a strong competitive position due to abundant natural gas reserves and 

growing production, particularly tight gas, shale gas, and coal-bed methane. The 

world's primary source of energy usage is still primarily petroleum-based liquid fuels. 

However, the share of liquid energy usage in global energy demand will reduce from 

33% in 2015 to 31% in 2040. Oil costs have been continuously rising, prompting many 

energy consumers to switch to more energy-efficient devices and, where possible, to 

abandon liquid fuels. Global coal use remains steady in the IEO2021 Reference case, 

despite considerable growth in the 2000s [22]. Natural gas, renewable energy, and 

nuclear power (in China) are gradually replacing coal in industrial operations, and 

demand for coal is dwindling. China is the world's largest coal consumer; however, 

from 2015 to 2040, China's coal consumption is predicted to reduce by 0.6 % each 
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year, while coal consumption in the organization for economic cooperation and 

development (OECD) countries as a whole is projected to fall by 0.6 % per year. 

In addition, fossil fuels are being depleted in an unsustainable manner. 

Furthermore, governments worldwide encourage this industry to keep prices low, 

putting strain on the currency. Considering clean energy is a requirement for long-term 

growth, expanding technologies to employ renewable energy sources to replace fossil 

fuels effectively has become necessary [23].  

 

Renewable energy sources are in the spotlight in the energy industry, given the 

rising energy demand, rising energy prices, and a strengthening of global warming 

remedies. Renewable energy has emerged as the world's fastest-growing energy source 

in the previous decade, with usage expected to rise by 2.8 % per year between 2012 

and 2040. On the other hand, nuclear power will grow at a pace of 2.3 % per year over 

the same period [24]. The Energy-related CO2 emission by fuel types, 1990-2040 is 

depicted in Figure 2.3. 

 

 

Figure 2.3. Energy-related CO2 emission by fuel types, 1990-2040. 

2.3 Solar Energy 

Solar energy is a vast renewable energy source. A sustainable energy from 

renewable energy is a promising emerging energy worldwide to mitigate fossil fuel 
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pollution [25][26]. Solar energy is a limitless and eternal energy source. The amount 

of solar energy absorbed by the globe is roughly 1.8 x 1010 MW, which is millions of 

times higher than the world's current rate of energy use [27][28]. Solar energy is one 

of the most potential non-conventional energy sources since it can continually satisfy 

all of the world's current and future energy requirements [29]. It is a clean energy 

source available in practically every corner of the planet, considerably lowering 

greenhouse gas emissions. Photovoltaic systems, solar thermal, solar heating, and 

other technologies can all be used to harness the sun [30]. 

 

In essence, solar energy has the potential to meet the world's energy needs if 

harvesting and supply technologies are readily available. Every year, about four 

million exajoules (1 EJ = 1018J) of solar energy reach the globe, with 5,104 EJ quickly 

ready to be harvested. Despite its enormous potential and growing popularity, solar 

energy's contributions to the world energy supply remain negligible [31][32]. The 

hybrid PV-TEG system is one way to freely harvest the available solar thermal energy 

and improve PV cell efficiency, it will be achieved by integrating PV systems with 

thermoelectric generators (TEG).  

 

 The hybrid PV-TEG system produces better power, is more efficient, and 

emits less waste heat. It is developed to convert the maximum amount of solar 

irradiation into electrical power. PV cells usually use a small proportion of incoming 

solar irradiation to generate electricity while turning a significant portion of the 

irradiation into waste heat. As a result, the temperature of the PV cells rises, reducing 

the energy efficiency of the PV system. Figure 2.4 displays a hybrid PV-TEG 

configuration. The proposed system comprises of a TEG with a heat-sink that uses 

waste heat energy from the PV system to maximize power generation and decrease PV 

cell temperatures, increasing the efficiency of the hybrid PV-TEG system's energy 

conversion. 
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Figure 2.4: Solar Energy Conversion System 

2.4 Solar Thermal 

Solar thermal energy is produced by converting solar radiation into thermal or 

electrical energy for industries, businesses, and homes applications [33]. Figure 2.5 

shows the solar radiation collection and conversion process of solar thermal.  Solar 

collectors are used to collect solar radiation. After that, the radiations can be stored or 

directly used for warming the air or water for domestic, industrial or commercial use 

[34].  

 

 

Figure 2.5: Solar thermal conversion system [34]. 

 

 

Solar thermal technology is utilized for the following applications: solar water 

heating, solar district heating and cooling, solar refrigeration, and solar desalination. 

There are four types of solar thermal energy technologies available in the market [35]:  
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1) Parabolic troughs; These concentrate sunlight onto a receiver tube containing 

a working liquid 

2) Fresnel mirrors; Use multiple flat mirrors to concentrate solar sunlight onto a 

receiver tube  

3) Power towers; An array of thousands of sun-tracking reflecting mirrors 

positioned in a field to concentrate solar radiation to a single point), and  

4) Solar dish collectors; Concentrate power by focusing ST energy onto a single 

point situated above a reflector dish). 

2.5 Photovoltaic systems 

Electricity can be extracted from solar irradiance via the photovoltaic (PV) 

system. The PV system converts sunlight into electricity employing the principle 

of photovoltaic effect. The energy of photons is passed to the charge carriers every 

time sunlight reaches the solar module. Due to the electric field around the junction, 

the charge carriers split into positively charged holes and negatively charged electrons 

[36]. 

 

As shown in Figure 2.6, a PV system comprises interconnecting electrical 

components that generate electricity from sunshine and meet our daily energy needs 

[37]. 
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Figure 2.6: Stand-alone Photovoltaic System Components [37]. 

 

When a photovoltaic cell is exposed to sunlight, the photovoltaic effect 

produces a voltage or electric current. This effect makes solar panels worthwhile 

because it is how the panels' cells convert sunlight into electricity. Edmond Becquerel, 

a French physicist, first discovered the PV effect. He noticed that the cell's voltage 

increased when its silver plates were exposed to sunlight [38][39]. 

2.5.1 Photovoltaic cell 

The essential component of a PV system is a photovoltaic cell, which converts 

sunlight into electricity. The cell is a type of semiconductor diode that converts 

electromagnetic radiation into direct currents. The following are a few examples of 

cell silicon, gallium arsenide, cadmium telluride, etc.  

 

When the energy absorption is equivalent to or greater than the band energy, 

electrons are shifted from the valence band to the conduction bands [40]. This system 

produces electron-hole pairs, which diffuse and separate at the p-n junction of 

semiconductors due to the generated electric field. As a result, electrons are attracted 
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to the negative side, whereas holes are pushed to the positive. Finally, as illustrated in 

Figure 2.7, electrons flow in the external circuit, and current is generated [41]. The 

maximum conversion efficiency comes from monocrystalline silicon cells[42]. There 

are two basic types of material with semiconductors, called positive type (p-type) and 

negative type (n-type). A monocrystalline silicon cell has the best conversion 

efficiency [43]. 

 

 

 

 

Figure 2.7: Photovoltaic cell (a) p-n junction structure   and (b) simplified equivalent 

circuit [43]. 

Modelling photovoltaic cells and simulating their operation with software is 

relevant since it allows for simultaneous modelling of photoelectric and peripheral 

electronics. The equations below show that a solar cell with a parallel diode can be 

modelled as a current source [43]. 

 

𝐼𝐷 = 𝐼𝑜 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑆)

𝛾𝐾𝑇𝐶
) − 1]       (2.1) 

 

𝐼𝑂 = 𝐷𝑇𝑎𝑏
3 𝑒𝑥𝑝

𝑞Ɛ𝐺

𝐴𝐾𝑇𝑎𝑏
        (2.2) 

 

where D is the diode diffusion factor, 𝑇𝑎𝑏is absolute temperature, 𝐼𝑂Is Reverse 

saturation current is q is the electron charge, Ɛ𝐺is material bandgap energy, K is 

Boltzmann constant, and A is the cross-sectional area. Depending on required voltage 
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and current levels, solar cells are connected in series and parallel, respectively. The 

solar cell generator voltage and current can be obtained as, 

 

 

𝑉𝑔 = 𝐼𝑔𝑅𝑠
𝑁𝑆

𝑁𝑃
𝑙𝑛 (1 +

𝑁𝑃𝐼𝑃ℎ−1

𝑁𝑃𝐼𝑂
)      (2.3) 

 

where 𝑅𝑆is the series resistance, 𝑁𝑆is the number of cells in series, 𝑁𝑃is the number of 

cells in parallel and 𝐼𝑃ℎis the cell photocurrent proportional to solar irradiance. 

 

𝐼𝑔 = 𝐼𝑃ℎ − 𝐼𝑂𝑒𝑥𝑝 (
𝑞𝑉𝑔

𝐾𝑇
− 1)       (2.4) 

 

where T is the cell temperature. Also, the PV cell short circuit current (𝐼𝑆𝐶) can be 

obtained by letting 𝑉𝑔= 0 and 𝐼𝑆𝐶= 𝐼𝑃ℎ . this value varies with cell irradiance and the PV 

cell open-circuit voltage (𝑉𝑂𝐶) can be obtained by setting Ig = 0 thus, 

 

𝑉𝑂 =
𝐾𝑇

𝑞
𝑙𝑛 [

𝐼𝑃ℎ

𝐼𝑂
]        (2.5) 

 

The maximum output power of the PV is expressed as 

 

𝑑(𝑉𝑔𝑥𝐼𝑔)

𝑑𝑡
         (2.6) 

𝑉𝑚𝑝 = 𝑉𝑂𝐶 −
𝐾𝑇

𝑞
[

𝑉𝑚𝑝
𝑘𝑡

𝑞

+ 1]       (2.7) 

 

Fill factor (FF) can be expressed as 

 

𝐹𝐹 =
𝑉𝑚𝑝𝑥𝐼𝑚𝑝

𝑉𝑂𝐶𝑥𝐼𝑆𝐶
         (2.8) 

 

The efficiency of the PV can be expressed as 

 

ɳ𝑃𝑉 =
𝐹𝐹𝑥𝑉𝑂𝐶𝑥𝐼𝑆𝐶

𝑃𝑖𝑛
        (2.9) 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



16 

 

where 𝑃𝑖𝑛is the incident power on the PV cell. 

 

The temperature has a severe influence on photovoltaic cells [43]; as a result, 

many studies on PV systems have focused on improving efficiency through effective 

thermal management strategies. The efficiency of the solar cell is excellent under 

standard test conditions using Eq. (2.2). However, as given in Eq. (2.4) and in Figure 

2.8, once the cell temperature rises above the STC, the efficiency of the solar cell 

drops. Figure 2.8 shows that the short circuit current Isc increases repetitively with 

temperature and then saturates to a maximum before decreasing at high temperatures 

due to the cell's high temperature, which affects system performance. The open circuit 

voltage Voc, on the other hand, increases linearly with temperature. The fill factor and 

efficiency, which are directly related to Isc and V oc, follow the letter variations. The 

trend can be explained by the mobility's behaviour, which is a temperature-activated 

process. According to the graph, the highest efficiency (9.7 %) occurred at Isc 0.63 and 

Voc 0.58 [44]. Figure 2.9 depicts the variation of the photovoltaic (PV) cell's current 

voltage (I-V) characteristic with temperature change. The effect is explained using 

solid state theory. The lower the open-circuit voltage and the higher the short-circuit 

current, the higher the temperature. This trend can be explained using band theory from 

solid state physics. As the temperature rises, the proscribed gap narrows and the Fermi 

energy level shifts toward the proscribed gap's centre. Both of these effects result in a 

lower potential barrier in the PN junction's band figure, and thus a lower photovoltaic 

voltage. Furthermore, narrowing the proscribed gap causes an increase in the 

generation of electron-hole pairs in the PN junction, as well as an increase in short-

circuit current [45].  

 

PVs operate better at reduced cell temperatures in general. The temperature 

coefficient is a property that describes how PV efficiency is affected by temperature. 

It is being used to measure how sensitive PV cells are to temperature changes. The 

temperature coefficient is commonly expressed as a normalized value of 25 °C or 

298.15 K [46] to compare different PV cells. 
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Figure 2.8: Effect of cell temperature on efficiency, open-circuit voltage and short 

circuit current of a monocrystalline silicon cell [42][47]. 

 

 

Figure 2.9: Temperature Influence on the I-V characteristics of a photovoltaic cell 

[48]. 

 

Photovoltaic electrical efficiency can be improved by minimizing and 

adequately utilizing the heat accumulated on the covered PV surface [49]. Various 

technologies have been developed for such a purpose, including Photovoltaic-Thermal 

(PV-T) and Photovoltaic-Thermoelectric Generator (PV-TEG) [50]. On the other 

hand, the PV-TEG can only accomplish this if the TEG is in physical contact with the 

PV (i.e. direct coupling method). Nonetheless, the TEG will have to function more 

significantly than the ambient temperature to generate electricity. If the solar cell is 

not adequately cooled, it would most likely overheat [50]. 
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2.5.2 Solar photovoltaic panel 

A solar panel comprises several solar cells with interconnected semiconductor 

qualities in a support structure, resulting in a higher output. These characteristics allow 

the cell to catch sunlight or photons and convert their energy into useable electricity 

[51]. 

 

 The current and voltage generated by a PV cell are proportional to its size. A solar 

cell with a 13.5 m x 13.5 m can generate 0.55 V and a current density of 30 to 35 

mA/cm2 [52]. Several panels are connected in the following way to meet the power 

requirements of a specific system; 

i. Series connection to increase a voltage 

ii. Parallel connection to improve a current 

 

For series connection, the number of panel modules in series (𝑁𝑠) is obtained 

by dividing the system dc voltage (DC) by the rated voltage of one panel (𝑉𝑟  ) as 

expressed as system dc voltage divided by the voltage rated of one panel as [53] 

 

𝑁𝑠 =
𝑆𝑦𝑠𝑡𝑒𝑚 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝐷𝐶)

𝑅𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑣𝑒 𝑜𝑓 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑃𝑉 𝑀𝑜𝑑𝑢𝑙𝑒
=

𝑉𝑑𝑐

𝑉𝑟
    (2.10) 

 

While for the numbers of the parallel of panel module in parallel (𝑁𝑝) can be 

obtained by dividing the system's total DC by the rated current of one module as below 

[53]. 

 

𝑁𝑝 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉 𝑀𝑜𝑑𝑢𝑙𝑒 

𝑅𝑎𝑡𝑒𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 𝑜𝑛𝑒 𝑃𝑉 𝑀𝑜𝑑𝑢𝑙𝑒
=  

𝐼𝑑𝑐

𝐼𝑟
     (2.11) 

 

Solar Photovoltaic Array combines multiple solar panels electrically connected 

to form a large photovoltaic system known as an array with a large surface area to 

generate more electricity. 

 

The main challenge in using solar photovoltaic source with multiple cells in 

series is dealing with its nonlinear internal resistance. When the array receives 

nonuniform irradiance or is partially shaded, the problem becomes more complicated. 
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Partial shading is common in larger solar photovoltaic arrays due to tree leaves falling 

on it, birds or bird litter on the array, shade from a neighboring structure, and so on. 

All the cells in a string of connected cells carry the same amount of current. Although 

some cells in the shade produce less photon current than the other fully illuminated 

cell, these cells are still required to carry the same amount of current 

 

  The current and voltage generated depend on the area of the cell. A 

photovoltaic cell with size 13.5 m x 13.5 m can generate 0.55 V and 30 to 35 mA/cm2 

of current density [54].  

2.6 Thermoelectric Generator 

Figure 2.10 illustrates the schematic of TEG under generator mode and cooler 

mode. In Figure 2.10(a), the Seebeck effect allows thermoelectric generators to 

generate electrical energy from heat energy when a temperature gradient (T) is 

provided to a thermoelectric couple made up of p and n-type semiconductor materials. 

The mobile charge carriers at the hot end (heat source) diffuse to the cold end (heat 

sink), resulting in an electrostatic potential (ΔV) at the cold end [55]. Thomas Seebeck 

discovered the Seebeck effect, which creates potential differences due to temperature 

gradients given in equation 2.11. The Seebeck coefficient is a material feature that is 

intrinsically thermoelectric [56]. 

 

𝛼 =
𝛥𝑉

𝛥𝑇
         (2.11) 

 

Applying a current via the two junctions of a thermoelectric couple, on the 

other hand, results in a temperature difference. This process, known as the Peltier 

effect, was discovered by Jean Charles Peltier depicted in Figure 2.10(b) [55][57]. 

Although the Thomson effect is not primarily significant in thermoelectric devices, 

detailed calculations are still essential to influence device performance [58]. 
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Figure 2.10: Schematic of a thermoelectric (a) generator and (b) cooler [55]. 

 

Akashah et al. [59] and Wan Jamaluddin et al. [60] investigated the viability of 

employing a TEG as a renewable energy source. The experiment was conducted using 

a TEC1-12706 with dimensions of 40 x 40 x 3.5 mm. The voltage, current, and 

temperature data were taken with a National Instrument (NI-CRIO 9014). The TEG 

was heated with halogen lamps, and the data was shown using LabView software. 

When the two TEGs were connected in series across 200 Ω resistance, they generated 

41.82 W of power, whereas when connected in parallel, they generated 100 megawatts 

(MW) at a temperature of 70oC. Another research examined the possibilities of 

developing sustainable thermal energy from shingles using a TEG for domestic 

applications  [61]. A test ring was employed for TEG, and the shingle was attached to 

the NI-CRIO 9014 for data acquisition.  At a load of 138 Ω, the four TEG modules in 

series generated a total of 0.003 V, producing 65.22 uW of energy.  

 

Ding et al. [62] investigated a unit TEG for exhaust thermal heat recovery using 

modelling and simulation. The TEG tit angle, hot side temperature, and output power 

were all evaluated. The results show that the TEG generated 0.21 W at 1.75 oC. 

Furthermore, the findings of this study shows that the design, theoretical investigation, 

and optimization of systems with multiple thermoelectric generators will yield higher 

performance. The study validated the research conducted by [63] which indicates that 

as the number of TEG is increase, the delta T increases for more power generation.  
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2.6.1 Thermoelectric Materials 

Electrical conductivity, thermal conductivity and Seebeck coefficient are the 

three inherent material qualities that govern the performance of thermoelectric 

materials used to produce electric power using the Seebeck effect or to cool using the 

Peltier effect as shown in Eq. (2.12). Electrical current is passed in power generating 

and cooling mode; hence materials with high electrical conductivity are desirable. 

Furthermore, a significant Seebeck coefficient is needed because a considerable 

produced voltage per unit temperature gradient is required. Finally, TE materials 

require a low thermal conductivity since temperature variations must be sustained 

across the material [64]. The thermoelectric figure of merit, ZT is a dimensionless 

parameter commonly used to evaluate thermoelectric efficiency in equation (2.12) 

[65].  

 

𝑍𝑇 =
𝛼2𝜎𝑇

𝐾
        (2.12) 

 

where α is the Seebeck coefficient, σ is the electrical conductivity, K is the thermal 

conductivity, and T is the absolute temperature.  

 

In general, materials with a high ZT are preferred; however, because the 

inherent material qualities that determine the ZT are co-dependent and reciprocal, 

optimizing all of them at the same time is complicated. Through optimization, the TEG 

resulted in having the highest ZT with Z≈ 1 [66]. Nevertheless, due to extensive 

material research, successive advancement has been reported in overcoming 

limitations and significantly improving the thermoelectric figure of merit.  

 

Modifying the material microstructure to enhance photon scattering and 

reducing thermal conductivity are two approaches that have been investigated. This 

method has been used to optimize materials such as chalcogenides, clathrates and 

skutterudites. The other process is to reduce the material dimensionality for quantum 

size effects to change electrical and thermal conductivity [67]. Additionally, attempts 

were made to increase the ZT of materials by incorporating other semiconductor or 

nanostructured materials. At 300 °C, the figure of merit for nanostructural materials 
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was three, and it ranged from 0.4 to 1.1 at a low-temperature difference of 27 ° C. 

[68][69]. This is much higher than the typical ZT value (0.8) of commercial materials 

like n-type Bi2Te3 and p-type Sb2Te3 at temperatures below 150 °C as affirmed by 

ref [40]. Other methods for developing high-efficiency thermoelectric materials 

include plasma treatment, material segmentation and super-lattice structure [70]. 

 

Based on the classification, bismuth telluride (Bi2Te3) is used for low-

temperature (<500K) electricity production in the category of thermoelectric materials 

based on the operating temperature range. For mid-temperature (500–900 K) 

electricity production, materials found on group-IV tellurides such as PbTe, GeTe, and 

SnTe are used. Finally, silicon-germanium alloys are used to generate high-

temperature (> 900 K) [71]. High-quality ZT materials with low prices must be 

produced to provide thermoelectric devices with more proper applications. Because of 

the tremendous study being done in this field, this is an attainable future goal. 

2.6.2 Modelling of Thermoelectric Generator and Cooler 

Thermoelectric generator efficiency is given in Equation (2.13) [72], 

 

 

ɳ =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑦 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑

𝐻𝑒𝑎𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 ℎ𝑜𝑡 𝑗𝑢𝑐𝑡𝑖𝑜𝑛 
    (2.13) 

 

For having good thermoelectric material qualities with minimal contact 

resistances, the efficiency can be expressed as follows in Equation (2.14) 

 

ɳ𝑡𝑒𝑔 =
𝐼2𝑅

𝛼𝐼𝑇𝐻
=

𝑇2𝑅

𝐾(𝑇𝐻−𝑇𝐶)−
1

2
𝐼2𝑅

      (2.14) 

 

where I, R,𝑇𝐻,𝑎𝑛𝑑 𝑇𝐶  represent the TEG current, series resistance, hot and cold side 

temperatures respectively. 

 

The maximum conversion efficiency is given in Equation (2.15), 
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ɳ𝑚𝑎𝑥 = ɳ𝐶 =
√1+𝑍𝑇−1

√1+𝑍𝑇+
𝑇𝐶
𝑇𝐻

      (2.15) 

 

where ɳ𝐶  represents the Carnot efficiency expressed in Equation (2.16)  

 

ɳ𝐶 =
𝑇𝐻−𝑇𝐶

𝑇𝐻
        (2.16) 

 

Thermoelectric cooler efficiency is expressed as its coefficient of performance 

(COP) given in Equation (2.17) [66][72], 

 

𝐶𝑂𝑃 =
𝐻𝑒𝑎𝑡 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
=

𝛼𝐼𝑇𝐶−𝐾(𝑇𝐻−𝑇𝐶)

𝛼𝐼(𝑇𝐻−𝑇𝐶)+𝐼2𝑅
   (2.17) 

 

The maximum cooling power current I is given in Equation (2.18)  

 

𝐼 =
𝛼𝑇𝐶

𝑅
        (2.18) 

 

The maximum coefficient of performance is given in Equation (2.19), 

 

𝐶𝑂𝑃𝑚𝑎𝑥 =
𝑇𝐶[(1+𝑍𝑇)2]−

𝑇𝐶
𝑇𝐻

(𝑇𝐻−𝑇𝐶)[(1+𝑍𝑇)2]+1
      (2.19) 

 

As with the thermoelectric generator, the merit figure (ZT) also determines the 

maximum performance coefficient that can be achieved. 

2.6.3 Application of Thermal Electric Generators  

Thermoelectric generators are applied for a variety of purposes, including heat 

recovery for automobiles. One of the significant issues currently being faced is 

reducing the amount of energy wasted in the form of heat energy. TEGs are used 

extensively in the automotive sector. According to the study, nearly 65% of the heat 

generated in internal combustion engines is wasted [71]. The department of energy 

(DOE) and the Ford Group conducted research on the v6 engine fitted with TEGs with 
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the objective of making 500 W, but the result obtained [72] in 2019 revealed that the 

generated output was only 250 W. Volvo and Renault trucks collaborated on the 

recovery of energy from exhaust of an engine from 2015 to 2020. According to this 

project, TEG can generate up to 130 W from a passenger car exhaust [73].  

 

Next, TEG are used in wearable sensors network, since human body heat is 

both natural and reliable, it can be used to provide some electricity in specific uses, 

like those in medicine. At rest, the human body generates about 100 W of heat, and 

when exercising, 525 W. [74]. Since 2001, several studies on wearable thermoelectric 

generators (WTEGs) have been carried out. with the target of replacing lithium ion 

batteries, as portable device power sources, provided that the international market for 

portable technologies is rapidly expanding and is predicted to surpass USD 34 billion 

by 2025 and USD 78 billion by 2023. WTEGs are categorized as rigid or flexible 

architectures in either 2D or 3D configurations, or as inorganic, organic, or hybrid 

TEG component materials [75]. 

 

The heat from the sun is used as a heat source in these generators. The total 

efficiency achieved by using TEGs is approximately 5-10%, as such, TEG can be used 

in micro-power generation, [76] performed a research and demonstrated that with a 

temperature difference of 1000oC and a concentration of solar intensity of 100, an 

efficiency of 14.1 percent can be achieved using the available thermoelectric device. 

Similarly in paper [77] has been working on thermoelectric generation by people since 

the 2000s with the aim of powering electronic health care systems. IMEC and the Holst 

Centre have produced a number of wireless sensors, including the body powered 

electroencephalogram acquisition system, which generates 2-2.5 mW of power and is 

worn as a headband wireless sensor network. They also invented a wireless pulse 

oximeter (2006) that is powered completely by a TEG-style watch which uses 

commercial Bi2Te3 thermopiles and generates around 89 ꭒW of power. 

 Space power, production of electricity in some of the harsh environments must 

adhere to exacting standards. Extreme weather can include very hot or cold 

temperatures, among other things. Additionally, maintenance should be kept to a 

minimum because it is challenging in these kinds of settings. TEGs are used in space 

applications due to their low weight, high reliability, and ability to operate for extended 

periods of time [56][78]. The voyager I and II, which were launched in 1997, were 
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