
i

TEST CASE SELECTION AND PRIORITZATION FOR OBJECT-ORIENTED

SOFTWARE BASED ON SLICING AND COUPLING

UMAR FAROOQ KHATAK

A thesis submitted in

fulfilment of the requirements for the award of the

Doctor of Philosophy in Information Technology

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

AUGUST 2022

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iii

DEDICATION

I dedicate my thesis to my parents for their support and prayers, despite the difficult

circumstances they faced, which gave me the fortitude to overcome the hurdles

entrenched throughout my academic challenges. This thesis is dedicated to my parents

for their patience, support, and prayers for my achievement. I also dedicate this thesis

to my supervisor and friends who helped me come up with the concepts for this

research.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iv

ACKNOWLEDGEMENT

In the name of Allah, the Most Generous, the Most Forgiving. I thank Allah for His

many bounties in my life and for His willingness to help me finish this research.

Without the instruction, assistance, and support of a large number of people, this

dissertation simply would not have been conceivable to begin with. This is a chance

to convey my gratitude and admiration to everyone involved.

I would like to thank my supervisor, Dr Aida Binti Mustapha, for her openness

and encouragement. My thesis advisor, Dr Aida Binti Mustapha, was an

encouragement to me while I struggled to complete it. She is a true leader and an

excellent role model. Without her help from the beginning of the research process, I

would not have been able to complete this thesis. I owe her a debt of gratitude for the

wonderful opportunities she gave me for my professional growth and development.

Having her as a teacher is a great honour. I would also like to express my gratitude to

my co-supervisor Dr Zainuri, whose honesty and support will never be forgotten by

me. I am grateful to him for the wonderful experiences he provided and for giving

opportunities for me to develop professionally.

Thank you, Mom and Dad, for your unfailing love and support. You inspire

me and give me self-assurance. My success and achievements are directly linked to

their confidence in me. My deepest gratitude goes out to my siblings, who serve as a

constant source of support and stability in my life and serve as constant reminders of

the important things in life. During the process of writing my thesis and every day, I

am grateful for the love and support I received from my family and friends. I will

always be grateful.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

v

ABSTRACT

Regression testing has become more prevalent with the increasing use of iterative

development as software artefacts are reused in different software development

projects. The objective of regression testing is to detect fault after the software is

changed. It is done by reducing the amount of time required for the test cases to run,

the number of test cases in the test suite, or the selection of test cases that have been

previously run on the system under test. However, determining the suitable test cases

in regression testing is challenging, especially when managing the retesting process

within a limited budget and timeframe. To address this issue, this research proposes

using program slicing and coupling metrics to improve the selection and prioritisation

of regression test cases specific to the affected segments of the program. In order to

determine these dependencies among the program parts, this research proposed an

approach for regression testing, which generated a suitable intermediate graph for

object-oriented programs. In this study, the scalability of intermediate graphs was

significantly improved by reducing redundant edges approximately 4.1%. Next, this

study proposes regression test case selection with Optimal Hierarchical

Decomposition Slice (OHDS) strategy to obtain complete coverage information nodes

for the affected slice graph. Once the impactful test cases have been selected, the test

cases should be prioritised to enhance the ability of the retesting process to detect early

errors. In this research, the coupling metrics are used to prioritise the test cases by

using an export-import factor for the affected program parts. The evaluation strategy

measured the Average Percentage of Fault Detection (APFD), and the experiments

produced an increase of 2.8% in APFD value. This result showed that the test cases

executed only on the affected portions identified as having a high degree of

Export/Import coupling are likely to detect faults earlier than other test cases within

the test suite.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

vi

ABSTRAK

Ujian regresi bertambah popular dengan peningkatan pembangunan perisian secara

berulang dimana artifak perisian digunakan semula pada projek pembangunan perisian

yang berbeza. Objektif ujian regresi adalah untuk mengesan perubahan yang telah

dilakukan pada aplikasi. Ia dilaksanakan dengan mengurangkan jumlah masa yang

diperlukan untuk kes ujian dijalankan, bilangan kes ujian dalam suite ujian, atau

pemilihan kes ujian yang telah dijalankan sebelum ini pada sistem yang sedang diuji.

Walau bagaimanapun, menentukan kes ujian yang sesuai dalam ujian regresi adalah

tugas yang mencabar terutamanya apabila menguruskan proses ujian semula dalam

anggaran dan jangka masa yang terhad. Untuk menangani isu ini, penyelidikan ini

mencadangkan penggunaan penghirisan program dan metrik gandingan untuk

menambah baik pemilihan dan keutamaan kes dalam regresi kes ujian khusus untuk

segmen program yang terkesan. Bagi menentukan kebergantungan diantara bahagian

program, penyelidikan ini mencadangkan pendekatan model seni bina bagi regresi

pemilihan kes ujian yang akan menghasilkan graf perantaraan yang sesuai bagi

program berorientasikan objek. Perwakilan graf perantaraan ini mengenal pasti semua

potensi kebergantungan antara bahagian program. Dalam kajian ini, kebolehskalaan

graf perantaraan telah dipertingkatkan dengan mengurangkan lewah sebanyak 4.1%

untuk semua program tanpa menjejaskan semantik. Seterusnya, kajian ini

mencadangkan pemilihan kes ujian regresi dengan Hirisan Penguraian Hierarki

Optimum (OHDS) untuk mendapatkan liputan maklumat yang lengkap bagi graf

hirisan yang terjejas. Sebaik sahaja kes ujian yang terkesan dikenal pasti, kes ujian

akan diberi keutamaan untuk meningkatkan keupayaan proses ujian semula bagi

mengesan ralat lebih awal. Dalam penyelidikan ini, metrik gandingan digunakan untuk

memberi keutamaan kes ujian dengan menggunakan faktor eksport-import bagi

program yang terkesan. Strategi penilaian mengukur Purata Peratusan Pengesanan

Kegagalan (APFD) dan eksperimen menghasilkan peningkatan 2.8% dalam nilai

APFD. Keputusan ini menunjukkan bahawa kes ujian yang dilaksanakan hanya pada

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

vii

bahagian yang terjejas yang dikenalpasti mempunyai gandingan eksport/import tahap

tinggi dapat mengesan kesalahan lebih awal berbanding lain-lain kes ujian dalam sut

ujian.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

viii

TABLE OF CONTENT

 TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENT viii

 LIST OF TABLES xii

 LIST OF FIGURES xiv

 LIST OF SYMBOLS AND ABBREVIATIONS xvi

 LIST OF APPENDICES xviii

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Research Background 1

1.3 Problem Statement 4

1.4 Research Questions 6

1.5 Research Objectives 6

1.6 Research Scope 7

1.7 Thesis Organization 7

CHAPTER 2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Regression Testing 12

2.3 Program Slicing 14

2.3.1 Types of Program Slices 15

2.3.2 Slicing in Java Programing 18

2.4 Program Graph Representation 21

2.4.1 Control Flow Graph 22

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

ix

2.4.2 Program Dependency Graph 23

2.4.3 System Dependence Graph 24

2.4.4 Object-Oriented Graph Representation 25

2.5 Coupling 28

2.5.1 Different Types of Couplings 29

2.5.2 Measures of Coupling 32

2.6 Change Impact Analysis 34

2.7 Related Work on Object-Oriented (OO) Regression Test

Selection 37

2.8 Related Work on Object-Oriented (OO) Regression Test

Prioritization 40

2.9 Research Gap 42

2.10 Chapter Summary 47

CHAPTER 3 RESEARCH METHODOLOGY 48

3.1 Introduction 48

3.2 Research process 48

 3.3 Research Framework 49

3.4 Proposed Framework for Regression Testing 53

3.4.1 1st Component 54

3.4.2 2nd Component 54

3.4.3 3rd Component 56

3.4 Implementation 57

3.4.1 Dataset 58

3.4.2 Resources/Tools 59

3.4.3 Evaluation Metric 60

3.5 Chapter Summary 61

CHAPTER 4 PROPOSED APPROACH 62

4.1 Introduction 62

4.2 Proposed Approach for Regression Testing 63

4.3 Create Intermediate Graph Using JSDG 63

4.3.1 Package Membership Edge 64

4.3.2 Inheritance/Implementation Edge 65

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

x

4.3.3 Membership Edge 65

4.3.4 Call Edge 65

4.3.5 Parameter Passing Edge 67

4.3.6 Method Overridden Edge 67

4.3.7 Data Dependence Edge 67

4.3.8 Control Dependence Edge 67

4.3.9 Summary Edge 68

4.4 Regression Test Case Selection Using Affected Slice

 Graph 68

4.4.1 Optimal Hierarchical Decomposition (OHD) Slice 69

4.4.2 Affected Slice Graph (ASG) Construction 71

4.4.3 Affected Slice Graph Regression Test Selection 73

4.5 Regression Test Prioritization Approach 74

4.5.1 Import Coupling Factor Nodes 74

4.5.2 Affected Coupling Component (ACC) 77

4.5.3 Computation of Test Case Weights and

 Prioritization of Test Cases 79

4.6 Experimental Settings 80

4.7 Chapter Summary 82

CHAPTER 5 RESULT AND DISCUSSION 83

5.1 Introduction 83

5.2 Effectiveness of Graph Generation Approach 83

5.2.1 Edges Extraction Comparison 84

5.2.2 Redundant Edges Comparison 86

5.2.3 Time Comparison 88

5.3 Effectiveness of Regression Test Case Selection Approach 89

5.4 Effectiveness of Regression Test Case Prioritization

Approach 92

5.5 APFD Comparison 94

5.6 Threats to Validity 97

5.7 Chapter Summary 98

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xi

CHAPTER 6 CONCLUSION 99

6.1 Summary 99

6.2 Research Achievement 99

6.3 Research Contributions 99

6.4 Future Works 100

 REFERENCES 102

 APPENDIX 115

 VITA 123

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xii

LIST OF TABLES

2.1 Comparison of CFG, PDG and SDG (Arora et al., 2012) 26

2.2 Description of Graphs 29

2.3 Research Gap summary 47

3.1 Dataset Programs for Regression Testing 58

3.2 Component-wise use of resources and tools 59

4.1 Optimal Hierarchical Decomposition (HD) Slice

Algorithm

70

4.2 Affected nodes 71

4.3 Affected Slice Graph Regression Test Selection (ASG-

RTS) Algorithm

73

4.4 Import Nodes Selection with Functional and Transitive

Algorithm

75

4.5 Import Nodes 77

4.6 Export/Import Weighted Affected Component Coupling

(EIWACC) Algorithm

78

4.7 Export/Import Affected Coupling TCP (EI-ACTCP)

Algorithm

79

4.8 Test Case Coverage Distribution for the Considered

Program

81

5.1 Comparison of Edge Extraction 85

5.2 Redundant Edges Comparison 87

5.3 Time Comparison 88

5.4 Affected Nodes and Selected Test Cases from Optimal

HD Slicing

90

5.5 Affected Nodes and Selected Test Cases from HD slicing 91

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xiii

5.6 Result Obtained for Regression Test Case Selection of

Different Programs

92

5.7 Export and Import Affected Node 93

5.8 Test Case Weights with Export/Import Coupling Fault-

Prone Impact

 94

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xiv

LIST OF FIGURES

2.1 A Hierarchy of Software Testing 10

2.2 Regression Testing Approaches 14

2.3 Static Slice 16

2.4 Dynamic Slice 17

2.5 Forward Slicing 18

2.6 Backward Slicing 18

2.7 Program Presentation using Graph 22

2.8 Call Flow Graph Presentation 23

2.9 Program Dependence Graph Presentation 24

2.10 The System Dependence Graph 25

2.11 Coupling Types 31

2.12 Architectural Model of the Hierarchical Regression Test Selection

 (Panda, 2016) 44

2.13 Hierarchical Decomposition (HD) Slicing Algorithm

 (Panda et al., 2016) 45

2.14 find Weighted Affected Component Coupling (findWACC)

 (Panda et al., 2016) 46

3.1 Research Process 50

3.2 Research Framework 52

3.3 The Proposed Approach for RTS and TCP

 in OO Software based on Slicing & Coupling Approach 53

3.4 Algorithms Flow in 2nd component 55

3.5 Algorithms Flow in 3rd component 57

4.1 JSDG Graph Representation for Exam Prog. 66

4.2 Affected Slice Graph 72

4.3 Affected Slice Graph with Import Edges and Nodes 76

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xv

5.1 Extraction of edge comparison 85

5.2 Total number of Edge Extraction comparison 86

5.3 Redundant Edges Comparison 88

5.4 Time Comparison 89

5.5 Affected Node Comparison 91

5.6 APFD using Panigrahi et al. (2014) 95

5.7 APFD using Panda et al. (2016) 95

5.8 APFD of Prioritized Test Cases using Proposed TCP Approach 96

5.9 Comparison of APFD values for Different Programs 96

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

ACC - Affected Coupling Component

APFD - Average Percentage of Fault Detection

ASG - Affected Slice Graph

ASG-RTS - Affected Slice Graph Regression Test

Selection

CIA - Change Impact Analysis

CIDG - Class Dependence Graph

COSDG - Call-based Object-oriented System

Dependence Graph

DFG - Data Flow Graph

EI-WACC - Export/Import Weighted Affected Component

Coupling

EI-ACTCP - Export/Import Affected Coupling Test Case

Prioritization

EOOSDG - Extended Object-Oriented System Dependence

Graph

ESDG - Extended System Dependence Graph

HRTS - Hierarchical Regression Test Case Selection

INS-FT - Import Nodes Selection with Functional and

Transitive

JSDG - Java System Dependence Graph

LOC - Line Of Code

TCP - Test Case Prioritization

OHDS - Optimal Hierarchical Decomposition Slice

OOP - Object-Oriented Programming

PDG - Program Dependence Graph

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xvii

RTS - Regression Test Case Selection

SDG - System Dependence Graph

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Exam Prog. for Experimentation 115

B Graphical User Interface for the Proposed

 Approach 116

C Modified Nodes Generate the Affected Slice Graph 117

D Affected Nice Graph based on Modified Nodes 118

E Selected Test Cases for the Affected Nodes 119

F Export/Import Nodes of the Affected Graph

 Covered by Each Test Case with Weight based on

 ACC 120

G Prioritization of Selected Test Cases 122

 H APFD Comparison for Example Prog. 125

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

CHAPTER 1

INTRODUCTION

1.1 Overview

In order to satisfy the changing needs of the users and the increasing expectations of

the customers, it has become essential for the software to evolve throughout a given

time. In addition to increasing software complexity, there is also an increase in the cost

and effort associated with its maintenance (Ba-Quttayyan et al., 2018). After

modifying a program, regression testing should be performed to ensure that the

changed component is valid and that the changes do not adversely affect other program

components. Software maintenance has become increasingly dependent on regression

testing. The need to make changes to a program that has already been tested cannot be

overstated. Regression testing plays a significant role in the retest of the program. As

a result of these modifications, regression testing was carried out without

compromising the time and cost while keeping the same level of testing coverage.

Thus, this research proposes a component slicing and coupling-based approach to

establish the affected program parts or components. This approach will help to

improve test case selection and prioritization.

1.2 Research Background

In the field of Software Engineering, certain methods and scientific principles are

applied to design and develop software products. The development of a software

product involves following certain processes and resulting in an authentic and efficient

product. Software engineering can be defined as systematic application of scientific

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

2

and technological knowledge, methods, and experience to the design, implementation,

testing, and documentation of software (IEEE Computer Society, 2017).

Software maintenance is also part of the Software Development Life Cycle

(SDLC), which maintains software that involves fixing and improving existing

software issues, making the software compatible with new hardware and software

requirements, and resolving complex issues (Tiky, 2016). In recent years, software

development cost has increased compared to other component computer system

project. In the same way, the cost of maintaining the software system keeps increasing

(Ali et al., 2020). IEEE Standard defined software maintenance as “the process of

modifying a software system after delivery to correct faults, improve the performance

or adapt it to a changing environment” (IEEE Computer Society, 2017). Mainly,

software products go through changes in code and related documentation because of a

fault or some improvement in the performance (Kaur & Singh, 2015). A significant

part of what is spent on software production is spent on maintenance, which represents

nearly 50% of the total cost (Rava &Wan-Kadir, 2016).

According to Ngah (2012), software states may change and advance over time,

and any software development project that does not require modification is impossible.

There is a need to retest the software system to validate these modifications to find

whether the software behaves as intended. This process of selective retesting is

referred to as regression testing (Chauhan, 2010). Regression Testing (RT) is a retest

activity to ensure that system modifications do not affect other parts of the system and

that the unchanged parts of the system are still working as it did before a change

(Minhas et. al, 2020).

By selecting a subset of the existing test suite that is relevant to regression

testing, the cost of regression testing can be reduced. Regression Test Selection (RTS)

techniques are primarily meant to reduce regression test costs and increase fault

detection possibilities (Musa et al., 2014). Instead of testing all of the program’s

components to verify that every change is valid, it is preferable to select test cases that

cover the aspects of the programme that have been modified. In test case selection, the

issue is to select a subset of test cases that can be used to test the parts of the software

that have been modified. In addition to Regression Test Selection (RTS), the Test Case

Prioritization (TCP) approaches aim to determine the order in which test cases should

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

3

be executed to maximize the detection of defects at an early stage during regression

testing (Elbaum et al., 2004). Test suite prioritization seeks to discover faults as early

as possible within the system under test by reordering test cases. However, rather than

reducing the number of tests in the suite, it simply rearranges them according to fault-

detection capabilities.

According to Mössenböck (2012), OO programming can be defined as

programming with abstract data types (classes) employing inheritance and dynamic

binding. With OO programming, the complexity shifts from interactions between

methods to object relationships and communications among objects. The dependencies

among the program parts play a vital role in detecting the critical parts of the program

during software maintenance (Panda, 2016). Thus, it is crucial to analyse the

dependencies between the different programming constructs and identify these critical

elements in the programs. Most system dependence graph-based slicing techniques for

analysing interdependencies between various programs have been used with partially

object-oriented C++. It does not have such features as dynamic methods, static method

dispatch, interfaces, exception handling, and multi-threading, which are present in

Java language, thus making maintenance even more challenging (Shu et al., 2013). In

OOP, one of the fundamental concepts is coupling and its measures are proven to

strongly correlate with fault-proneness (Meyers & Binkley, 2007).

The main goal of regression testing is to improve the effectiveness by

increasing the rate of fault detection and identifying change specific faults. The

regression testing process is recognized as part of the validation process and poses

many challenges in testing the software. The two basic challenges in regression testing

are selecting relevant test cases and test case prioritization (Minhas et al., 2020). It is

challenging to manage retesting in terms of time and cost, especially when an extensive

test suite is involved (Musa et al., 2015). Selecting test cases based on the source code

is an evident approach to determine which tests are suitable because of the

modifications made to the program (Musa et al., 2014). The primary cause of

regression testing is change. Regarding the frequency of regression testing, 53.3% of

the organizations repeat regression testing for every new version of the product, and

28.9% reported regression testing after every change (Minhas et al., 2020). Program

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

4

slicing is one of the top three techniques for regression testing (Kazmi et al., 2017),

which identifies affected parts based on change analysis.

1.3 Problem Statement

In the software development life cycle (SDLC), software maintenance and evolution

is the process that involves fixing and improving existing software issues (Ogheneovo,

2013). This allows the software to be compatible and adapted to meet new hardware

and software requirements and meet user expectations. As software develops through

a series of changes, it is necessary to perform regression tests to validate the changes.

In order to perform regression testing, it is necessary to identify what parts of the

program would be affected by any changes made to them as part of the maintenance

process. In software maintenance activities, regression testing is crucial to ensure that

bug fixes or enhancements do not impair the current functionality and the original

design requirement (Kaur & Singh, 2015).

In regression testing, the tester ensures the program is not affected by any

additional problems by using one of the most straightforward methodologies available

(Orso et al., 2003). Despite its advantage of being the safest method, it can only be

used in the test suite that is relatively small. All test cases may be randomly selected

to reduce the size of the test suite; however, most randomly selected test cases to

provide the same results as unrelated test cases or have nothing to do with the modified

programme. A subset of existing tests relevant to the testing process is selected to

reduce the cost of regression testing in a regression test selection strategy. A primary

purpose of RTS is to decrease regression testing costs and maximize potential fault

detection (Musa et al., 2014). In the ideal case, the subset of tests is intended to identify

the same number of errors as the original test suite with less effort (Yang et al., 2014).

In addition, dependencies among the program parts play a vital role in detecting

the critical parts of the program during software maintenance (Panda, 2016). A

graphical representation of the program is essential to determine these dependencies

among the program parts. In existing studies by Panigrahi & Mall (2013) and Musa et

al. (2015) used the coverage information of affected nodes for object-oriented

programs via the Extended System Dependence Graphs (ESDG) to graphically

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

5

represents the internal structure of the Program under Test (PuT) of Java program in

RTS. However, it may not capture the exact structure of all the possible dependencies

among the program parts, as it only represents six edges.

An architectural model for selecting regression tests based on hierarchical

structures has been previously proposed using the Extended Object-Oriented System

Dependency Graph (EOOSDG) for Java program structural representation (Panda,

2016). However, graph representation for OO programing causes cost redundancy

problems with a large number of edges redundant, which have to be filtered by some

approaches like the transitive technique (Panda, 2016). The transitive technique used

was able to reduce the cost of redundant edges but caused information loss around the

edges, which may have a semantic effect on other nodes. The semantic effect refers to

the fact that the type of redundant edge selection for removal edges is unknown, which

results in an incomplete edge representation among nodes.

The literature has shown that the techniques used to identify the affected parts

of the OO programs plays a critical effort in defining the real coverage information.

The program can select the correct subset of the test suite. Musa et al. (2015) proposed

that the forward slicing approach used the coverage information of affected nodes to

select test cases. However, the coverage information for the affected nodes was

incomplete. Panda et al., (2016) also used the forward/backward slicing approach in

RTS via hierarchical slicing. However, due to dependency restriction on forwarding

slicing, this approach cannot detect the complete coverage information for the affected

part of the program. Furthermore, the additional sub-edge comparison in backward

slicing increases the effort to select affected nodes.

Given these scenarios, it is always a challenge for software testers to improve

detecting faults. To the least of effort, prioritising regression test cases is necessary to

detect faults early in the retesting process (Campos et al., 2017). In Test Case

Prioritization (TCP), the order in which the selected regression test cases are

performed optimized error detection rates at a lower cost and time. It has been found

that regression TCP is a topic that is often discussed for procedural programs but is

limited for OO programs (Farooq et al., 2019). A TCP strategy aims to achieve some

performance goals, such as detecting faults early by finding a suitable order to execute

each test case in a test suite. In the literature, regression test cases are prioritized based

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

6

on change impact analysis using a slice approach for OO programming, including

export coupling (Panda et al., 2016). However, it does not include another significant

coupling, the import coupling, which does not explicitly define the affected parts of

the program.

1.4 Research Questions

The research background has provided sufficient context that leads the following

research questions:

(i) How to make the graph representation scalable for Object-Oriented

Programming (OOP) without losing the semantic effect of the edges?

(ii) How to identify the affected part of the program more efficiently i.e.

coverage information?

(iii) How does the Export/Import couple influence the Test Case Prioritization

(TCP)?

1.5 Research Objectives

In order to achieve a comparable rate of fault detection and have confidence in the

quality of the software, this research proposes an approach for regression testing, in

particular the Regression Test Case Selection (RTS) and Test Case Prioritization

(TCP) in Object-Oriented (OO) software that focuses on reducing the execution of

existing tests based on slicing and coupling approach. In addition, this research

proposes to develop a mechanism to help testers decide which changes in a program

need immediate attention, thereby reducing regression testing time. In order to

accomplish this broad purpose, the following objectives are to be undertaken.

(i) To analyse and identify the graph representation for java structure and reduce

the semantic effects of the edges

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

7

(ii) To enhance the technique for identifying and selecting the affected part of the

program using the forward/backward slicing approach for regression test case

selection.

(iii) To design algorithm using export/import factor coupling metrics to prioritise

test cases.

1.6 Research Scope

This research has the following scopes:

(i) Based on slice-based affected nodes, this study examines regression test

selection and test case prioritization at the code level of object-oriented

programs and the coverage information derived from the source code.

(ii) Two adequacy criteria, all-nodes and all-edges, have selectively been used in

this study for the experimental programs.

(iii) This research’s experimental proposal has taken ten benchmark programs from

Software-artefact Infrastructure Repository (SIR).

(iv) This research focuses on OO programs written in Java, a programming

language; therefore, it does not consider programs created with other languages

such as C and C#.

(v) This research does not include an empirical analysis of the prioritization time

and will be addressed in future work.

1.7 Thesis Organization

This thesis is arranged in six chapters as follows:

Chapter 1 introduces the thesis. It provides background information, the

problem statement, the research objectives, the scope of the research, and the

contribution of the research.

Chapter 2 presents the reviews on the current status of the regression testing.

It presents the fundamentals and terminology of Object-Oriented (OO) programming,

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

8

an overview of OO software testing techniques, and a detailed study of existing

regression testing techniques for OOP.

Chapter 3 presents a general overview of the research procedure and

materials used to define regression test selection. Test case prioritization techniques

for OO programs based on affected parts of the program and implement the prototype

tool support of the proposed technique have been briefly described in this chapter.

Chapter 4 presents the implementation of the proposed regression test case

selection and test case prioritization technique and an illustrative example of how the

proposed technique selected and prioritized the tests.

Chapter 5 presents the experimental results of the empirical evaluation and

provides them analyses and interpretation.

Chapter 6 covers the summary and conclusions of this work with future

directions.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Whenever a program is developed to implement an algorithm or logic, its developers

are always concerned about its performance and correctness. The developers must be

certain that the software satisfies a certain quality level. Program testing may be done

to assure a specific level of software quality. Software testing is defined as executing

a program to find errors (Myers et al.,2011). In order to assure quality, the software

has to compute results for the entire domain of input, with all the results that it

computes specified. Therefore, software needs to be thoroughly tested to validate the

input domain. Software testing approaches can only imply the existence of faults but

are not able to demonstrate their absence if the processes are not exhaustive. Homes

(2013) stated that exhaustive testing is not possible due to the following reasons:

(i) There are too many possible implementation paths in a program, so the

difficulty alluded to by this assertion is made worse because certain execution

paths could fail (Homes, 2013).

(ii) Design and specifications are subject to change during software development;

therefore, testing is difficult since software testing is an algorithmically

insoluble problem, and specification errors can lead to serious design errors

(Chauhan, 2010; Jorgensen, 2013).

Orso & Rothermel (2014) defined the aims of a software testing approach, but

Dalal & Chhillar (2012) highlighted its limitations including predefined testing time

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

10

not allocated when testing phase begins, 100% testing not possible in case of complex

systems, lack of formal testing as well as reviews at requirement and design stage, lack

of formal unit testing methodology, Lack of efficient and effective automation testing

as selection etc. Ruthruff & Rothermel (2010) observed that defects were always

undesirable; therefore, a trade-off has always existed between exhaustive testing and

computation costs. As a result, no testing method can be completely accurate and

applicable to all programs. Although various restrictions limit the testing process, the

constant and intelligent application of a testing approach can offer a sufficient level of

software quality. The cornerstones of testing techniques are verification and

validation. Static testing involves verification without code execution, while dynamic

testing involves verification and code execution.

The hierarchical breakdown of testing techniques and their connections with

various test adequacy criteria is depicted in Figure 2.1 based on the definitions by

Chauhan (2010) and Homès (2013). This thesis involves the use of execution-based

testing. There are three types of execution-based testing techniques: program-based,

specification-based, and a merger of both as shown in Figure 2.1.

Figure 2.1: A Hierarchy of Software Testing (Chauhan, 2010; Homès, 2013)

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

11

Let C define the kind of test cases included in the test suite T. T is produced by

evaluating the source code of a programme, P, based on its structure and

characteristics, using a program-based testing approach. In order to create the required

test suite, a specification-based testing approach utilizes P’s functional or non-

functional specifications. By contrast, integrated testing utilizes both program-based

and specification-based procedures to generate T. The test cases techniques are divided

into three categories based on the testing approach used to generate them:

(i) Black box test cases are developed without knowledge of P’s source code and

are entirely based on functional specifications. As a result, the cases’ input and

output behaviour are unaffected by P’s underlying structure. Black box testing

is typically performed using two methods: boundary value analysis. and

equivalence class partitioning

(ii) White box test cases are based on heuristics and are written utilising P’s whole

source code. In order to carry out unit testing effectively, this approach is

essential. There are various types of white box testing, such as data flow-based

testing, fault-based testing, and coverage-based testing.

(iii) Testing grey box scenarios involves only using the design models of

programme P as a basis. Class diagram-based testing, State-model-based

testing, use case-based testing, and sequence diagram-based testing are

examples of grey box testing.

As shown in Figure 2.1, different testing techniques are also linked to different

test adequacy criteria. Following a structurally based criterion, T must cover specific

control structures and variables within P, such as path coverage,

statement coverage, condition coverage, branch coverage. Implementing a structurally

based test adequacy criterion requires using a program-based testing approach. The

fault-based test adequacy criteria ensure that T identifies the mistakes that

programmers frequently introduce into P. Finally, error-based testing is based on the

assumption that T does not deviate from the requirements in any way. As a result,

error-based adequacy requirements inspire specification-based testing techniques.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

12

The primary objective of software testing is to detect faults and errors in

software before it is published, therefore improving software reliability. According to

Myers et al. (2011), over half of the elapsed time and more than half of the total

expense were spent testing the software or system being created in a typical

programming project. Retesting the product gets more expensive and time-consuming

when software projects are modified throughout the maintenance phase. An important

aspect of software maintenance is regression testing, which guarantees that

modifications do not adversely affect the software’s correctness.

2.2 Regression Testing

Regression testing is included in the validation process and looks to be a significant

problem in software testing. Managing the retesting process in terms of time and cost

becomes a fundamental problem, particularly as the test suite expands in size. Changes

to a software system may include bug fixes or the addition or removal of functionality.

Regression testing is recognized as a critical component of software development. The

practice of regression testing is defined as the process of thorough testing a system or

component to ensure that modifications have not resulted in unintended

consequences and that it still fulfils the requirement (Chauhan, 2010). Generally, a

system is said to regress when (1) a new component has been introduced or (2) a

modification made to a current component influences other aspects of the software. As

a result, it is essential to retest the modified code and any possibly impacted code

resulting from the change.

Regression testing is a costly task that often accounts for 50% of all software

maintenance costs (Sandeep & Solanki, 2018). It is often expensive to conduct

regression testing due to executing the test suite. Completion of regression testing of

software containing 20,000 lines of code, according to Dahiya & Solanki, (2018), takes

roughly seven weeks of continuous running. This involves creating various strategies

to improve regression testing efficiency including test cases selection, minimization

and prioritization. It is critical to reduce the expense of retesting software by

identifying and retesting only those elements of the programme that are affected by

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

13

the change. Orso and Rothermel (2014) have identified two major challenges in

selective regression testing: (a) determining which existing tests must be rerun because

it may exhibit different behaviour in the changed programme, and (b) determining

which programme components must be retested to meet some coverage criterion.

Thus, following Orso & Rothermel (2014), two problems can be extended as a process

consisting of the following steps: Selecting a set of test cases T to be executed on a

program P,

(i) Selecting T’ ≤ T and retesting P’ with T’ to establish the correctness of P’ with

respect to T’, where P’ is the modified version of program P.

(ii) Creating T”, a set of new test cases for P’, if required, and retesting P’ with T”,

so that still get the exact correctness of P’ with respect to T”.

(iii) Creating T” from T, T’, T” and adding some new test cases, if required, to test

the correctness of P’.

During regression testing, the following significant issues are addressed, which

are (1) test suite execution, (2) regression test selection, (3) coverage identification,

and (4) test suite maintenance. The following approaches may be used to address the

problem of software regression testing (Chauhan, 2010), as illustrated in Figure 2.2.

(i) Retest all approach: To test the updated version of the software, all test cases

in the test suite are performed. The updated programme P’ is effectively

covered by test suite T.

(ii) Regression test selection: This technique reduces the time required to retest a

changed programme by selecting a subset of the given test suite. Regression

test selection techniques attempt to identify just those test cases that can

exercise the modified sections of the programme and the parts affected by the

alteration to decrease the cost of testing.

(iii) Test case prioritization: Prioritizing test cases is concerned with changing the

order in which these are run. The test cases in a given test suite are organised

according to rules. The higher-priority test case is executed first, followed by

the lower-priority test case.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

14

Figure 2.2: Regression Testing Approaches

Testing is a time-consuming and labour-intensive task accounting for over half

of the development cost, with software maintenance accounting for the other 80%

(Surendran et al.,2016). The most significant problem among the many stages of

software testing, such as planning, designing, and execution, is designing and

regression testing. During practical structural testing, testers are confronted with

several obstacles (Mohanty et al., 2017). One key concern is the unrestricted size of

source code, which impacts the scalability, consistency, and integrity of software

systems during regression testing (Mansor & Ndudi, 2015). During such scenarios in

structural testing, the supplied problem can be reduced into a reasonable number of

sub-problems utilising the divide and conquer technique (Orso et al.,2001). This is

related to Weiser’s concept of programme slicing, which he developed in his PhD

thesis in 1979 (Singh & Singh, 2014).

2.3 Program Slicing

The size and complexity of software get harder to understand, maintain and test (Singh

et al., 2014). Multiple software maintenance studies show that around half of the time

is spent understanding the program code that is supposed to be maintained. So, the aim

is to simplify the program code for better understanding, and the approach is to break

the code into smaller pieces. Program slicing is a technique for extracting the portions

of a programme relevant to a particular calculation (Alokush et al., 2018).

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

15

Consequently, a program slice is a set of statements that modify a variable at a

particular point in time. Program slicing is a method for automatically dissecting

programmes by analysing its data and control flow relationships beginning from a

subset of the behaviour (Baber et al., 2020).

The first step in slicing a programme is to specify a point of interest, also known

as the slicing criterion, represented as (s, v), where s is the statement number and v is

the variable used or defined at s. Several scholars have made contributions to the field

of programme slicing during the last few decades. Since Weiser introduced programme

slicing as a debugging tool in 1984, other techniques have improved efficiency,

precision, speed, and the usefulness of programme slicing for different purposes (Ngah

& Selamat, 2014). Program slicing has been applied to both unstructured and

structured programs and Object-oriented, Aspect-Oriented, and Feature-Oriented

programs (Sasirekha et al., 2011). Furthermore, comparable slicing methods have been

utilised to tackle various issues.

2.3.1 Types of Program Slices

The two basic forms of slicing criterion are static and dynamic slice, whereas the two

main types of slicing direction are forward and backward slice. These slicing

approaches are discussed in this section.

2.3.1.1 Slicing Criterion

In static slicing, program is analysed statically (without execution) for computing

slices. It can be approached in terms of dataflow equations, information-flow relations,

dependence graph or graph reachability (Singh et al., 2014). Weiser’s slicing approach

is based on the iteration of dataflow equations. The slices are computed using an

iterative process by calculating consecutive sets of relevant variables for each node in

the control flow graph. Any input value can be utilised with a static slice. C = (x, y)

denotes a static slicing criterion, where x denotes a programme statement, and y

denotes a subset of programme variables. In Figure 2.3, which is an example

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

16

programme, shows the static slice condition as <11, a>. The end outcome is a

collection of statements <4, 5, 6, 8, 9>.

Tracing errors may be difficult since static slices include all possible

executions. To address this, the notion of dynamic slices was created. Korel proposed

the notion of the dynamic slice in 1988 (Sikka & Kaur, 2013). Dynamic slice being

created for distinguished input variable is more précised over static slice and overcome

the problems faced by static slicing in arrays and pointers of not knowing the result

information about a specific element of an array because of the array being treated as

a single variable in static approach (Sikka & Kaur, 2013). Dynamic slices are

programme statements that only alter the slicing criterion for a single input run.

Figure 2.3: Static Slice

Next, Figure 2.4 shows a sample programme to be sliced. The variable for

which slicing is to be performed is p, the slicing point is the program’s finish, and the

input supplied is n = 0.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

17

Figure 2.4: Dynamic Slice

2.3.1.2 Slicing Direction

Slicing direction can be forward or backward. Forward slice covers any parts of a

programme that are possibly affected by the slicing requirement since it rely on it.

This technique helps in knowing the effect of modifications in a part of the program

on other parts. This technique was first time used by Reps and Bricker in 1989 and

defined as: “A forward slicing of a program with respect to a program point p and set

of program variables V consists of all statements and predicates in the program that

may be affected by the value of variables in V at p” (Singh & Singh, 2014). In the

forward slice, the programme is traversed in the forward direction. The forward slice

lists all the programme statements impacted by the slicing criterion. C is an

abbreviation for the letter C (x, y), x is the statement number, and y is the slice variable.

Examine the sample programme in Figure 2.5. C = stands for the forward slicing

criteria (3, mark1). The slice contains all of the statements in the programme that are

impacted by the variable ‘mark1’ defined in statement number 3.

Meanwhile, the backward slide includes all aspects of a programme that may

impact the slicing criterion due to the reliance on those parts. Weiser defined

backwards slicing as: “A backward slice concerning a program point p and set of

program variables V consists of statements and predicates in the program that may

affect the value of variables in V at p” (Munjal, 2015). It contains the statements and

control predicates of the program having some effect on the slicing criterion.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

18

Figure 2. 5: Forward Slicing

Note that C = (x, y) is the backward slicing criteria. The statement number is

‘x’, and the slice variable is ‘y’. Take a look at the example programme in Figure 2.6

where C = (12, i). All programme statements that affect the value of the variable i in

statement number 12 are shown.

Figure 2.6: Backward Slicing

2.3.2 Slicing in Java Programing

Object-oriented (OO) programme slicing has distinct challenges than procedure-

oriented programme slicing. Classes, dynamic binding, encapsulation, inheritance,

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

19

message passing, and polymorphism are special OO programmes that require extra

attention since it create new dependencies between instructions (Alokush et al., 2018).

Although these features benefit OO programmes, it may affect slice precision.

Many researchers, like Allen & Horwitz (2003), Chen & Xu (2001), Hammer

& Snelting (2004), Li et al. (2004), and Wang & Roychoudhury (2004), have proposed

different approaches for calculating Java programme slices. A number of the slicing

mechanisms are based on dependency graphs, such as Program Dependency Graph

(PDG) and System Dependency Graph (SDG), while others are based on an analysis

of Java bytecode. To overcome the restrictions and improve the efficiency of OO

slicing techniques, Kovacs et al. (1996) developed a static inter-procedural slicing of

Java programmes. This approach focuses on expressing particular Java features to

increase the efficiency of the slicing process (Chandra et al., 2015). The suggested

slicing approach supports static variables, multiple packages, and interfaces. It also

enhanced the program’s SDG by providing polymorphic calls that eliminated the need

for extra nodes.

Chen et al. (2001) created a novel approach for visually presenting the OO Java

programme. Alokush et al.(2018), discussed the many dependencies that might occur

in a Java programme and recommended class slicing depending on the programme

dependency Graph (PDG). In this technique, the programme dependency graph

comprises a collection of separate PDGs.

Based on this new model for representing programs, Chen et al. (2001)

introduced the concept of class slicing, partial slicing and object slicing. Allen et al.

(2003) utilized SDG to improve on the work of Chen et al. (2001) on programme

slicing (Panda & Mohapatra, 2013). In this article, they proposed programme slicing

to be applied in the presence of exceptions. Because the programme had try-catch and

throw blocks, the emphasis was primarily on establishing control and data

dependencies. Other Java-specific features (including template classes, interface,

super, and polymorphic calls) have not been tested for slicing.

Wang et al. (2004) proposed a compressed byte-code tracing method for slicing

Java programmes. Wang et al., (2017) extended his work to represent the byte-code

associated with an execution trace for a Java application. Next, it reverse-engineered

the execution route to discover the control and data dependencies on the slicing

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

20

criterion. In order to implement this approach, a trace table must be constructed for

each technique. This way of computing slices is inefficient if a programme has too

many methods. This is due to the increased execution cost involved in maintaining

execution trace tables.

Li et al. (2004) developed a hierarchical slicing approach for slicing Java

programmes. The slicing algorithm is implemented using the JATO tool. The

hierarchical slices are computed level by level, beginning at the package level and

ending at the statement level (Li et al., 2013). Work by Li et al. (2004) resulted in a

level-by-level graphical representation of object-oriented programmes at various

levels of programme organisation, including package, class, method, and statement.

The four distinct graphs generated at each level are the Package Level Dependence

Graph (PLDG), Class Level Dependence Graph (CLDG), Method Level Dependence

Graph (MLDG), and System Level Dependence Graph (SLDG). To achieve

hierarchical slicing, it is necessary to develop four distinct slicing criteria, one for each

level of hierarchy. A graph traversed from package level to statement level produced

imperfect slices.

All of the primary research, including Allen & Horwitz (2003), Chen & Xu

(2001), Hammer & Snelting (2004), Li et al. (2004), and Wang & Roychoudhury

(2004), advocated slicing Java programmes by taking a specific characteristic or kind

of dependence inherent in a Java programme into consideration. The total impact of

features on dependencies, such as dependencies caused by packages and other

particular Java features, is ignored. The proposed technique went great to analyse all

possible dependencies in OO programmes and calculate a more exact slice. Slicing is

one of the way to do regression testing. First, it is needed to determine which

statements are affected by the new statement and which might be affected by the

change. However, most methods currently available are based on forwarding or

backward traversal. In this study, the proposed approach was more effective for

regression testing because of the following factors: forward and backward slicing,

which may both be used to gather effective change impact information, since it

identifies precisely those program parts that may be affected or get affected by the

change. The input that the slicing algorithm takes is usually an intermediate

representation of the program under consideration. Normally, the intermediate

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

21

representation of the program under consideration is a dependency graph (Selamat &

Ngah, 2017).

2.4 Program Graph Representation

Based on the literature, it is suggested not to evaluate the entire source code for

efficient and effective regression testing but instead to focus on the parts of the code

failing at a particular execution point (Fang et al., 2014). In order to determine those

high chances areas, there is a need to construct an intermediate representation that

identifies precisely the program’s conditions. In addition to pseudocode, flowcharts,

high-level source code, a collection of instructions in the memory of a computer. Each

of these representations serves a different purpose, depending on the context in which

it is used. The use of different representations may be required, for example, to aid

human reading, the annotation for verification, and transformation for the processing

of a program on multiprocessors and distributed computers. About program slicing,

program representations are employed to aid in effective slicing automation (Mall &

Kumar, 2004).

A program graph is a graphical representation of a program source code

consisting of a combinatorial structure composed of vertices (also known as points or

nodes) linked by edges (Arora et al., 2012). Consider the vertices to be the destinations

and the edges to be the paths. A graph can illustrate the flow of control between

statements in a program. However, a dependence graph displays the characteristics and

dependencies of the program across numerous objects. In order to discover interactions

and relationships among program parts, it is crucial to graphically model the program

under test using an intermediate graph representation (Mohapatra et al., 2004;

Walkinshaw et al., 2003).

Among program graphs that exist include the Data Flow Graph (DFG),

Program Dependence Graph (PDG), System Dependence Graph (SDG), Extended

System Dependence Graph (ESDG), and Call-based Object-Oriented System

Dependence Graph (COSDG). Figure 2.7 shows the graph representation for a

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

22

computer program, consisting of three main types – the Control Flow Graph, the

Program Dependency Graph, and the System Dependency Graph.

Figure 2.7: Program Presentation using Graph

2.4.1 Control Flow Graph

A Control Flow Graph is a graphical representation of control flow or computation

during the execution of programmes (CFG). A Control Flow Graph (CFG) represents

the program with nodes and edges from the start node to the end node. A CFG

represents the control dependencies of the program (Ngah et al., 2014). The control

flow graph (CFG) is an intermediate programme model that may be utilised for data

flow analysis and code optimizations such as common sub-expression elimination,

copy propagation, and loop invariant code mobility. It is simple to encapsulate data for

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

23

each fundamental block. A control flow graph may quickly find inaccessible portions

of a programme and uncover syntactic patterns such as loops. Consequently, the

control flow graph comprises all flow diagram components, such as the start node, end

node, and flows between nodes.

Figure 2.8: Call Flow Graph Presentation

Control Flow Graph will start from node 1 to read a variable, sequentially following

node 2, and 3. At node 4 if the condition is true the program will proceed to node 5,

and 6. Otherwise the program will move forward to node 7, further moving to end

point as shown in Figure 2.8.

2.4.2 Program Dependency Graph

Program dependency analysis is a popular approach in software testing and debugging,

and it is essential for programme comprehension (Shu et al., 2013). Dependency on

the Program Graph represents a programme as a graph, with nodes representing

statements and predicate expressions (Horwitz, Reps & Binkley, 2004). The edges

occurrence on the node reflects the data values on which the node’s activities are

reliant and the control conditions under which the operations are performed. A

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

24

Program Dependency Graph (PDG) may express both control and data dependency in

a single graph, as illustrated in Figure 2.9.

Figure 2.9: Program Dependence Graph Presentation

Consider the program in Figure 2.9 that uses the code fragment to find the

factorial of an integer. The control predicate at Statement 4 is required to execute

Statement 5 and 6. Statement 4 relies on data from statements 1. The related PDG of

the program is seen in Figure 2.9. The edge 5, and 6 have control dependency on edge

4 as can be seen in program. It is highlighted in blue line. The remaining all edges have

data dependency and highlighted in red line as can be seen in Figure 2.9.

2.4.3 System Dependence Graph

The System Dependence Graph (SDG) is a version of the Program Dependence Graph

(PDG) that displays a programme with a large number of procedures and procedural

calls (Chandra et al., 2015). SDG is a programming language in which parameters are

supplied as values. A complete system consists of a single (main) programme plus a

collection of auxiliary operations (Horwitz et al., 2004).

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

REFERENCES

Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2007). Investigating effect of

Design Metrics on Fault Proneness in Object-Oriented Systems. J. Object

Technol., 6(10), pp. 127-141.

Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2009). Empirical analysis for

investigating the effect of object‐oriented metrics on fault proneness: a

replicated case study. Software process: Improvement and practice, 14(1), pp.

39-62.

Al-Dallal, J. (2013). Object-Oriented Class Maintainability Prediction using Internal

Quality Attributes. Information and Software Technology, 55(11), pp. 2028–

2048.

Al-Dallal, J. (2006). An Efficient Algorithm for Computing all Program Forward

Static Slices. Transaction on Engineering, Computing and Technology, 16, pp.

108-111.

Ali, S. S., Zafar, M. S., & Saeed, M. T. (2020). Effort Estimation Problems in Software

Maintenance–A Survey. In 2020 3rd International Conference on Computing,

Mathematics and Engineering Technologies (iCoMET), pp. 1-9.

Alokush, B., Abdallah, M., Alrifaee, M., & Salah, M. (2018). A proposed Java static

slicing approach. Indonesian Journal of Electrical Engineering and Computer

Science, 11(1), pp. 308-317.

Alpuente, M., Ballis, D., Frechina, F., & Romero, D. (2014). Using conditional trace

slicing for improving Maude programs. Science of Computer

Programming, 80, pp. 385-415.

Allen, M., & Horwitz, S. (2003). Slicing Java programs that throw and catch

exceptions. ACM SIGPLAN Notices, 38(10), pp. 44-54.

Arora, V., Bhatia, R. K., & Singh, M. (2012). Evaluation of flow graph and

dependence graphs for program representation. International Journal of

Computer Applications, 56(14).

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

103

Arisholm, E., Briand, L. C., & Foyen, A. (2004). Dynamic coupling measurement for

object-oriented software. IEEE Transactions on software engineering, 30(8),

pp. 491-506.

Awad, K., Abdallah, M., Tamimi, A., Ngah, A., & Tamimi, H. (2019). A proposed

forward clause slicing application. Indonesian Journal of Electrical

Engineering and Computer Science, 13(1), pp. 401-407.

Badri, L., Badri, M., & St-Yves, D. (2005, December). Supporting predictive change

impact analysis: a control call graph based technique. In 12th Asia-Pacific

Software Engineering Conference (APSEC'05), pp. 177-184.

Bader, R., Alokush, B., Abdallah, M., Awad, K., & Ngah, A. (2020). A proposed java

forward slicing approach. Telkomnika, 18(1), pp. 311-316.

Ba-Quttayyan, B., Mohd, H., & Baharom, F. (2018). Regression testing–A protocol

for systematic literature review. In AIP Conference Proceedings Vol. 2016,

No. 1, pp. 020032.

Bidve, V. S., & Sarasu, P. (2016). Tool for measuring coupling in object-oriented Java

software. IACSIT International Journal of Engineering and Technology, 8(2),

pp. 812-820.

Bidve, V. S., & Khare, A. (2012). A survey of coupling measurement in object oriented

systems. International Journal of Advances in Engineering & Technology,

2(1), pp. 43.

Biswas, S., Mall, R., Satpathy, M., & Sukumaran, S. (2011). Regression test selection

techniques: A survey. Informatica, 35(3), pp. 289–321.

Briand, L. C., Daly, J. W., & Wust, J. K. (1999). A unified framework for coupling

measurement in object-oriented systems. IEEE Transactions on software

Engineering, 25(1), pp. 91-121.

Briand, L. C., Wust, J., & Lounis, H. (1999). Using coupling measurement for impact

analysis in object-oriented systems. In Proceedings IEEE International

Conference on Software Maintenance-1999 (ICSM’99), pp.475-482.

Briand, L. C., Wüst, J., Daly, J. W., & Porter, D. V. (2000). Exploring the relationships

between design measures and software quality in object-oriented

systems. Journal of systems and software, 51(3), pp. 245-273.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

104

Cabot, J., & Gogolla, M. (2012). Object constraint language (OCL): a definitive guide.

In International school on formal methods for the design of computer,

communication and software systems, pp. 58-90.

Chae, H. S., & Bae, D. H. (2011). A coupling measure for object-oriented

classes. Software Practice and Experience (30).

Chandra, A., Singhal, A., & Bansal, A. (2015). A study of program slicing techniques

for software development approaches. In 2015 1st International Conference on

Next Generation Computing Technologies (NGCT), pp. 622-627.

Chauhan, N. (2015). Regression test selection for object oriented systems using OPDG

and slicing technique. In 2015 2nd International Conference on Computing for

Sustainable Global Development (INDIACom), pp. 1372-1378

Chauhan, N. (2010). Software Testing: Principles and Practices. Oxford university

press.

Chechik, M., Lai, W., Nejati, S., Cabot, J., Diskin, Z., Easterbrook, S., Sabetzadeh,

M., & Salay, R. (2009). Relationship-based change propagation: A case study.

In 2009 ICSE Workshop on Modeling in Software Engineering, pp.7-12.

Chen, Z., & Xu, B. (2001). Slicing object-oriented Java programs. ACM Sigplan

Notices, 36(4), pp. 33-40.

Dalal, S., & Chhillar, R. S. (2012). Software Testing-Three P’S Paradigm and

Limitations. International Journal of Computer Applications, 54(12).

Dahiya, O., & Solanki, K. (2018). A systematic literature study of regression test case

prioritization approaches. International Journal of Engineering & Technology,

7(4), pp. 2184-2191.

De AG Saraiva, J., de França, M. S., Soares, S. C., Fernando Filho, J. C. L., & de

Souza, R. M. (2015). Classifying metrics for assessing object-oriented software

maintainability: A family of metrics’ catalogs. Journal of Systems and

Software, 103, pp. 85-101.

De Lucia, A., Oliveto, R., & Vorraro, L. (2008). Using structural and semantic metrics

to improve class cohesion. In 2008 IEEE International Conference on Software

Maintenance, pp. 27-36.

de S. Campos Junior, H., Araújo, M. A. P., David, J. M. N., Braga, R., Campos, F., &

Ströele, V. (2017). Test case prioritization: a systematic review and mapping

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

105

of the literature. In Proceedings of the 31st Brazilian Symposium on Software

Engineering, pp. 34-43.

Do, H., Rothermel, G., & Kinneer, A. (2004). Empirical studies of test case

prioritization in a JUnit testing environment. In 15th international symposium

on software reliability engineering, pp. 113-124.

Do, H., & Rothermel, G. (2006). On the use of mutation faults in empirical assessments

of test case prioritization techniques. IEEE Transactions on Software

Engineering, 32(9), pp. 733-752.

Eder, J., Kappel, G., & Schrefl, M. (1994). Coupling and cohesion in object-oriented

systems, Technical Report, University of Klagenfurt, pp. 264-272

Elbaum, S., Rothermel, G., & Penix, J. (2014). Techniques for improving regression

testing in continuous integration development environments. In Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pp. 235-245.

Elbaum, S., Rothermel, G., Kanduri, S., & Malishevsky, A. G. (2004). Selecting a

cost-effective test case prioritization technique. Software Quality

Journal, 12(3), pp. 185-210

Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002). Test case prioritization: A

family of empirical studies. IEEE transactions on software engineering, 28(2),

pp. 159-182.

El-Emam, K., Melo, W., & Machado, J. C. (2001). The prediction of faulty classes

using object-oriented design metrics. Journal of systems and software, 56(1),

pp. 63-75.

Ellis, T. J., & Levy, Y. (2010). A guide for novice researchers: Design and

development research methods. In Proceedings of Informing Science & IT

Education Conference (InSITE) Vol. 10, pp. 107-118.

Fang, C., Chen, Z., Wu, K., & Zhao, Z. (2014). Similarity-based test case prioritization

using ordered sequences of program entities. Software Quality Journal, 22(2),

pp. 335-361.

Gao, K., Khoshgoftaar, T. M., Wang, H., & Seliya, N. (2011). Choosing software

metrics for defect prediction: an investigation on feature selection

techniques. Software: Practice and Experience, 41(5), pp. 579-606.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

106

German, D. M., Hassan, A. E., & Robles, G. (2009). Change impact graphs:

Determining the impact of prior codechanges. Information and Software

Technology, 51(10), pp. 1394-1408.

Gethers, M., Dit, B., Kagdi, H., & Poshyvanyk, D. (2012). Integrated impact analysis

for managing software changes. In 2012 34th International Conference on

Software Engineering (ICSE), pp. 430-440.

Green, P. D., Lane, P. C., Rainer, A., & Scholz, S. (2009). An introduction to slice-

based cohesion and coupling metrics.

Hammer, C., & Snelting, G. (2004). An improved slicer for Java. In Proceedings of

the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software

tools and engineering, pp. 17-22.

Harrold, M. J., Jones, J. A., Li, T., Liang, D., Orso, A., Pennings, M., & Gujarathi, A.

(2001). Regression test selection for Java software. ACM Sigplan

Notices, 36(11), pp. 312-326.

Hattori, L., Guerrero, D., Figueiredo, J., Brunet, J., & Damásio, J. (2008). On the

precision and accuracy of impact analysis techniques. In Seventh IEEE/ACIS

International Conference on Computer and Information Science (icis

2008), pp. 513-518.

Hitz, M., & Montazeri, B. (1995). Measuring coupling and cohesion in object-oriented

systems, pp. 25-27.

Homès, B. (2013). Fundamentals of software testing. John Wiley & Sons.

Horwitz, S., Reps, T., & Binkley, D. (2004). Interprocedural slicing using dependence

graphs. Acm Sigplan Notices, 39(4), pp. 229-243.

Hou, S. S., Zhang, L., Xie, T., Mei, H., & Sun, J. S. (2007). Applying interface-contract

mutation in regression testing of component-based software. In 2007 IEEE

International Conference on Software Maintenance, pp. 174-183.

ISO/IEC/IEE. (2017). Systems and software engineering - vocabulary (ISO/IEC/IEE

24765).

Jayant, D. K., & Sagar, D. B. (2016). An Empirical View of Regression Test Case

Generation Based On UML. Globus an International Journal of Management

& IT, 8(1), pp.1-9.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

107

Jeffrey, D., & Gupta, N. (2006). Test case prioritization using relevant slices. In 30th

Annual International Computer Software and Applications Conference

(COMPSAC’06) Vol. 1, pp. 411-420.

Jorgensen, P. C. (2013). Software testing: a craftsman’s approach. Auerbach

Publications.

Joyner, W. D., & Melles, C. G. (2017). Adventures in graph theory. Springer

International Publishing.

Kaur, U., & Singh, G. (2015). A review on software maintenance issues and how to

reduce maintenance efforts. International Journal of Computer Applications,

118(1).

Kazmi, R., Jawawi, D. N., Mohamad, R., & Ghani, I. (2017). Effective regression test

case selection: A systematic literature review. ACM Computing Surveys

(CSUR), 50(2), pp. 1-32.

Khatri, M., Goswami, D.P., & Scholar, M.T. (2017). A Retrospective Study on

Cohesion and Coupling Metrics of OO Software Systems.

Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., & Tumeng, R. (2018). Test case

prioritization approaches in regression testing: A systematic literature

review. Information and Software Technology, 93, pp. 74-93.

Korel, B., Koutsogiannakis, G., & Tahat, L. H. (2007). Model-based test prioritization

heuristic methods and their evaluation. In Proceedings of the 3rd international

workshop on Advances in model-based testing, pp. 34-43.

Korel, B., Koutsogiannakis, G., & Tahat, L. H. (2008). Application of system models

in regression test suite prioritization. In 2008 IEEE International Conference

on Software Maintenance pp. 247-256.

Korel, B., Tahat, L. H., & Harman, M. (2005). Test prioritization using system models.

In 21st IEEE International Conference on Software Maintenance pp. 559-568.

Kozlov, D., Koskinen, J., & Sakkinen, M. (2013). Fault-proneness of open source

software: Exploring its relations to internal software quality and maintenance

process. Open Software Engineering Journal, pp.07-20.

Larprattanakul, A., & Suwannasart, T. (2013). An approach for regression test case

selection using object dependency graph. In 2013 5th International Conference

on Intelligent Networking and Collaborative Systems, pp. 617-621

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

108

Li, B. (2001) A Hierarchical Slice-Based Framework for Object-Oriented Coupling

Measurement. Citeseer, pp. 01-16.

Li, B. X., Fan, X. C., Pang, J., & Zhao, J. J. (2004). A model for slicing Java programs

hierarchically. Journal of Computer Science and Technology, 19(6), pp. 848-

85.

Li, B., Sun, X., Leung, H., & Zhang, S. (2013). A survey of code‐based change impact

analysis techniques. Software Testing, Verification and Reliability, 23(8), pp.

613-646.

Lisper, B., Masud, A. N., & Khanfar, H. (2015). Static backward demand-driven

slicing. In Proceedings of the 2015 Workshop on Partial Evaluation and

Program Manipulation pp. 115-126.

Malishevsky, A. G., Ruthruff, J. R., Rothermel, G., & Elbaum, S. (2006). Cost-

cognizant test case prioritization. Technical Report TR-UNL-CSE-2006-0004,

University of Nebraska-Lincoln. pp. 97-106

Malhotra, R., & Chug, A. (2016). Software maintainability: Systematic literature

review and current trends. International Journal of Software Engineering and

Knowledge Engineering, 26(08), pp. 1221-1253.

Maia, C. L. B., do Carmo, R. A. F., de Freitas, F. G., de Campos, G. A. L., & de Souza,

J. T. (2010). Automated test case prioritization with reactive

GRASP. Advances in Software Engineering, 2010.

Mansor, Z. U. L. K. E. F. L. I., & NDUDI, E. E. (2015). Issues, Challenges and Best

Practices of Software Testing Activity. In Proc. 14th Conf. Appl. Comput.

Eng.(ACE15), South Korea, pp. 42-47.

Marcus, A., & Poshyvanyk, D. (2009). The conceptual coupling of classes. In Proc.

21th IEEE International Conference on Software Maintenance, pp. 453-45.

Ma, Y. S., Offutt, J., & Kwon, Y. R. (2006). MuJava: a mutation system for Java.

In Proceedings of the 28th international conference on Software

engineering, pp. 827-830.

Meyers, T. M., & Binkley, D. (2007). An empirical study of slice-based cohesion and

coupling metrics. ACM Transactions on Software Engineering and

Methodology (TOSEM), 17(1), pp. 1-27.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

109

Minhas, N. M., Petersen, K., Börstler, J., & Wnuk, K. (2020). Regression testing for

large-scale embedded software development–Exploring the state of practice.

Information and Software Technology, 120, pp. 106-254

Mohapatra, D. P., Mall, R., & Kumar, R. (2004). An edge marking technique for

dynamic slicing of object-oriented programs.

Mohanty, H., Mohanty, J. R., & Balakrishnan, A. (Eds.). (2017). Trends in software

testing. Springer Singapore.

Mössenböck, H. (2012). Object-oriented programming in Oberon-2. Springer Science

& Business Media.

Munjal, D. (2015). Analysis of Slice-Based Metrics for Aspect-Oriented Programs

(Doctoral dissertation).

Musa, S., Sultan, A. B. M., Ghani, A. B. A., & Bahaarom, S. (2015). Regression Test

Cases Selection for Object-Oriented Programs based on Affected

Statements. International Journal of Software Engineering and Its

Applications, 9(10), pp. 91-108.

Musa, S., Sultan, A. B. M., Abd-Ghani, A. A. B., & Baharom, S. (2015). Software

regression test case prioritization for object-oriented programs using genetic

algorithm with reduced-fitness severity. Indian Journal of Science and

Technology, 8(30), pp. 1-9.

Musa, S., Sultan, A. B. M., Abd Ghani, A. A. B., & Baharom, S. (2014). A regression

test case selection and prioritization for object-oriented programs using

dependency graph and genetic algorithm. Int J Eng Sci, 4(7), pp. 54-64.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing. John Wiley

& Sons.

Najumudheen, E. S. F., Mall, R., & Samanta, D. (2009). A dependence graph-based

representation for test coverage analysis of object-oriented programs. ACM

SIGSOFT Software Engineering Notes, 34(2), pp. 1-8.

Najumudheen, E. S. F., Mall, R., & Samanta, D. (2010). A Dependence Representation

for Coverage Testing of Object-Oriented Programs. J. Object Technol., 9(4),

pp. 1-23.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

110

Najumudheen, E. S. F., Mall, R., & Samanta, D. (2011). Test coverage analysis based

on an object‐oriented program model. Journal of Software Maintenance and

Evolution: Research and Practice, 23(7), pp. 465-493.

Ngah, A. (2012). Regression test selection by exclusion (Doctoral dissertation,

Durham University).

Ngah, A., & Selamat, S. A. (2014). A Brief Survey of Program Slicing. In

International Symposium on Research in Innovation and Sustainability 2014

(ISoRIS’14), pp. 1467-1470.

Nicolaescu, A., Lichter, H., & Xu, Y. (2015). Evolution of object oriented coupling

metrics: a sampling of 25 years of research. In 2015 IEEE/ACM 2nd

International Workshop on Software Architecture and Metrics pp. 48-54.

Orso, A., Apiwattanapong, T., & Harrold, M. J. (2003). Leveraging field data for

impact analysis and regression testing. ACM SIGSOFT Software Engineering

Notes, 28(5), pp. 128-137.

Orso, A., Sinha, S., & Harrold, M. J. (2001). Incremental slicing based on data-

dependences types. In Proceedings IEEE International Conference on

Software Maintenance. ICSM 2001, pp. 158-167

Orso, A., & Rothermel, G. (2014). Software testing: a research travelogue (2000–

2014). In Future of Software Engineering Proceedings, pp. 117-132

Otieno, C., Okeyo, G., & Kimani, S. (2015). Coupling measures for object oriented

software systems-a state-of-the-art review. International Journal of

Engineering and Science (IJES), 4, pp. 01-10.

Otieno, C. (2016). Unified Class Coupling Model for Coupling Measurement in Object

Oriented Software Systems (Doctoral dissertation, Information Technology,

JKUAT).

Panda, S. (2016). Regression Testing of Object-Oriented Software based on Program

Slicing (Doctoral dissertation).

Panda, S., Munjal, D., & Mohapatra, D. P. (2016). A slice-based change impact

analysis for regression test case prioritization of object-oriented

programs. Advances in Software Engineering, 2016.

Panda, S., & Mohapatra, D. P. (2013). Application of hierarchical slicing to regression

test selection of Java programs.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

111

Panigrahi, C. R., & Mall, R. (2013). An approach to prioritize the regression test cases

of object-oriented programs. CSI transactions on ICT, 1(2), pp. 159-173.

Panigrahi, C. R., & Mall, R. (2014). A heuristic-based regression test case

prioritization approach for object-oriented programs. Innovations in Systems

and Software Engineering, 10(3), pp. 155-163.

Panigrahi, C. R., & Mall, R. (2016). Regression test size reduction using improved

precision slices. Innovations in Systems and Software Engineering, 12(2), pp.

153-159.

Pujari, N., Ray, A., & Singh, J. (2018). Web Slicing Incorporating Component-

Oriented Programming. In 2018 Second International Conference on

Computing Methodologies and Communication (ICCMC), pp. 334-339.

Radjenović, D., Heričko, M., Torkar, R., & Živkovič, A. (2013). Software fault

prediction metrics: A systematic literature review. Information and software

technology, 55(8), pp. 1397-1418.

Rajlich, V. (2014). Software evolution and maintenance. In Future of Software

Engineering Proceedings, pp. 133-144.

Rava, M., & Wan-Kadir, W. M. (2016). A review on prioritization techniques in

regression testing. International Journal of Software Engineering and Its

Applications, 10(1), pp. 221-232.

Razafimahatratra, H., Mahatody, T., Razafimandimby, J. P., & Simionescu, S. M.

(2017). Automatic detection of coupling type in the UML sequence diagram.

In 2017 21st International Conference on System Theory, Control and

Computing (ICSTCC), pp. 635-640

Ren, X., Chesley, O. C., & Ryder, B. G. (2006). Identifying failure causes in Java

programs: An application of change impact analysis. IEEE transactions on

software engineering, 32(9), pp. 718-732.

Rothermel, G., & Harrold, M. J. (1996). Analyzing regression test selection

techniques. IEEE Transactions on software engineering, 22(8), pp. 529-551.

Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (1999). Test case prioritization:

An empirical study. In Proceedings IEEE International Conference on

Software Maintenance-1999, pp. 179-188

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

112

Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases

for regression testing. IEEE Transactions on software engineering, 27(10), pp.

929-948.

Rothermel, G., & Harrold, M. J. (1994). Selecting Regression Tests for Object-

Oriented Software. In ICSM, Vol. 94, pp. 14-25.

Ruthruff, J. R., Elbaum, S., & Rothermel, G. (2010). Experimental program analysis.

Information and Software Technology, 52(4), pp. 359-379.

Selamat, S. A., & Ngah, A. (2017). Slicing for Java Program: A Preliminary Study.

Journal of Telecommunication, Electronic and Computer Engineering (JTEC),

9(3-5), pp. 147-151.

Sandeep Dalal, S., & Solanki, K. (2018). Experimental Analysis of “BA-TPF”

Technique for Regression Test Optimization. International Journal of

Engineering & Technology, 7(4), pp. 3135-3141.

Sajeev, A. S. M., & Wibowo, B. (2003). Regression test selection based on version

changes of components. In Tenth Asia-Pacific Software Engineering

Conference, pp. 78-85

Sahakyan, A. (2019). Software change impact analysis with respect to data protection.

Sasirekha, N., Robert, A. E., & Hemalatha, D. M. (2011). Program slicing techniques

and its applications. arXiv preprint arXiv, pp. 1108.1352.

Shaik, A., Reddy, K., & Damodaram, A. (2012). Object oriented software metrics and

quality assessment: Current state of the art. International Journal of Computer

Applications, 37(11), pp. 6-15.

Sharma, S., & Srinivasan, S. (2013). A review of Coupling and Cohesion metrics in

Object Oriented Environment. International Journal of Computer Science &

Engineering Technology (IJCSET), 4(8), pp. 1105-1111.

Sherriff, M., & Williams, L. (2008). Empirical software change impact analysis using

singular value decomposition. In 2008 1st International Conference on

Software Testing, Verification, and Validation, pp. 268-277.

Shu, G., Sun, B., Henderson, T. A., & Podgurski, A. (2013). Javapdg: A new platform

for program dependence analysis. In 2013 IEEE Sixth International

Conference on Software Testing, Verification and Validation pp. 408-415.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

113

Sikka, P., & Kaur, K. (2013). Program slicing techniques and their need in aspect

oriented programming. International Journal of Computer Applications, 70(3),

pp. 11-14.

Singh, S. N., & Singh, L. (2014, September). Study of current program slicing

techniques. In 2014 5th International Conference-Confluence The Next

Generation Information Technology Summit (Confluence), pp. 810-814.

Sun, X., Li, B., Li, B., & Wen, W. (2012). A comparative study of static CIA

techniques. In Proceedings of the Fourth Asia-Pacific Symposium on

Internetware, pp. 1-8.

Srikanth, H., Banerjee, S., Williams, L., & Osborne, J. (2014). Towards the

prioritization of system test cases. Software Testing, Verification and

Reliability, 24(4), pp. 320-337.

Surendran, A., Samuel, P., & Jacob, K. P. (2016). Program slicing techniques for

software testing (Doctoral dissertation, Cochin University of Science and

Technology).

Tao, C., Li, B., Sun, X., & Zhang, C. (2010). An approach to regression test selection

based on hierarchical slicing technique. In 2010 IEEE 34th Annual Computer

Software and Applications Conference Workshops, pp. 347-352

Tiky, Y. T. (2016). Software development life cycle. Hongkong: THe Hongkong

University of Science and Technology.

Tip, F. (2015). Infeasible paths in object-oriented programs. Science of Computer

Programming, 97, pp. 91-97.

Tonella, P. (2003). Using a concept lattice of decomposition slices for program

understanding and impact analysis. IEEE transactions on software

engineering, 29(6), pp. 495-509.

Umudova, S. (2019). Analysis of software maintenance phases. Noble International

Journal of Scientific Research, 3(6), pp. 62-66.

Wang, T., & Roychoudhury, A. (2004, May). Using compressed bytecode traces for

slicing Java programs. In Proceedings. 26th International Conference on

Software Engineering, pp. 512-521.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

114

Wang, X., Zhang, Y., Zhao, L., & Chen, X. (2017). Dead code detection method based

on program slicing. In 2017 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC), pp. 155-158

Walkinshaw, N., Roper, M., & Wood, M. (2003). The Java system dependence graph.

In Proceedings Third IEEE International Workshop on Source Code Analysis

and Manipulation, pp. 55-64

Wen, W. (2012). Software fault localization based on program slicing spectrum.

In 2012 34th International Conference on Software Engineering (ICSE), pp.

1511-1514

Xi, L., Li, M., Dan, Z., & Wei, L. (2011). An approach of coarse-grained dynamic

slice for Java program. In 2011 IEEE 3rd International Conference on

Communication Software and Networks, pp. 670-674.

Yang, Y., Zhou, Y., Lu, H., Chen, L., Chen, Z., Xu, B., & Zhang, Z. (2014). Are slice-

based cohesion metrics actually useful in effort-aware post-release fault-

proneness prediction? An empirical study. IEEE Transactions on Software

Engineering, 41(4), pp. 331-357.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and

prioritization: a survey. Software testing, verification and reliability, 22(2), pp.

67-120.

Yu, P., Systa, T., & Muller, H. (2002). Predicting fault-proneness using OO metrics.

An industrial case study. In Proceedings of the sixth european conference on

software maintenance and reengineering, pp. 99-107.

Zarrad, A. (2015). A Systematic Review on Regression Testing for Web-Based

Applications. J. Softw., 10(8), pp. 971-990.

Zhang, L., Hao, D., Zhang, L., Rothermel, G., & Mei, H. (2013). Bridging the gap

between the total and additional test-case prioritization strategies. In 2013 35th

International Conference on Software Engineering (ICSE), pp. 192-201.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

