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ABSTRACT 

Regression testing has become more prevalent with the increasing use of iterative 

development as software artefacts are reused in different software development 

projects. The objective of regression testing is to detect fault after the software is 

changed. It is done by reducing the amount of time required for the test cases to run, 

the number of test cases in the test suite, or the selection of test cases that have been 

previously run on the system under test. However, determining the suitable test cases 

in regression testing is challenging, especially when managing the retesting process 

within a limited budget and timeframe. To address this issue, this research proposes 

using program slicing and coupling metrics to improve the selection and prioritisation 

of regression test cases specific to the affected segments of the program. In order to 

determine these dependencies among the program parts, this research proposed an 

approach for regression testing, which generated a suitable intermediate graph for 

object-oriented programs. In this study, the scalability of intermediate graphs was 

significantly improved by reducing redundant edges approximately 4.1%. Next, this 

study proposes regression test case selection with Optimal Hierarchical 

Decomposition Slice (OHDS) strategy to obtain complete coverage information nodes 

for the affected slice graph. Once the impactful test cases have been selected, the test 

cases should be prioritised to enhance the ability of the retesting process to detect early 

errors. In this research, the coupling metrics are used to prioritise the test cases by 

using an export-import factor for the affected program parts. The evaluation strategy 

measured the Average Percentage of Fault Detection (APFD), and the experiments 

produced an increase of 2.8% in APFD value. This result showed that the test cases 

executed only on the affected portions identified as having a high degree of 

Export/Import coupling are likely to detect faults earlier than other test cases within 

the test suite.
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ABSTRAK 

Ujian regresi bertambah popular dengan peningkatan pembangunan perisian secara 

berulang dimana artifak perisian digunakan semula pada projek pembangunan perisian 

yang berbeza. Objektif ujian regresi adalah untuk mengesan perubahan yang telah 

dilakukan pada aplikasi. Ia dilaksanakan dengan mengurangkan jumlah masa yang 

diperlukan untuk kes ujian dijalankan, bilangan kes ujian dalam suite ujian, atau 

pemilihan kes ujian yang telah dijalankan sebelum ini pada sistem yang sedang diuji. 

Walau bagaimanapun, menentukan kes ujian yang sesuai dalam ujian regresi adalah 

tugas yang mencabar terutamanya apabila menguruskan proses ujian semula dalam 

anggaran dan jangka masa yang terhad. Untuk menangani isu ini, penyelidikan ini 

mencadangkan penggunaan penghirisan program dan metrik gandingan untuk 

menambah baik pemilihan dan keutamaan kes dalam regresi kes ujian khusus untuk 

segmen program yang terkesan. Bagi menentukan kebergantungan diantara bahagian 

program, penyelidikan ini mencadangkan pendekatan model seni bina bagi regresi 

pemilihan kes ujian yang akan menghasilkan graf perantaraan yang sesuai bagi 

program berorientasikan objek. Perwakilan graf perantaraan ini mengenal pasti semua 

potensi kebergantungan antara bahagian program. Dalam kajian ini, kebolehskalaan 

graf perantaraan telah dipertingkatkan dengan mengurangkan lewah sebanyak 4.1% 

untuk semua program tanpa menjejaskan semantik. Seterusnya, kajian ini 

mencadangkan pemilihan kes ujian regresi dengan Hirisan Penguraian Hierarki 

Optimum (OHDS) untuk mendapatkan liputan maklumat yang lengkap bagi graf 

hirisan yang terjejas.  Sebaik sahaja kes ujian yang terkesan dikenal pasti, kes ujian 

akan diberi keutamaan untuk meningkatkan keupayaan proses ujian semula bagi 

mengesan ralat lebih awal. Dalam penyelidikan ini, metrik gandingan digunakan untuk 

memberi keutamaan kes ujian dengan menggunakan faktor eksport-import bagi 

program yang terkesan. Strategi penilaian mengukur Purata Peratusan Pengesanan 

Kegagalan (APFD) dan eksperimen menghasilkan peningkatan 2.8% dalam nilai 

APFD. Keputusan ini menunjukkan bahawa kes ujian yang dilaksanakan hanya pada 
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bahagian yang terjejas yang dikenalpasti mempunyai gandingan eksport/import tahap 

tinggi dapat mengesan kesalahan lebih awal berbanding lain-lain kes ujian dalam sut 

ujian. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In order to satisfy the changing needs of the users and the increasing expectations of 

the customers, it has become essential for the software to evolve throughout a given 

time. In addition to increasing software complexity, there is also an increase in the cost 

and effort associated with its maintenance (Ba-Quttayyan et al., 2018). After 

modifying a program, regression testing should be performed to ensure that the 

changed component is valid and that the changes do not adversely affect other program 

components.  Software maintenance has become increasingly dependent on regression 

testing. The need to make changes to a program that has already been tested cannot be 

overstated. Regression testing plays a significant role in the retest of the program. As 

a result of these modifications, regression testing was carried out without 

compromising the time and cost while keeping the same level of testing coverage. 

Thus, this research proposes a component slicing and coupling-based approach to 

establish the affected program parts or components. This approach will help to 

improve test case selection and prioritization. 

1.2 Research Background 

In the field of Software Engineering, certain methods and scientific principles are 

applied to design and develop software products. The development of a software 

product involves following certain processes and resulting in an authentic and efficient 

product. Software engineering can be defined as systematic application of scientific 
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and technological knowledge, methods, and experience to the design, implementation, 

testing, and documentation of software (IEEE Computer Society, 2017). 

Software maintenance is also part of the Software Development Life Cycle 

(SDLC), which maintains software that involves fixing and improving existing 

software issues, making the software compatible with new hardware and software 

requirements, and resolving complex issues (Tiky, 2016). In recent years, software 

development cost has increased compared to other component computer system 

project. In the same way, the cost of maintaining the software system keeps increasing 

(Ali et al., 2020). IEEE Standard defined software maintenance as “the process of 

modifying a software system after delivery to correct faults, improve the performance 

or adapt it to a changing environment” (IEEE Computer Society, 2017). Mainly, 

software products go through changes in code and related documentation because of a 

fault or some improvement in the performance (Kaur & Singh, 2015). A significant 

part of what is spent on software production is spent on maintenance, which represents 

nearly 50% of the total cost (Rava &Wan-Kadir, 2016).  

According to Ngah (2012), software states may change and advance over time, 

and any software development project that does not require modification is impossible. 

There is a need to retest the software system to validate these modifications to find 

whether the software behaves as intended. This process of selective retesting is 

referred to as regression testing (Chauhan, 2010). Regression Testing (RT) is a retest 

activity to ensure that system modifications do not affect other parts of the system and 

that the unchanged parts of the system are still working as it did before a change 

(Minhas et. al, 2020).  

By selecting a subset of the existing test suite that is relevant to regression 

testing, the cost of regression testing can be reduced. Regression Test Selection (RTS) 

techniques are primarily meant to reduce regression test costs and increase fault 

detection possibilities (Musa et al., 2014). Instead of testing all of the program’s 

components to verify that every change is valid, it is preferable to select test cases that 

cover the aspects of the programme that have been modified. In test case selection, the 

issue is to select a subset of test cases that can be used to test the parts of the software 

that have been modified. In addition to Regression Test Selection (RTS), the Test Case 

Prioritization (TCP) approaches aim to determine the order in which test cases should 
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be executed to maximize the detection of defects at an early stage during regression 

testing (Elbaum et al., 2004).  Test suite prioritization seeks to discover faults as early 

as possible within the system under test by reordering test cases. However, rather than 

reducing the number of tests in the suite, it simply rearranges them according to fault-

detection capabilities.   

According to Mössenböck (2012), OO programming can be defined as 

programming with abstract data types (classes) employing inheritance and dynamic 

binding. With OO programming, the complexity shifts from interactions between 

methods to object relationships and communications among objects. The dependencies 

among the program parts play a vital role in detecting the critical parts of the program 

during software maintenance (Panda, 2016). Thus, it is crucial to analyse the 

dependencies between the different programming constructs and identify these critical 

elements in the programs. Most system dependence graph-based slicing techniques for 

analysing interdependencies between various programs have been used with partially 

object-oriented C++. It does not have such features as dynamic methods, static method 

dispatch, interfaces, exception handling, and multi-threading, which are present in 

Java language, thus making maintenance even more challenging (Shu et al., 2013). In 

OOP, one of the fundamental concepts is coupling and its measures are proven to 

strongly correlate with fault-proneness (Meyers & Binkley, 2007). 

The main goal of regression testing is to improve the effectiveness by 

increasing the rate of fault detection and identifying change specific faults. The 

regression testing process is recognized as part of the validation process and poses 

many challenges in testing the software. The two basic challenges in regression testing 

are selecting relevant test cases and test case prioritization (Minhas et al., 2020). It is 

challenging to manage retesting in terms of time and cost, especially when an extensive 

test suite is involved (Musa et al., 2015). Selecting test cases based on the source code 

is an evident approach to determine which tests are suitable because of the 

modifications made to the program (Musa et al., 2014). The primary cause of 

regression testing is change. Regarding the frequency of regression testing, 53.3% of 

the organizations repeat regression testing for every new version of the product, and 

28.9% reported regression testing after every change (Minhas et al., 2020). Program 
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slicing is one of the top three techniques for regression testing (Kazmi et al., 2017), 

which identifies affected parts based on change analysis.  

1.3 Problem Statement  

In the software development life cycle (SDLC), software maintenance and evolution 

is the process that involves fixing and improving existing software issues (Ogheneovo, 

2013). This allows the software to be compatible and adapted to meet new hardware 

and software requirements and meet user expectations. As software develops through 

a series of changes, it is necessary to perform regression tests to validate the changes. 

In order to perform regression testing, it is necessary to identify what parts of the 

program would be affected by any changes made to them as part of the maintenance 

process. In software maintenance activities, regression testing is crucial to ensure that 

bug fixes or enhancements do not impair the current functionality and the original 

design requirement (Kaur & Singh, 2015).  

In regression testing, the tester ensures the program is not affected by any 

additional problems by using one of the most straightforward methodologies available 

(Orso et al., 2003). Despite its advantage of being the safest method, it can only be 

used in the test suite that is relatively small. All test cases may be randomly selected 

to reduce the size of the test suite; however, most randomly selected test cases to 

provide the same results as unrelated test cases or have nothing to do with the modified 

programme. A subset of existing tests relevant to the testing process is selected to 

reduce the cost of regression testing in a regression test selection strategy. A primary 

purpose of RTS is to decrease regression testing costs and maximize potential fault 

detection (Musa et al., 2014). In the ideal case, the subset of tests is intended to identify 

the same number of errors as the original test suite with less effort (Yang et al., 2014).  

In addition, dependencies among the program parts play a vital role in detecting 

the critical parts of the program during software maintenance (Panda, 2016). A 

graphical representation of the program is essential to determine these dependencies 

among the program parts. In existing studies by Panigrahi & Mall (2013) and Musa et 

al. (2015) used the coverage information of affected nodes for object-oriented 

programs via the Extended System Dependence Graphs (ESDG) to graphically 
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represents the internal structure of the Program under Test (PuT) of Java program in 

RTS. However, it may not capture the exact structure of all the possible dependencies 

among the program parts, as it only represents six edges. 

An architectural model for selecting regression tests based on hierarchical 

structures has been previously proposed using the Extended Object-Oriented System 

Dependency Graph (EOOSDG) for Java program structural representation (Panda, 

2016). However, graph representation for OO programing causes cost redundancy 

problems with a large number of edges redundant, which have to be filtered by some 

approaches like the transitive technique (Panda, 2016). The transitive technique used 

was able to reduce the cost of redundant edges but caused information loss around the 

edges, which may have a semantic effect on other nodes. The semantic effect refers to 

the fact that the type of redundant edge selection for removal edges is unknown, which 

results in an incomplete edge representation among nodes. 

The literature has shown that the techniques used to identify the affected parts 

of the OO programs plays a critical effort in defining the real coverage information. 

The program can select the correct subset of the test suite.  Musa et al. (2015) proposed 

that the forward slicing approach used the coverage information of affected nodes to 

select test cases. However, the coverage information for the affected nodes was 

incomplete. Panda et al., (2016) also used the forward/backward slicing approach in 

RTS via hierarchical slicing. However, due to dependency restriction on forwarding 

slicing, this approach cannot detect the complete coverage information for the affected 

part of the program. Furthermore, the additional sub-edge comparison in backward 

slicing increases the effort to select affected nodes.  

Given these scenarios, it is always a challenge for software testers to improve 

detecting faults. To the least of effort, prioritising regression test cases is necessary to 

detect faults early in the retesting process (Campos et al., 2017). In Test Case 

Prioritization (TCP), the order in which the selected regression test cases are 

performed optimized error detection rates at a lower cost and time. It has been found 

that regression TCP is a topic that is often discussed for procedural programs but is 

limited for OO programs (Farooq et al., 2019). A TCP strategy aims to achieve some 

performance goals, such as detecting faults early by finding a suitable order to execute 

each test case in a test suite. In the literature, regression test cases are prioritized based 
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on change impact analysis using a slice approach for OO programming, including 

export coupling (Panda et al., 2016). However, it does not include another significant 

coupling, the import coupling, which does not explicitly define the affected parts of 

the program.   

1.4 Research Questions 

The research background has provided sufficient context that leads the following 

research questions: 

 

(i) How to make the graph representation scalable for Object-Oriented 

Programming (OOP) without losing the semantic effect of the edges? 

(ii) How to identify the affected part of the program more efficiently i.e.       

coverage information? 

(iii) How does the Export/Import couple influence the Test Case Prioritization 

(TCP)? 

1.5 Research Objectives  

In order to achieve a comparable rate of fault detection and have confidence in the 

quality of the software, this research proposes an approach for regression testing, in 

particular the Regression Test Case Selection (RTS) and Test Case Prioritization 

(TCP) in Object-Oriented (OO) software that focuses on reducing the execution of 

existing tests based on slicing and coupling approach. In addition, this research 

proposes to develop a mechanism to help testers decide which changes in a program 

need immediate attention, thereby reducing regression testing time. In order to 

accomplish this broad purpose, the following objectives are to be undertaken. 

 

(i) To analyse and identify the graph representation for java structure and reduce 

the semantic effects of the edges 
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(ii) To enhance the technique for identifying and selecting the affected part of the 

program using the forward/backward slicing approach for regression test case 

selection. 

(iii) To design algorithm using export/import factor coupling metrics to prioritise 

test cases. 

1.6 Research Scope 

This research has the following scopes:  

 

(i) Based on slice-based affected nodes, this study examines regression test 

selection and test case prioritization at the code level of object-oriented 

programs and the coverage information derived from the source code. 

(ii) Two adequacy criteria, all-nodes and all-edges, have selectively been used in 

this study for the experimental programs. 

(iii) This research’s experimental proposal has taken ten benchmark programs from 

Software-artefact Infrastructure Repository (SIR).  

(iv) This research focuses on OO programs written in Java, a programming 

language; therefore, it does not consider programs created with other languages 

such as C and C#. 

(v) This research does not include an empirical analysis of the prioritization time 

and will be addressed in future work. 

1.7 Thesis Organization  

This thesis is arranged in six chapters as follows:  

Chapter 1 introduces the thesis. It provides background information, the 

problem statement, the research objectives, the scope of the research, and the 

contribution of the research. 

Chapter 2 presents the reviews on the current status of the regression testing. 

It presents the fundamentals and terminology of Object-Oriented (OO) programming, 
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an overview of OO software testing techniques, and a detailed study of existing 

regression testing techniques for OOP. 

Chapter 3   presents a general overview of the research procedure and 

materials used to define regression test selection.    Test case prioritization techniques 

for OO programs based on affected parts of the program and implement the prototype 

tool support of the proposed technique have been briefly described in this chapter.  

Chapter 4 presents the implementation of the proposed regression test case 

selection and test case prioritization technique and an illustrative example of how the 

proposed technique selected and prioritized the tests.  

Chapter 5 presents the experimental results of the empirical evaluation and 

provides them analyses and interpretation.  

Chapter 6 covers the summary and conclusions of this work with future 

directions.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction  

Whenever a program is developed to implement an algorithm or logic, its developers 

are always concerned about its performance and correctness. The developers must be 

certain that the software satisfies a certain quality level. Program testing may be done 

to assure a specific level of software quality. Software testing is defined as executing 

a program to find errors (Myers et al.,2011). In order to assure quality, the software 

has to compute results for the entire domain of input, with all the results that it 

computes specified. Therefore, software needs to be thoroughly tested to validate the 

input domain. Software testing approaches can only imply the existence of faults but 

are not able to demonstrate their absence if the processes are not exhaustive. Homes 

(2013) stated that exhaustive testing is not possible due to the following reasons: 

 

(i) There are too many possible implementation paths in a program, so the 

difficulty alluded to by this assertion is made worse because certain execution 

paths could fail (Homes, 2013). 

(ii) Design and specifications are subject to change during software development; 

therefore, testing is difficult since software testing is an algorithmically 

insoluble problem, and specification errors can lead to serious design errors 

(Chauhan, 2010; Jorgensen, 2013). 

 

Orso & Rothermel (2014) defined the aims of a software testing approach, but 

Dalal & Chhillar (2012) highlighted its limitations including predefined testing time 
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not allocated when testing phase begins, 100% testing not possible in case of complex 

systems, lack of formal testing as well as reviews at requirement and design stage, lack 

of formal unit testing methodology, Lack of efficient and effective automation testing 

as selection etc. Ruthruff & Rothermel (2010) observed that defects were always 

undesirable; therefore, a trade-off has always existed between exhaustive testing and 

computation costs. As a result, no testing method can be completely accurate and 

applicable to all programs. Although various restrictions limit the testing process, the 

constant and intelligent application of a testing approach can offer a sufficient level of 

software quality. The cornerstones of testing techniques are verification and 

validation. Static testing involves verification without code execution, while dynamic 

testing involves verification and code execution.  

The hierarchical breakdown of testing techniques and their connections with 

various test adequacy criteria is depicted in Figure 2.1 based on the definitions by 

Chauhan (2010) and Homès (2013). This thesis involves the use of execution-based 

testing. There are three types of execution-based testing techniques: program-based, 

specification-based, and a merger of both as shown in Figure 2.1. 

 

 

Figure 2.1: A Hierarchy of Software Testing (Chauhan, 2010; Homès, 2013) 
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Let C define the kind of test cases included in the test suite T. T is produced by 

evaluating the source code of a programme, P, based on its structure and 

characteristics, using a program-based testing approach. In order to create the required 

test suite, a specification-based testing approach utilizes P’s functional or non-

functional specifications. By contrast, integrated testing utilizes both program-based 

and specification-based procedures to generate T. The test cases techniques are divided 

into three categories based on the testing approach used to generate them:  

 

(i) Black box test cases are developed without knowledge of P’s source code and 

are entirely based on functional specifications. As a result, the cases’ input and 

output behaviour are unaffected by P’s underlying structure. Black box testing 

is typically performed using two methods: boundary value analysis. and 

equivalence class partitioning 

(ii) White box test cases are based on heuristics and are written utilising P’s whole 

source code. In order to carry out unit testing effectively, this approach is 

essential. There are various types of white box testing, such as data flow-based 

testing, fault-based testing, and coverage-based testing. 

(iii) Testing grey box scenarios involves only using the design models of 

programme P as a basis. Class diagram-based testing, State-model-based 

testing, use case-based testing, and sequence diagram-based testing are 

examples of grey box testing. 

 

As shown in Figure 2.1, different testing techniques are also linked to different 

test adequacy criteria. Following a structurally based criterion, T must cover specific 

control structures and variables within P, such as path coverage, 

statement coverage, condition coverage, branch coverage. Implementing a structurally 

based test adequacy criterion requires using a program-based testing approach. The 

fault-based test adequacy criteria ensure that T identifies the mistakes that 

programmers frequently introduce into P. Finally, error-based testing is based on the 

assumption that T does not deviate from the requirements in any way. As a result, 

error-based adequacy requirements inspire specification-based testing techniques. 
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The primary objective of software testing is to detect faults and errors in 

software before it is published, therefore improving software reliability. According to 

Myers et al. (2011), over half of the elapsed time and more than half of the total 

expense were spent testing the software or system being created in a typical 

programming project. Retesting the product gets more expensive and time-consuming 

when software projects are modified throughout the maintenance phase. An important 

aspect of software maintenance is regression testing, which guarantees that 

modifications do not adversely affect the software’s correctness. 

2.2 Regression Testing  

Regression testing is included in the validation process and looks to be a significant 

problem in software testing. Managing the retesting process in terms of time and cost 

becomes a fundamental problem, particularly as the test suite expands in size. Changes 

to a software system may include bug fixes or the addition or removal of functionality. 

Regression testing is recognized as a critical component of software development. The 

practice of regression testing is defined as the process of thorough testing a system or 

component to ensure that modifications have not resulted in unintended 

consequences and that it still fulfils the requirement (Chauhan, 2010). Generally, a 

system is said to regress when (1) a new component has been introduced or (2) a 

modification made to a current component influences other aspects of the software. As 

a result, it is essential to retest the modified code and any possibly impacted code 

resulting from the change. 

Regression testing is a costly task that often accounts for 50% of all software 

maintenance costs (Sandeep & Solanki, 2018). It is often expensive to conduct 

regression testing due to executing the test suite. Completion of regression testing of 

software containing 20,000 lines of code, according to Dahiya & Solanki, (2018), takes 

roughly seven weeks of continuous running. This involves creating various strategies 

to improve regression testing efficiency including test cases selection, minimization 

and prioritization. It is critical to reduce the expense of retesting software by 

identifying and retesting only those elements of the programme that are affected by 
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the change. Orso and Rothermel (2014) have identified two major challenges in 

selective regression testing: (a) determining which existing tests must be rerun because 

it may exhibit different behaviour in the changed programme, and (b) determining 

which programme components must be retested to meet some coverage criterion. 

Thus, following Orso & Rothermel (2014), two problems can be extended as a process 

consisting of the following steps: Selecting a set of test cases T to be executed on a 

program P, 

 

(i) Selecting T’ ≤ T and retesting P’ with T’ to establish the correctness of P’ with 

respect to T’, where P’ is the modified version of program P. 

(ii) Creating T”, a set of new test cases for P’, if required, and retesting P’ with T”, 

so that still get the exact correctness of P’ with respect to T”. 

(iii) Creating T” from T, T’, T” and adding some new test cases, if required, to test 

the correctness of P’. 

 

During regression testing, the following significant issues are addressed, which 

are (1) test suite execution, (2) regression test selection, (3) coverage identification, 

and (4) test suite maintenance. The following approaches may be used to address the 

problem of software regression testing (Chauhan, 2010), as illustrated in Figure 2.2. 

 

(i) Retest all approach: To test the updated version of the software, all test cases 

in the test suite are performed. The updated programme P’ is effectively 

covered by test suite T. 

(ii) Regression test selection: This technique reduces the time required to retest a 

changed programme by selecting a subset of the given test suite. Regression 

test selection techniques attempt to identify just those test cases that can 

exercise the modified sections of the programme and the parts affected by the 

alteration to decrease the cost of testing. 

(iii) Test case prioritization: Prioritizing test cases is concerned with changing the 

order in which these are run. The test cases in a given test suite are organised 

according to rules. The higher-priority test case is executed first, followed by 

the lower-priority test case. 
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Figure 2.2: Regression Testing Approaches 

Testing is a time-consuming and labour-intensive task accounting for over half 

of the development cost, with software maintenance accounting for the other 80% 

(Surendran et al.,2016). The most significant problem among the many stages of 

software testing, such as planning, designing, and execution, is designing and 

regression testing. During practical structural testing, testers are confronted with 

several obstacles (Mohanty et al., 2017). One key concern is the unrestricted size of 

source code, which impacts the scalability, consistency, and integrity of software 

systems during regression testing (Mansor & Ndudi, 2015). During such scenarios in 

structural testing, the supplied problem can be reduced into a reasonable number of 

sub-problems utilising the divide and conquer technique (Orso et al.,2001). This is 

related to Weiser’s concept of programme slicing, which he developed in his PhD 

thesis in 1979 (Singh & Singh, 2014). 

2.3   Program Slicing 

The size and complexity of software get harder to understand, maintain and test (Singh 

et al., 2014). Multiple software maintenance studies show that around half of the time 

is spent understanding the program code that is supposed to be maintained. So, the aim 

is to simplify the program code for better understanding, and the approach is to break 

the code into smaller pieces. Program slicing is a technique for extracting the portions 

of a programme relevant to a particular calculation (Alokush et al., 2018). 
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Consequently, a program slice is a set of statements that modify a variable at a 

particular point in time. Program slicing is a method for automatically dissecting 

programmes by analysing its data and control flow relationships beginning from a 

subset of the behaviour (Baber et al., 2020).  

The first step in slicing a programme is to specify a point of interest, also known 

as the slicing criterion, represented as (s, v), where s is the statement number and v is 

the variable used or defined at s. Several scholars have made contributions to the field 

of programme slicing during the last few decades. Since Weiser introduced programme 

slicing as a debugging tool in 1984, other techniques have improved efficiency, 

precision, speed, and the usefulness of programme slicing for different purposes (Ngah 

& Selamat, 2014). Program slicing has been applied to both unstructured and 

structured programs and Object-oriented, Aspect-Oriented, and Feature-Oriented 

programs (Sasirekha et al., 2011). Furthermore, comparable slicing methods have been 

utilised to tackle various issues. 

2.3.1 Types of Program Slices 

The two basic forms of slicing criterion are static and dynamic slice, whereas the two 

main types of slicing direction are forward and backward slice. These slicing 

approaches are discussed in this section. 

2.3.1.1 Slicing Criterion 

In static slicing, program is analysed statically (without execution) for computing 

slices. It can be approached in terms of dataflow equations, information-flow relations, 

dependence graph or graph reachability (Singh et al., 2014). Weiser’s slicing approach 

is based on the iteration of dataflow equations. The slices are computed using an 

iterative process by calculating consecutive sets of relevant variables for each node in 

the control flow graph. Any input value can be utilised with a static slice. C = (x, y) 

denotes a static slicing criterion, where x denotes a programme statement, and y 

denotes a subset of programme variables. In Figure 2.3, which is an example 
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programme, shows the static slice condition as <11, a>. The end outcome is a 

collection of statements <4, 5, 6, 8, 9>. 

Tracing errors may be difficult since static slices include all possible 

executions. To address this, the notion of dynamic slices was created. Korel proposed 

the notion of the dynamic slice in 1988 (Sikka & Kaur, 2013). Dynamic slice being 

created for distinguished input variable is more précised over static slice and overcome 

the problems faced by static slicing in arrays and pointers of not knowing the result 

information about a specific element of an array because of the array being treated as 

a single variable in static approach (Sikka & Kaur, 2013). Dynamic slices are 

programme statements that only alter the slicing criterion for a single input run.  

 

 

Figure 2.3: Static Slice 

Next, Figure 2.4 shows a sample programme to be sliced. The variable for 

which slicing is to be performed is p, the slicing point is the program’s finish, and the 

input supplied is n = 0. 
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Figure 2.4: Dynamic Slice 

2.3.1.2 Slicing Direction 

Slicing direction can be forward or backward. Forward slice covers any parts of a 

programme that are possibly affected by the slicing requirement since it rely on it.  

This technique helps in knowing the effect of modifications in a part of the program 

on other parts. This technique was first time used by Reps and Bricker in 1989 and 

defined as: “A forward slicing of a program with respect to a program point p and set 

of program variables V consists of all statements and predicates in the program that 

may be affected by the value of variables in V at p” (Singh & Singh, 2014). In the 

forward slice, the programme is traversed in the forward direction. The forward slice 

lists all the programme statements impacted by the slicing criterion. C is an 

abbreviation for the letter C (x, y), x is the statement number, and y is the slice variable. 

Examine the sample programme in Figure 2.5. C = stands for the forward slicing 

criteria (3, mark1). The slice contains all of the statements in the programme that are 

impacted by the variable ‘mark1’ defined in statement number 3. 

Meanwhile, the backward slide includes all aspects of a programme that may 

impact the slicing criterion due to the reliance on those parts. Weiser defined 

backwards slicing as: “A backward slice concerning a program point p and set of 

program variables V consists of statements and predicates in the program that may 

affect the value of variables in V at p” (Munjal, 2015). It contains the statements and 

control predicates of the program having some effect on the slicing criterion.  
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Figure 2. 5: Forward Slicing 

Note that C = (x, y) is the backward slicing criteria. The statement number is 

‘x’, and the slice variable is ‘y’. Take a look at the example programme in Figure 2.6 

where C = (12, i). All programme statements that affect the value of the variable i in 

statement number 12 are shown. 

 

Figure 2.6: Backward Slicing 

2.3.2  Slicing in Java Programing  

Object-oriented (OO) programme slicing has distinct challenges than procedure-

oriented programme slicing. Classes, dynamic binding, encapsulation, inheritance, 
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message passing, and polymorphism are special OO programmes that require extra 

attention since it create new dependencies between instructions (Alokush et al., 2018). 

Although these features benefit OO programmes, it may affect slice precision. 

Many researchers, like Allen & Horwitz (2003), Chen & Xu (2001), Hammer 

& Snelting (2004), Li et al. (2004), and Wang & Roychoudhury (2004), have proposed 

different approaches for calculating Java programme slices. A number of the slicing 

mechanisms are based on dependency graphs, such as Program Dependency Graph 

(PDG) and System Dependency Graph (SDG), while others are based on an analysis 

of Java bytecode. To overcome the restrictions and improve the efficiency of OO 

slicing techniques, Kovacs et al. (1996) developed a static inter-procedural slicing of 

Java programmes. This approach focuses on expressing particular Java features to 

increase the efficiency of the slicing process (Chandra et al., 2015). The suggested 

slicing approach supports static variables, multiple packages, and interfaces. It also 

enhanced the program’s SDG by providing polymorphic calls that eliminated the need 

for extra nodes. 

Chen et al. (2001) created a novel approach for visually presenting the OO Java 

programme. Alokush et al.(2018), discussed the many dependencies that might occur 

in a Java programme and recommended class slicing depending on the programme 

dependency Graph (PDG). In this technique, the programme dependency graph 

comprises a collection of separate PDGs. 

Based on this new model for representing programs, Chen et al. (2001) 

introduced the concept of class slicing, partial slicing and object slicing. Allen et al. 

(2003) utilized SDG to improve on the work of Chen et al. (2001) on programme 

slicing (Panda & Mohapatra, 2013). In this article, they proposed programme slicing 

to be applied in the presence of exceptions. Because the programme had try-catch and 

throw blocks, the emphasis was primarily on establishing control and data 

dependencies. Other Java-specific features (including template classes, interface, 

super, and polymorphic calls) have not been tested for slicing.  

Wang et al. (2004) proposed a compressed byte-code tracing method for slicing 

Java programmes. Wang et al., (2017) extended his work to represent the byte-code 

associated with an execution trace for a Java application. Next, it reverse-engineered 

the execution route to discover the control and data dependencies on the slicing 
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criterion. In order to implement this approach, a trace table must be constructed for 

each technique. This way of computing slices is inefficient if a programme has too 

many methods. This is due to the increased execution cost involved in maintaining 

execution trace tables.  

Li et al. (2004) developed a hierarchical slicing approach for slicing Java 

programmes. The slicing algorithm is implemented using the JATO tool. The 

hierarchical slices are computed level by level, beginning at the package level and 

ending at the statement level (Li et al., 2013). Work by Li et al. (2004) resulted in a 

level-by-level graphical representation of object-oriented programmes at various 

levels of programme organisation, including package, class, method, and statement. 

The four distinct graphs generated at each level are the Package Level Dependence 

Graph (PLDG), Class Level Dependence Graph (CLDG), Method Level Dependence 

Graph (MLDG), and System Level Dependence Graph (SLDG). To achieve 

hierarchical slicing, it is necessary to develop four distinct slicing criteria, one for each 

level of hierarchy. A graph traversed from package level to statement level produced 

imperfect slices. 

All of the primary research, including Allen & Horwitz (2003), Chen & Xu 

(2001), Hammer & Snelting (2004), Li et al. (2004), and Wang & Roychoudhury 

(2004), advocated slicing Java programmes by taking a specific characteristic or kind 

of dependence inherent in a Java programme into consideration. The total impact of 

features on dependencies, such as dependencies caused by packages and other 

particular Java features, is ignored. The proposed technique went great to analyse all 

possible dependencies in OO programmes and calculate a more exact slice. Slicing is 

one of the way to do regression testing. First, it is needed to determine which 

statements are affected by the new statement and which might be affected by the 

change. However, most methods currently available are based on forwarding or 

backward traversal. In this study, the proposed approach was more effective for 

regression testing because of the following factors: forward and backward slicing, 

which may both be used to gather effective change impact information, since it 

identifies precisely those program parts that may be affected or get affected by the 

change. The input that the slicing algorithm takes is usually an intermediate 

representation of the program under consideration. Normally, the intermediate 
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representation of the program under consideration is a dependency graph (Selamat & 

Ngah, 2017). 

2.4 Program Graph Representation  

Based on the literature, it is suggested not to evaluate the entire source code for 

efficient and effective regression testing but instead to focus on the parts of the code 

failing at a particular execution point (Fang et al., 2014). In order to determine those 

high chances areas, there is a need to construct an intermediate representation that 

identifies precisely the program’s conditions. In addition to pseudocode, flowcharts, 

high-level source code, a collection of instructions in the memory of a computer. Each 

of these representations serves a different purpose, depending on the context in which 

it is used. The use of different representations may be required, for example, to aid 

human reading, the annotation for verification, and transformation for the processing 

of a program on multiprocessors and distributed computers. About program slicing, 

program representations are employed to aid in effective slicing automation (Mall & 

Kumar, 2004). 

A program graph is a graphical representation of a program source code 

consisting of a combinatorial structure composed of vertices (also known as points or 

nodes) linked by edges (Arora et al., 2012). Consider the vertices to be the destinations 

and the edges to be the paths. A graph can illustrate the flow of control between 

statements in a program. However, a dependence graph displays the characteristics and 

dependencies of the program across numerous objects. In order to discover interactions 

and relationships among program parts, it is crucial to graphically model the program 

under test using an intermediate graph representation (Mohapatra et al., 2004; 

Walkinshaw et al., 2003).  

Among program graphs that exist include the Data Flow Graph (DFG), 

Program Dependence Graph (PDG), System Dependence Graph (SDG), Extended 

System Dependence Graph (ESDG), and Call-based Object-Oriented System 

Dependence Graph (COSDG). Figure 2.7 shows the graph representation for a 
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computer program, consisting of three main types – the Control Flow Graph, the 

Program Dependency Graph, and the System Dependency Graph. 

 

 

Figure 2.7: Program Presentation using Graph  

2.4.1  Control Flow Graph  

A Control Flow Graph is a graphical representation of control flow or computation 

during the execution of programmes (CFG). A Control Flow Graph (CFG) represents 

the program with nodes and edges from the start node to the end node. A CFG 

represents the control dependencies of the program (Ngah et al., 2014). The control 

flow graph (CFG) is an intermediate programme model that may be utilised for data 

flow analysis and code optimizations such as common sub-expression elimination, 

copy propagation, and loop invariant code mobility. It is simple to encapsulate data for 
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each fundamental block. A control flow graph may quickly find inaccessible portions 

of a programme and uncover syntactic patterns such as loops. Consequently, the 

control flow graph comprises all flow diagram components, such as the start node, end 

node, and flows between nodes. 

 

 

Figure 2.8: Call Flow Graph Presentation 

Control Flow Graph will start from node 1 to read a variable, sequentially following 

node 2, and 3. At node 4 if the condition is true the program will proceed to node 5, 

and 6. Otherwise the program will move forward to node 7, further moving to end 

point as shown in Figure 2.8. 

2.4.2 Program Dependency Graph 

Program dependency analysis is a popular approach in software testing and debugging, 

and it is essential for programme comprehension (Shu et al., 2013). Dependency on 

the Program Graph represents a programme as a graph, with nodes representing 

statements and predicate expressions (Horwitz, Reps & Binkley, 2004). The edges 

occurrence on the node reflects the data values on which the node’s activities are 

reliant and the control conditions under which the operations are performed. A 
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Program Dependency Graph (PDG) may express both control and data dependency in 

a single graph, as illustrated in Figure 2.9. 

 

 

Figure 2.9: Program Dependence Graph Presentation 

Consider the program in Figure 2.9 that uses the code fragment to find the 

factorial of an integer. The control predicate at Statement 4 is required to execute 

Statement 5 and 6. Statement 4 relies on data from statements 1. The related PDG of 

the program is seen in Figure 2.9. The edge 5, and 6 have control dependency on edge 

4 as can be seen in program. It is highlighted in blue line. The remaining all edges have 

data dependency and highlighted in red line as can be seen in Figure 2.9.  

2.4.3 System Dependence Graph 

The System Dependence Graph (SDG) is a version of the Program Dependence Graph 

(PDG) that displays a programme with a large number of procedures and procedural 

calls (Chandra et al., 2015). SDG is a programming language in which parameters are 

supplied as values. A complete system consists of a single (main) programme plus a 

collection of auxiliary operations (Horwitz et al., 2004).  
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