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ABSTRACT 

The microgrid (MG) is a developed form of the distribution network integrated with 

different distributed generation (DG) types to supply local demand. MG protection is 

a challenge typically due to the growing penetration of DG. Therefore, traditional 

protection schemes are not appropriate for the MG system. Therefore, an appropriate 

protection scheme should be designed to protect the MG against all types of faults for 

both grid-connected and islanded modes for loop and radial configuration. This 

research presents a comprehensive protection scheme for an inverter-based MG. This 

scheme proposed an index based on positive sequence current to differentiate between 

fault on the protected line and fault at other lines. This index was applied as a means 

of the differential protection scheme for MG with multi-sources. Also, the scheme 

proposed a new R-ratio method to provide self-backup protection when the main 

protection fails. This method could overcome the low fault current problem of DG in 

the islanded mode. In order to evaluate the confirmation of the proposed scheme, a 

complete fault analysis for all selected locations in the MG test system has been carried 

out by using PSCAD/EMTDC software. The case studies considered in this study 

include single line-to-ground fault (SLGF), line-to-line fault (LLF), double-line-to 

ground fault (DLGF), and three-line to ground fault (LLLGF) for both operation 

modes, grid-connected and islanded, for radial and loop configuration.  Also, an 

unbalanced load was tested. The results show that the maximum fault clearing time for 

the main protection in grid-connected mode and islanded mode of 31.5 ms and 34 ms 

respectively. In contrast, the maximum fault clearing time for backup protection in 

grid-connected and islanded modes is 115.5 ms and 130 ms, respectively. Compared 

with other schemes, adaptive, signal processing, overcurrent, fault current limiter and 

traditional differential in terms of the operation speed of protection scheme and the 

existing backup protection, the proposed scheme has a faster clearing time.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vi 

 

ABSTRAK 

Mikrogrid (MG) ialah bentuk rangkaian pengedaran yang dibangunkan yang 

disepadukan dengan jenis penjanaan teragih (DG) yang berbeza untuk membekalkan 

permintaan tempatan. Perlindungan MG merupakan satu cabaran lazimnya disebabkan 

penembusan DG yang semakin meningkat. Oleh itu, skim perlindungan tradisional 

tidak sesuai untuk sistem MG. Oleh itu, skim perlindungan yang sesuai harus direka 

bentuk untuk melindungi MG daripada semua jenis kerosakan untuk kedua-dua mod 

bersambung grid dan pulau untuk konfigurasi gelung dan jejari. Penyelidikan ini 

membentangkan skim perlindungan komprehensif untuk MG berasaskan 

penyongsang. Skim ini mencadangkan indeks berdasarkan arus jujukan positif untuk 

membezakan antara kerosakan pada talian dilindungi dan kerosakan pada talian lain. 

Indeks ini digunakan sebagai satu cara skim perlindungan pembezaan untuk MG 

dengan pelbagai sumber. Juga, skim ini mencadangkan kaedah nisbah R baharu untuk 

menyediakan perlindungan sandaran diri apabila perlindungan utama gagal. Kaedah 

ini boleh mengatasi masalah arus kerosakan rendah DG dalam mod pulau. Bagi 

menilai pengesahan skim yang dicadangkan, analisis kerosakan lengkap untuk semua 

lokasi terpilih dalam sistem ujian MG telah dijalankan dengan menggunakan perisian 

PSCAD/EMTDC. Kajian kes yang dipertimbangkan dalam kajian ini termasuk sesar 

satu talian ke tanah (SLGF), sesar talian ke talian (LLF), sesar dua talian ke tanah 

(DLGF), dan sesar tiga talian ke tanah (LLLGF) untuk kedua-dua mod operasi, 

bersambung grid dan berpulau, untuk konfigurasi jejari dan gelung. Juga, beban yang 

tidak seimbang telah diuji. Keputusan menunjukkan bahawa masa pembersihan 

kerosakan maksimum untuk perlindungan utama dalam mod bersambung grid dan 

mod pulau masing-masing 31.5 ms dan 34 ms. Sebaliknya, masa pembersihan 

kerosakan maksimum untuk perlindungan sandaran dalam mod bersambung grid dan 

pulau ialah 115.5 ms dan 130 ms, masing-masing. Berbanding dengan skim lain, 

penyesuaian, pemprosesan isyarat, arus lebih, pengehad arus kerosakan dan 

pembezaan tradisional dari segi kelajuan operasi skim perlindungan dan perlindungan 
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sandaran sedia ada, skim yang dicadangkan mempunyai masa pembersihan yang lebih 

cepat. 
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    CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background  

In a conventional power system (PS), power is generated centrally and then transmitted 

to the customer using long transmission lines and distribution networks (DN). In this 

case, power flows are unidirectional in the DN. Nowadays, with the increase in load 

demand, developments in renewable energy sources (RES) technology and increasing 

concerns about global warming have led to a new trend of electricity production at the 

distribution level. These technologies are usually referred to as distributed generation 

(DG). The introduction of DGs causes significant changes in the network topology and 

its properties from the perspective of PS operation [1]–[3]. With DG integration, 

microgrid (MG) appears as another structure in PS.  

The MG has become a common term for DN that contains conventional DGs, 

RES, or both. The DGs include photovoltaic, wind power, hydro, gas turbine, diesel 

generator, microturbine, fuel cells, and battery storage [4].  From [5]–[9],  it can be 

observed that the number of MG is increasing with the trend of DGs based on RES. 

Furthermore, MG is also one of the possible solutions in improving the resiliency of 

DN  against extreme weather [10]. This shows the importance of MG in the current PS 

operations in maintaining PS reliability in various sections.   

MG is connected to the main grid by the point of common coupling (PCC), as 

shown in Figure 1.1. The ability of MG is to operate in both modes, islanded and grid-

connected, making it more reliable compared to conventional PS. In addition, MG 

helps to reduce power losses in a power network, increase the stability of the network, 

and enhance the power quality (PQ) [11]–[13]. 
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Figure 1.1: Single line diagram of MG 

For grid-connected mode, the load in the MG was supplied by the utility and 

MG sources. While during islanded mode, only MG sources will be responsible for 

power generation. The concept of the MG is becoming popular where MG is expected 

to provide many advantages over traditional systems as follows [10], [14]:   

• Increase reliability: MG provide a good solution to supply the islanded 

network during the disturbance in the main grid. 

• Improve energy efficiency: the generation efficiency of a large power plant 

generally is low can reach 30 – 47% with transmission loss. While the 

efficiency of the MG system can reach above 80% without any transmission 

loss. 
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• Reduce the overall operational burden: MG reduces the burden on the grid 

by participating in various auxiliary services. 

• Mitigate overload problems: a region of the PS is relieved by permitting a 

section of the PS to be islanded and eliminating load from the remainder of the 

PS.  

• Main grid maintenance: allow for maintenance on the PS while allowing 

purposely islanded customers to stay supplied. 

• Environmental benefits: using of RES contribute to reducing carbon 

emission.  

• Economic benefits: Increasing the demand requires the installation of 

additional transmission lines to transfer the power to the customers, while the 

cost is lower than with DGs, which are often built immediately close to the 

load. 

 

Despite the various advantages of MG, integrating a large number of DG sources 

will provide new problems to the DN protection system. As a result, the influence of 

DG on the DN must be carefully studied in order to provide proper protection design, 

allowing it to function successfully. The differential protection scheme is developed 

in this thesis based on a positive sequence index to protect the inverter-based MG 

system in both grid-connected and islanded operation modes. 

1.2 Problem Statement 

The MG represents one of the most important solutions to the problems of 

traditional generation-based fossil fuels. However, there are many technical challenges 

to ensure it operates effectively. MG protection and its entities are a significant 

impediment. The design of an appropriate protection scheme for MG is a major 

challenge for MG operation. The installation of DGs to the DN leads to multi-sources 

of the current, altering the current flow during a fault in a different section of the feeder 

circuit.  

Furthermore, there is a large difference in fault current level between the 

islanded and grid-connected modes. When the MG works independently of the main 

grid, the fault currents are small due to the limited current-carrying capacity of power 
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electronics devices. The fault current is merely 1.2–3 times of rated current in the case 

of inverter-based DGs (IBDGs) [15]–[17], while synchronous generators, in grid-

connected mode, can generate a fault current that is 4–10 times greater than IBDGs 

[18]. Thus, the coordination of traditional overcurrent (OC) protection is difficult for 

these two operation modes. 

The differential protection scheme considers as one of the potential solutions 

for MG protection because it has a high sensitivity, more reliability, sufficient 

selectivity and high-speed tripping.  However, the main disadvantage in this scheme 

is the need for an independent backup protection scheme, as there is a possibility that 

the communication system may fail. In addition to current transformer (CT) errors, CT 

matching and tap transformer. Adding backup protection means an additional cost due 

to installing other equipment (CT, VT, battery etc.) as well as to the complexity of 

coordination of the protective devices [17], [19], [20]. Therefore, a backup protection 

scheme that uses the same equipment as the main protection scheme is preferable from 

the operation point of view and the cost of the system. When PS is subjected to a fault 

and the main protection fail to clear this fault, the backup of the adjacent line must be 

energized and isolate the fault. 

1.3 Objectives of the study 

This study aims to protect the MG system having IBDGs in grid-connected and 

islanded modes of operation. The specific objectives of the work are: 

 

(i) To propose an index-based positive sequence fault current as a means to detect 

the fault in the protected line. 

 

(ii) To enhance the differential protection scheme for MG with multi-sources 

suitable for grid-connected and islanded modes of operations.  

 

(iii) To develop a self-backup protection scheme to protect the adjacent lines in case 

of failure of the main protection scheme. 
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