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ABSTRACT 

Software cost estimation is a complex and critical issue in software industry but it is 

an inevitable activity in the software development process. It is one of important 

factors for projects failure due to the ambiguity and uncertainty of software attributes 

at the early stages of software development. The estimation of effort in COCOMO II 

depends on several software attributes namely software size (SS), scale factors (SFs) 

and effort multipliers (EMs). Several researchers integrate COCOMO II with Artificial 

Neural Network (ANN) to overcome the ambiguous and uncertain of these attributes. 

However, ANN contributes to slow convergence caused by sigmoid function. Thus, 

this research proposes Hyperbolic Tangent activation function (Tanh) to be used in the 

hidden layer of the ANN architecture to produce faster convergence. Back-propagation 

learning algorithm is applied to the multilayer neural network for training and testing. 

The proposed activation function has been trained and tested using two different 

architectures of NN which are basic COCOMO II-NN and modified COCOMO II-NN 

that uses COCOMO II NASA93 dataset. The result has been compared to different 

activation functions namely Uni-polar sigmoid, Bi-polar sigmoid, Gaussian and 

Softsign. The experiment results indicate that Tanh with modified COCOMO II-NN 

architecture achieved 23.2780 % Mean Magnitude Relative Error (MMRE) for 19 

testing projects and 9.8948 % MMRE for 9 testing projects which is the lowest MMRE 

among other activation functions. In conclusion, Tanh with modified architecture of 

COCOMO II-NN provides much better estimation results than other methods and can 

lead to improvement of software estimates. 
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ABSTRAK 

Membuat anggaran  kos perisian adalah suatu aktiviti yang kompleks dan kritikal 

dalam industri perisian, namun ia merupakan aktiviti yang tidak dapat dielakkan dalam 

proses pembangunan perisian. Aktiviti ini juga merupakan salah satu faktor penting 

kegagalan projek kerana atribut perisian yang tidak jelas dan tidak pasti di peringkat 

awal pembangunan perisian.  Anggaran usaha dalam COCOMO II bergantung kepada 

beberapa atribut iaitu saiz perisian (SS), faktor skala (SFs) dan pengganda usaha 

(EMs). Beberapa penyelidik mengintegrasikan COCOMO II dengan Rangkaian 

Neural Buatan (ANN) untuk mengatasi masalah atribut perisian yang kabur dan tidak 

pasti. Walau bagaimanapun, ANN memperlahankan penumpuan yang disebabkan oleh 

fungsi sigmoid.  Oleh itu, kajian ini mencadangkan fungsi pengaktifan Tangent 

Hyperbolic (Tanh) untuk digunakan dalam lapisan tersembunyi senibina ANN untuk 

menghasilkan penumpuan yang lebih cepat. Algoritma rambatan balik digunakan 

untuk rangkaian neural berbilang lapisan untuk latihan dan ujian. Fungsi pengaktifan 

yang dicadangkan telah dilatih dan diuji menggunakan dua senibina rangkaian neural 

yang berlainan iaitu COCOMO II-NN asas dan COCOMO II-NN diubahsuai serta 

menggunakan COCOMO II NASA93 set data. Hasilnya telah dibandingkan dengan 

fungsi pengaktifan yang berbeza iaitu sigmoid Uni-polar, sigmoid Bi-polar, Gaussian 

dan Softsign. Keputusan eksperimen menunjukkan bahawa Tanh dengan senibina 

COCOMO II-NN diubahsuai mencapai 23.7780% magnitud min ralat nisbi (MMRE) 

untuk ujian kepada19 projek dan 9.8948% MMRE untuk ujian kepada 9 projek yang 

merupakan MMRE terendah di antara fungsi pengaktifan lain. Kesimpulannya, Tanh 

dengan seni bina COCOMO II-NN diubahsuai memberikan hasil anggaran yang lebih 

baik daripada kaedah lain dan boleh menyumbang kepada anggaran perisian yang 

lebih baik. 
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  CHAPTER 1 

INTRODUCTION 

Software cost estimation is the process to estimate the effort required to develop 

software engineering projects (Lindstrom, 2004). This estimating process is one of 

the most challenging tasks and complex activities in the area of software engineering 

and project management. Although software cost estimation may be an easy concept, 

it is in fact difficult and complicated issue (Jones, 2002). Several software cost 

estimation models have been proposed and developed such as Boehm’s Constructive 

Cost Model I and II or known as COCOMO 81 and COCOMO II, Expert Judgment 

(Boehm, Madachy & Steece, 2000a), Albrecht’s Function Point Analysis (FPA) 

(Albrecht, 1979) and Putnam’s Software Lifecycle Management (SLIM) (Putnam, 

1978) which can be classified into two categories namely algorithmic and non-

algorithmic models (Boehm et al., 2000a).  

Algorithmic models are established based on statistical analysis of past 

projects data such as cost drivers with its effort multipliers (EMs) and scale factors 

(SFs). Algorithmic models are also known as the conventional method that provides 

mathematical and experimental equations to compute software effort (Strike, El 

Emam & Madhavji, 2001; Khatibi & Jawawi, 2011). The most popular algorithmic 

cost estimation models are Constructive Cost Model (COCOMO 81 and COCOMO 

II), Function Point Analysis and Software Life Cycle Management. Algorithmic 

models need many specific requirements that are also known as software attributes 

for examples source line of code (SLOC), cost drivers, scale factors, number of user 

screen and interfaces. Software attributes are difficult to gain at the early stages of 

software development. Non-algorithmic models published in 1990s such as expert 

judgment, price-to-win, and machine learning approaches (Boehm et al., 1995; 

Boehm et al., 2000a). Non-algorithmic models provide powerful linguistic 
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representation that helps to represent more accurate software attributes and can 

overcome algorithmic models defects when combined with other methods such as 

Fuzzy Logic and Artificial Neural Networks (ANN) (Srinivasan & Fisher, 1995). 

COCOMO 81 is one of the most popular algorithmic software cost estimation 

model proposed in 1981 by Barry Boehm. It is one of the most well-known and 

widely used algorithmic cost estimation models in the 1980s. In 1990s, COCOMO 

81 faced many problems and difficulties in term of software estimation that are 

developed using new lifecycle processes approaches, for instance, rapid development 

and object-oriented approaches. Therefore, to avoid these problems, Boehm 

improved and published the latest version of COCOMO 81 that is COCOMO II in 

1995 (Boehm et al., 1995).  

COCOMO II is a model that thinks about the effort needed for software 

development (Boehm et al., 2000a). It provides accurate effort estimates for both 

current and likely future software projects (Boehm, Abts & Chulani, 2000b). It 

involves three sublevels which are Application-Composition model, Early Design 

model, and Post-Architecture model. The Application-Composition model supports 

the earliest phases or spiral cycles involved in prototyping the activities that occur in 

the SDLC. The Early Design model is a high-level model that supports the next 

phase or spiral cycles that involves alternatives for exploring architecture or 

strategies for incremental development. Post-Architecture model is suitable for 

projects that are ready to be developed and it is a more detailed and widely used 

model (Boehm et al., 2000a). 

 

1.1 Research Motivation  

Accurate software cost estimation is highly required in software project management 

(Boehm et al., 2000a). The software cost estimation is very critical in software 

engineering and it is an important factor for project failures. This reason motivates 

the researchers to conduct research on software estimation for better estimations 

(Lynch, 2009). Accurate software estimates at the early phase of software 

development is one of the crucial objectives in software project management because 

of the ambiguity and uncertainty of software attributes due to the difficulty to obtain 

these attributes at the early stages of the software development (Boehm, 1981).  
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COCOMO II issoftware cost estimation model developed to improve 

estimation accuracy (Boehm et al., 2000a). Several research attempts to enhance the 

existing COCOMO II model to produce better estimation accuracy by incorporating 

the model with other techniques such as soft computing techniques. One of the most 

popular soft computing techniques is ANN. Many researchers show that COCOMO 

II produces more accurate results while incorporated with ANN and can overcome 

the ambiguity and uncertainty of the software attributes (Kaushik Soni & Soni., 

2013; Dan, 2013; Attarzadeh & Ow, 2014; Sarno et al., 2015a; Rijwani & Jain, 2016; 

Strba et al., 2017). 

In a broad sense, a neural network structure is usually developed to match the 

present problem. Many network architectures have been developed for various 

applications. The performance of a neural network relies on the architecture and their 

parameters. There are many parameters controlling the architecture of the neural 

network including number of layers, number of nodes in each layer, activation 

function in each node, learning algorithm and weights which determine the 

connectivity between nodes. There is no standard for a perfect parameter in neural 

network, even small changes of the parameter can cause major variations in the 

network performance (Senyard, Kazmierczak & Sterling, 2003). In COCOMO II-

NN, there are two different architectures for Multilayer Perceptron (MLP). They are 

basic COCOMO II-NN and modified COCOMO II-NN (Sarno et al., 2015a). 

Reddy & Raju (2009) proposed and improved the accuracy of COCOMO II 

using neural network with identity function and modified COCOMO II-NN. While, 

Kaushik et al. (2013) used the same approach with sigmoid activation function. But, 

the sigmoid function caused slow convergence for the Back-propagation (BP) 

learning algorithm of ANN (Segee, 1993). While, Bishap (1995) stated that the use 

of Tanh produced faster convergence of the learning algorithms compared to sigmoid 

function and the use of Tanh is more efficient for the performance of BP learning 

algorithm. 

Another study was conducted by Poonam and Sonal (2016) to improve 

COCOMO II model using the basic COCOMO II-NN with Hyperbolic Tangent 

activation function (Tanh). On the other hand, Sarno et al. (2015a) claimed that the 

modified COCOMO II-NN is more accurate than the basic COCOMO II-NN using 

sigmoid function. Thus, this research is inspired from the architecture developed by 

Kaushik et al. (2013) and explores the impact and usability of Tanh on modified 
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COCOMO II-NN to overcome the limitation of sigmoid function. This research 

accommodates the COCOMO II Post-Architecture model using modified COCOMO 

II-NN with Hyperbolic Tangent activation function (Tanh) in its hidden layer. 

1.2 Aims and Objectives 

 

The aim of this research is to improve the accuracy of COCOMO II and develop a 

model, namely COCOMO II-NN-Tanh for estimating software effort by 

incorporating COCOMO II and ANN with Tanh activation function. The study 

embarks on the following objectives: 

I. To propose and develop COCOMO II-NN-Tanh based on BP learning 

algorithm. 

II. To evaluate and compare the results of COCOMO II-NN-Tanh with other 

models that use other activation functions namely Uni-polar sigmoid, Bi-

polar sigmoid, Gaussian and Softsign. 

 

1.3 Scope of the Study 

This research integrated COCOMO II and ANN with Tanh. This research focused on 

the Post-Architecture model of COCOMO II with BP learning algorithm. Two 

different architectures of ANN ware used. They are basic and modified COCOMO 

II-NN. 

Tanh has good performance for the prediction problems in the modified 

COCOMO II-NN. Nonetheless, Tanh has limitation on the basic architecture due to 

the characteristics of the basic COCOMO II-NN when used gaussian function. MLP 

that used gaussian function and has three layers is called Radial Basic Neural 

Network (RBNN). The main advantages of the RBNN over other MLP networks 

include fast learning (Lee et al., 1999), easy design, good generalization, strong 

tolerance to input noise and online learning ability (Yu et al., 2011). Thus, these 

contributions show that the gaussian function more suitable for the basic COCOMO 

II-NN and Tanh is more suitable for the modified COCOMO II-NN architecture.  

Besides, COCOMO II NASA93 dataset was used for training and testing 

processes which has 93 projects that are available on the public domain from TERA 
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(2016). The entire COCOMO II NASA93 dataset was attached in APPENDIX A. 

The training, testing, implementation and calculation for this study were done using 

MATLAB (R2013a). 

 

1.4 Significance of the Study 

 

This study mainly concerned on how to improve the estimation accuracy of 

COCOMO II because as mentioned earlier, this model can be helpful in predicting 

the effort needed to develop a software. At the end of this research, it is found that 

the proposed method produced better result that is closer to the actual effort 

compared to the original COCOMO II. This implies that the proposed method 

managed to improve the estimation accuracy of COCOMO II.  

Inaccurate estimation is the main reason for projects failure and may cause 

projects to be terminated (Molokken & Jorgensen, 2003). As such, accuracy is a very 

important issue in software cost estimation especially for executives, managers, 

technical staff and particularly practitioners who carry out or depend on cost 

estimation (Kemerer, 1987). Accurate estimation of software development cost 

remains a challenge for software engineering research due to the shortcomings and 

inaccuracies of the models (MacDonell & Gray, 1997). 

 

1.5 Thesis Outline 

This chapter had described the research motivation, aims and objectives, scope of the 

research, as well as the structure of the whole thesis. The rest of the thesis was 

organized as follows. 

Chapter 2 focuses on the overview of the software cost estimation, as well as 

algorithmic models. The discussion then continues with the description of activation 

functions, evaluation criteria and comparison made between of the existing 

techniques.  

Chapter 3 illustrates the research methodology and discusses on two main 

steps of this research which include COCOMO II-NN-Tanh processes and evaluation 

and comparison of the developed model with other models.  
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Chapter 4 The implementation of ANN with COCOMO II is discuss. Then 

discussion on the dataset. The results then compare with two different architectures 

namely basic COCOMO II-NN and modified COCOMO II-NN. Results obtain will 

analyze based on Magnitude of Relative Error (MRE) and Mean Magnitude of 

Relative Error (MMRE) evaluation criteria.  

Finally, Chapter 5 concludes the thesis and presents several 

recommendations for future work. 
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  CHAPTER 2  

LITERATURE REVIEW 

This chapter presents a report of studies found in the literature related to the research. 

Section 2.1 described the terms used in this research in detail and explored the main 

topics of the research including software cost estimation models. Section 2.2 

discussed on the activation functions and their different types. A general overview of 

the evaluation criteria was discussed in Section 2.3. Section 2.4 discussion of the 

analysis of variance (ANOVA). A systematic literature review is presented in 

Section 2.5. Section 2.6 summarized the whole chapter. 

2.1 Software Cost Estimation 

Software cost estimation is the process to estimate and predict the effort needed to 

develop a software. It is the most crucial and challenging task in software project 

management in specific and software engineering field in general (Jones, 2002). 

Software project managers and developers are interested to accurately estimate the 

effort needed at the early stage of software development. This process estimates the 

effort required to develop software based on the software attributes. The degree of 

accuracy is measured by comparing the effort obtained from the estimation process 

with the actual effort obtained from the dataset. The estimation is considered more 

accurate when the estimated effort is closest to the actual effort. Several software 

cost estimation models have been developed and improved (Boehm, 1981; Albrecht, 

1979; Putnam, 1978; Patil et al., 2014). The software cost estimation models are 

divided into two major categories which include algorithmic and non-algorithmic 

models (Boehm, 1981). The algorithmic models have many advantages although it is 

difficult to learn models and needs large data for learning. Algorithmic models use 

mathematical formula to estimate project effort based on the project size and other 
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software attributes (Boehm, 1981). The most popular algorithmic cost estimation 

models are Boehm’s Constructive Cost Model (COCOMO 81 and COCOMO II), 

Albrecht’s Function Point Analysis (Albrecht, 1979) and Putnam’s Software 

Lifecycle Management (Putnam, 1978). On the other hand, non-algorithmic models 

are easy to learn but require complete information on one very similar previous 

project to be compared with current software project (Bardsiri et al., 2012). Non-

algorithmic models were established based on heuristic approaches and experts’ 

knowledge. Expert Judgement and Top-Down models belong to this category. The 

limitations of algorithmic models lead to the exploration of non-algorithmic models 

which are soft computing based. Non-algorithmic models need to have the 

knowledge of a previously completed project that is similar to the current software 

project. Estimation is done on the basis of analysis of previous software projects or 

datasets. Some of the techniques based on non-algorithmic models for cost 

estimation are artificial neural networks (ANNs) and fuzzy logic (FL) (Shekhar & 

Kumar, 2016). Thus, it was observed by Shekhar and Kumar (2016) that the 

integration of these two categories produced more efficient and accurate estimation 

models. 

2.1.1 COCOMO II 

COCOMO II is the latest version of COCOMO 81 developed by Boehm in 1995 and 

it is the most popular and well-known cost estimation model (Tailor, Saini & 

Rijwani, 2014) due to its flexibility and simplicity for estimating the effort expressed 

in terms of person-months (PM). PM refered to amount of time one person spends 

working on the software development project for one month. COCOMO II is used to 

estimate project effort required to develop a software project. Boehm et al. (2000a) 

categorizes the entire COCOMO II model into three sublevels or models. They are: 

• Application-Composition model: This model is suitable for quickly developed 

applications using interoperable components like components based on graphical 

user interface builders and is based on new object point’s estimation. 

• Early Design model: This model is used in the early stages of a software project 

and can be used in Application Generator, System Integration or Infrastructure 

Development Sector. It uses Unadjusted Function Points as the measure of size. 
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• Post-Architecture model: This is the most detailed of the three and is used after 

the overall architecture for the project has been designed and could use either 

function points or line of code as size estimates.  

In COCOMO II, there are several fundamental software attributes used to 

estimate the effort required for developing a system which are software size (SS), 

cost drivers with its Effort Multipliers (EMs) and scale factors (SFs) (Boehm et al., 

2000a). COCOMO II Post-Architecture model and its software attributes is defined 

by Equation 2.1. 

 

                  

(2.1)  

              Where           

 

    

For Post-Architecture model, there are 17 cost drivers with its EMs, 5 SFs 

and 1 SS as shown in Figure 2.1 

 
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