
PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

IMPROVING MODIFIED COCOMO II ARTIFICIAL NEURAL NETWORK

USING HYPERBOLIC TANGENT ACTIVATION FUNCTION

SARAH ABDULKAREM ABDULAZIZ AL-SHALIF

A thesis submitted in

 fulfillment of the requirement for the award of the

Degree of Master of Information Technology

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

December, 2017

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iii

DEDICATION

"In the name of Allah, The Most Gracious, Most Merciful".

Special dedication to my family, to my husband, Abdullah Faisal Alshalif.

To my supervisor, Dr. Noraini Binti Ibrahim. To my friends.

Hearty thanks for the love, support, motivation, encouragement throughout this

journey this dissertation is dedicated to all of you.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iv

ACKNOWLEDGEMENT

First and foremost, all the thanks and blessing to the almighty Allah for the strength to

complete this journey. At this moment, I would like to express my special gratitude to

my precious supervisor, Dr. Noraini Binti Ibrahim for her guidance, patience, advises,

ideas, knowledge and vitality till the end of the voyage. I would like to thank the

Ministry of Higher Education for sponsoring this research through Fundamental

Research Grant Scheme (FRGS) vote number 1610 and thank to the Centre for

Graduate Studies (CGS) and the Office of Research, Innovation, Commercialization

and Consultancy (ORICC) for the support towards my postgraduate studies.

I am obligated to my dearest family for the endless support, prayer and love.

My special appreciation to all my friends. My acknowledgment also goes to the

Faculty of Computer Science and Information Technology for the cooperation and

accommodations. The least, it is my pleasure to thank to whoever has helped me either

directly or indirectly. I would not be able to accomplish this work without the help and

support from everyone related in various ways. Thanks.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

v

ABSTRACT

Software cost estimation is a complex and critical issue in software industry but it is

an inevitable activity in the software development process. It is one of important

factors for projects failure due to the ambiguity and uncertainty of software attributes

at the early stages of software development. The estimation of effort in COCOMO II

depends on several software attributes namely software size (SS), scale factors (SFs)

and effort multipliers (EMs). Several researchers integrate COCOMO II with Artificial

Neural Network (ANN) to overcome the ambiguous and uncertain of these attributes.

However, ANN contributes to slow convergence caused by sigmoid function. Thus,

this research proposes Hyperbolic Tangent activation function (Tanh) to be used in the

hidden layer of the ANN architecture to produce faster convergence. Back-propagation

learning algorithm is applied to the multilayer neural network for training and testing.

The proposed activation function has been trained and tested using two different

architectures of NN which are basic COCOMO II-NN and modified COCOMO II-NN

that uses COCOMO II NASA93 dataset. The result has been compared to different

activation functions namely Uni-polar sigmoid, Bi-polar sigmoid, Gaussian and

Softsign. The experiment results indicate that Tanh with modified COCOMO II-NN

architecture achieved 23.2780 % Mean Magnitude Relative Error (MMRE) for 19

testing projects and 9.8948 % MMRE for 9 testing projects which is the lowest MMRE

among other activation functions. In conclusion, Tanh with modified architecture of

COCOMO II-NN provides much better estimation results than other methods and can

lead to improvement of software estimates.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vi

ABSTRAK

Membuat anggaran kos perisian adalah suatu aktiviti yang kompleks dan kritikal

dalam industri perisian, namun ia merupakan aktiviti yang tidak dapat dielakkan dalam

proses pembangunan perisian. Aktiviti ini juga merupakan salah satu faktor penting

kegagalan projek kerana atribut perisian yang tidak jelas dan tidak pasti di peringkat

awal pembangunan perisian. Anggaran usaha dalam COCOMO II bergantung kepada

beberapa atribut iaitu saiz perisian (SS), faktor skala (SFs) dan pengganda usaha

(EMs). Beberapa penyelidik mengintegrasikan COCOMO II dengan Rangkaian

Neural Buatan (ANN) untuk mengatasi masalah atribut perisian yang kabur dan tidak

pasti. Walau bagaimanapun, ANN memperlahankan penumpuan yang disebabkan oleh

fungsi sigmoid. Oleh itu, kajian ini mencadangkan fungsi pengaktifan Tangent

Hyperbolic (Tanh) untuk digunakan dalam lapisan tersembunyi senibina ANN untuk

menghasilkan penumpuan yang lebih cepat. Algoritma rambatan balik digunakan

untuk rangkaian neural berbilang lapisan untuk latihan dan ujian. Fungsi pengaktifan

yang dicadangkan telah dilatih dan diuji menggunakan dua senibina rangkaian neural

yang berlainan iaitu COCOMO II-NN asas dan COCOMO II-NN diubahsuai serta

menggunakan COCOMO II NASA93 set data. Hasilnya telah dibandingkan dengan

fungsi pengaktifan yang berbeza iaitu sigmoid Uni-polar, sigmoid Bi-polar, Gaussian

dan Softsign. Keputusan eksperimen menunjukkan bahawa Tanh dengan senibina

COCOMO II-NN diubahsuai mencapai 23.7780% magnitud min ralat nisbi (MMRE)

untuk ujian kepada19 projek dan 9.8948% MMRE untuk ujian kepada 9 projek yang

merupakan MMRE terendah di antara fungsi pengaktifan lain. Kesimpulannya, Tanh

dengan seni bina COCOMO II-NN diubahsuai memberikan hasil anggaran yang lebih

baik daripada kaedah lain dan boleh menyumbang kepada anggaran perisian yang

lebih baik.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vii

TABLE OF CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS AND ABBREVIATIONS xiii

LIST OF PUBLICATIONS xv

LIST OF APPENDICES xvi

CHAPTER 1 INTRODUCTION 1

1.1 Research motivation 2

1.2 Aims and objectives 4

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

viii

1.3 Scope of the study 4

1.4 Significant of the study 5

1.5 Thesis outline 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Software cost estimation 7

2.1.1 COCOMO II 8

2.1.2 Function Point Analysis (FPA) 23

2.1.3 Software Lifecycle Management (SLIM) 24

2.2 Activation functions 24

2.2.1 Identity activation function 25

2.2.2 Sigmoid activation function 26

2.2.3 Gaussian activation function 27

2.2.4 Softsign activation function 28

2.2.5 Hyperbolic tangent activation function 29

2.2.6 Comparison of the activation functions 30

2.3 Evaluation criteria 31

2.3.1 Difference criteria of accuracy 31

2.3.2 Ratio criteria of accuracy 31

2.4 Analysis of variance (ANOVA) 32

2.5 COCOMO models using Artificial Neural Network

 (ANN) 34

2.5.1 COCOMO 81 using ANN 34

2.5.2 COCOMO II using ANN 37

2.5.3 COCOMO 81 and COCOMO II using ANN 42

2.6 Chapter Summary 44

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

ix

CHAPTER 3 RESEARCH METHODOLOGY 45

3.1 Research Processes 45

3.1.1 Step 1: COCOMO II-NN-Tanh processes 47

3.1.2 Step 2: Evaluation and comparison 64

3.2 Chapter Summary 64

CHAPTER 4 RESULTS AND DISCUSSIONS 65

4.1 Implementation details 65

4.2 Discussion on dataset 65

4.3 Evaluation and comparison 66

4.3.1 Basic COCOMO II-NN 66

4.3.2 Modified COCOMO II-NN 71

4.4 Chapter summary 75

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 76

5.1 Achievements of objectives 76

5.2 Contribution of the study 78

5.3 Recommendations for future work 78

REFERENCES 80

APPENDIX A 88

VITA

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

x

LIST OF TABLES

2.1 COCOMO II Cost Drivers 12

2.2 COCOMO II Cost Drivers with Effort Multipliers 12

2.3 COCOMO II Scale Factors and their description 14

2.4 COCOMO II Scale factors and their values 14

2.5 Complexity weights with corresponding number of UFP 23

2.6 Comparison of the activation functions 30

2.7 Comparison of COCOMO 81 model using ANN 36

2.8 Comparison of COCOMO II model using ANN 40

2.9 Comparison of COCOMO 81 and COCOMO II model using ANN 43

3.1 List of dataset partition of the COCOMO II-NN-Tanh 52

3.2 Comparison of old algorithm and COCOMO II-NN-Tanh for training

 Basic COCOMO II-NN 53

3.3 List of input nodes of the basic COCOMO II-NN 53

3.4 Comparison of old algorithm and COCOMO II-NN-Tanh for training

 modified COCOMO II-NN 57

3.5 List of input nodes of the modified COCOMO II-NN 57

3.6 Comparison of old algorithm and COCOMO II-NN-Tanh for testing

 basic COCOMO II-NN 61

3.7 Comparison of old algorithm and COCOMO II-NN-Tanh for testing

 modified COCOMO II-NN 62

4.1 Steps on the use of dataset 66

4.2 Learning rate in basic COCOMO II-NN 67

4.3 MRE in for basic COCOMO II-NN for 20% testing data 69

4.4 MMRE in basic COCOMO II-NN for 20% testing data 69

4.5 MRE in basic COCOMO II-NN for 10% testing data 70

4.6 MMRE in basic COCOMO II-NN for 10% testing data 71

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xi

4.7 Learning rate in modified COCOMO II-NN 72

4.8 MRE in modified COCOMO II-NN for 20% testing data 73

4.9 MMRE in modified COCOMO II-NN for 20% testing data 74

4.10 MRE in modified COCOMO II-NN for 10% testing data 74

4.11 MMRE in modified COCOMO II-NN for 10% testing data 75

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xii

LIST OF FIGURES

2.1 Software attributes in COCOMO II Post-Architecture Model 10

2.2 Architecture of a simple node 15

2.3 Architecture of feed-forward and feedback networks 16

2.4 Single layer perceptron 16

2.5 Multilayer perceptron 17

2.6 Architecture of FLANN 18

2.7 Schematic diagram of a MLP 19

2.8 Schematic diagram of a RBNN model 20

2.9 Schematic diagram of a GRNN model 20

2.10 FL-COCOMO II steps 22

2.11 Identity activation function 25

2.12 Uni-polar sigmoid activation function 26

2.13 Bi-polar sigmoid activation function 27

2.14 Gaussian activation function 28

2.15 Softsign activation function 28

2.16 Hyperbolic tangent activation function 29

3.1 Research processes for this study 46

3.2 Basic COCOMO II-NN Architecture 49

3.3 Modified COCOMO II-NN Architecture 50

3.4 Basic COCOMO II-NN training process 56

3.5 Modified COCOMO II-NN training process 60

3.6 Basic COCOMO II-NN testing process 62

3.7 Modified COCOMO II-NN testing process 63

4.1 Learning rate in basic COCOMO II-NN 68

4.2 Learning rate in modified COCOMO II-NN 72

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

COCOMO 81

COCOMO II

-

-

Constructive Cost Model I

Constructive Cost Model II

SLIM

FPA

-

-

Software Lifecycle Management

Function Point Analysis

EMs - Effort Multipliers

SFs - Scale Factors

SLOC - Source Line of Code

ANN - Artificial Neural Network

Tanh - Hyperbolic Tangent Activation Function

BP - Back-propagation

MRE - Magnitude of Relative Error

MMRE - Mean Magnitude of Relative Error

SS - Software Size

FP - Function Point

ILF - Internal Logical Files

ELF - External Logical Files

EI - External Inputs

EO - External Outputs

EQ - External inquiries

FLANN - Functional link Artificial Neural Network

MLP - Multilayer Perceptron

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiv

RBFNN - Radial Basis Function Neural Network

GRNN - General Regression Neural Network

PRED - Prediction Level

RMSRE - Root Mean Square Relative Error

PSO - Particle Swarm Optimization

PCA - Principle Component Analysis

b - Bias

δ - Error correction

α - Learning rate

i - Number of inputs

n - Number of nodes

e - Natural logarithms

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xv

LIST OF PUBLICATIONS

1. Alshalif, S. A., Ibrahim, N. & Herawan, T. (2016). Artificial Neural Network with

Hyperbolic Tangent Activation Function to Improve the Accuracy of COCOMO

II Model. In International Conference on Soft Computing and Data Mining.

Springer, Cham. pp. 81-90. SCOPUS indexed.

2. Alshalif, S. A., Ibrahim, N., & Waheeb, W. (2017). Improving the Accuracy of

COCOMO II Effort Estimation Based on Neural Network with Hyperbolic

Tangent Activation Function. Journal of Telecommunication, Electronic and

Computer Engineering (JTEC), Vol. 9, No. 3-5, pp. 77-82. SCOPUS indexed.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A COCOMO II NASA93 dataset 88

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

 CHAPTER 1

INTRODUCTION

Software cost estimation is the process to estimate the effort required to develop

software engineering projects (Lindstrom, 2004). This estimating process is one of

the most challenging tasks and complex activities in the area of software engineering

and project management. Although software cost estimation may be an easy concept,

it is in fact difficult and complicated issue (Jones, 2002). Several software cost

estimation models have been proposed and developed such as Boehm’s Constructive

Cost Model I and II or known as COCOMO 81 and COCOMO II, Expert Judgment

(Boehm, Madachy & Steece, 2000a), Albrecht’s Function Point Analysis (FPA)

(Albrecht, 1979) and Putnam’s Software Lifecycle Management (SLIM) (Putnam,

1978) which can be classified into two categories namely algorithmic and non-

algorithmic models (Boehm et al., 2000a).

Algorithmic models are established based on statistical analysis of past

projects data such as cost drivers with its effort multipliers (EMs) and scale factors

(SFs). Algorithmic models are also known as the conventional method that provides

mathematical and experimental equations to compute software effort (Strike, El

Emam & Madhavji, 2001; Khatibi & Jawawi, 2011). The most popular algorithmic

cost estimation models are Constructive Cost Model (COCOMO 81 and COCOMO

II), Function Point Analysis and Software Life Cycle Management. Algorithmic

models need many specific requirements that are also known as software attributes

for examples source line of code (SLOC), cost drivers, scale factors, number of user

screen and interfaces. Software attributes are difficult to gain at the early stages of

software development. Non-algorithmic models published in 1990s such as expert

judgment, price-to-win, and machine learning approaches (Boehm et al., 1995;

Boehm et al., 2000a). Non-algorithmic models provide powerful linguistic

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2

representation that helps to represent more accurate software attributes and can

overcome algorithmic models defects when combined with other methods such as

Fuzzy Logic and Artificial Neural Networks (ANN) (Srinivasan & Fisher, 1995).

COCOMO 81 is one of the most popular algorithmic software cost estimation

model proposed in 1981 by Barry Boehm. It is one of the most well-known and

widely used algorithmic cost estimation models in the 1980s. In 1990s, COCOMO

81 faced many problems and difficulties in term of software estimation that are

developed using new lifecycle processes approaches, for instance, rapid development

and object-oriented approaches. Therefore, to avoid these problems, Boehm

improved and published the latest version of COCOMO 81 that is COCOMO II in

1995 (Boehm et al., 1995).

COCOMO II is a model that thinks about the effort needed for software

development (Boehm et al., 2000a). It provides accurate effort estimates for both

current and likely future software projects (Boehm, Abts & Chulani, 2000b). It

involves three sublevels which are Application-Composition model, Early Design

model, and Post-Architecture model. The Application-Composition model supports

the earliest phases or spiral cycles involved in prototyping the activities that occur in

the SDLC. The Early Design model is a high-level model that supports the next

phase or spiral cycles that involves alternatives for exploring architecture or

strategies for incremental development. Post-Architecture model is suitable for

projects that are ready to be developed and it is a more detailed and widely used

model (Boehm et al., 2000a).

1.1 Research Motivation

Accurate software cost estimation is highly required in software project management

(Boehm et al., 2000a). The software cost estimation is very critical in software

engineering and it is an important factor for project failures. This reason motivates

the researchers to conduct research on software estimation for better estimations

(Lynch, 2009). Accurate software estimates at the early phase of software

development is one of the crucial objectives in software project management because

of the ambiguity and uncertainty of software attributes due to the difficulty to obtain

these attributes at the early stages of the software development (Boehm, 1981).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

3

COCOMO II issoftware cost estimation model developed to improve

estimation accuracy (Boehm et al., 2000a). Several research attempts to enhance the

existing COCOMO II model to produce better estimation accuracy by incorporating

the model with other techniques such as soft computing techniques. One of the most

popular soft computing techniques is ANN. Many researchers show that COCOMO

II produces more accurate results while incorporated with ANN and can overcome

the ambiguity and uncertainty of the software attributes (Kaushik Soni & Soni.,

2013; Dan, 2013; Attarzadeh & Ow, 2014; Sarno et al., 2015a; Rijwani & Jain, 2016;

Strba et al., 2017).

In a broad sense, a neural network structure is usually developed to match the

present problem. Many network architectures have been developed for various

applications. The performance of a neural network relies on the architecture and their

parameters. There are many parameters controlling the architecture of the neural

network including number of layers, number of nodes in each layer, activation

function in each node, learning algorithm and weights which determine the

connectivity between nodes. There is no standard for a perfect parameter in neural

network, even small changes of the parameter can cause major variations in the

network performance (Senyard, Kazmierczak & Sterling, 2003). In COCOMO II-

NN, there are two different architectures for Multilayer Perceptron (MLP). They are

basic COCOMO II-NN and modified COCOMO II-NN (Sarno et al., 2015a).

Reddy & Raju (2009) proposed and improved the accuracy of COCOMO II

using neural network with identity function and modified COCOMO II-NN. While,

Kaushik et al. (2013) used the same approach with sigmoid activation function. But,

the sigmoid function caused slow convergence for the Back-propagation (BP)

learning algorithm of ANN (Segee, 1993). While, Bishap (1995) stated that the use

of Tanh produced faster convergence of the learning algorithms compared to sigmoid

function and the use of Tanh is more efficient for the performance of BP learning

algorithm.

Another study was conducted by Poonam and Sonal (2016) to improve

COCOMO II model using the basic COCOMO II-NN with Hyperbolic Tangent

activation function (Tanh). On the other hand, Sarno et al. (2015a) claimed that the

modified COCOMO II-NN is more accurate than the basic COCOMO II-NN using

sigmoid function. Thus, this research is inspired from the architecture developed by

Kaushik et al. (2013) and explores the impact and usability of Tanh on modified

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

4

COCOMO II-NN to overcome the limitation of sigmoid function. This research

accommodates the COCOMO II Post-Architecture model using modified COCOMO

II-NN with Hyperbolic Tangent activation function (Tanh) in its hidden layer.

1.2 Aims and Objectives

The aim of this research is to improve the accuracy of COCOMO II and develop a

model, namely COCOMO II-NN-Tanh for estimating software effort by

incorporating COCOMO II and ANN with Tanh activation function. The study

embarks on the following objectives:

I. To propose and develop COCOMO II-NN-Tanh based on BP learning

algorithm.

II. To evaluate and compare the results of COCOMO II-NN-Tanh with other

models that use other activation functions namely Uni-polar sigmoid, Bi-

polar sigmoid, Gaussian and Softsign.

1.3 Scope of the Study

This research integrated COCOMO II and ANN with Tanh. This research focused on

the Post-Architecture model of COCOMO II with BP learning algorithm. Two

different architectures of ANN ware used. They are basic and modified COCOMO

II-NN.

Tanh has good performance for the prediction problems in the modified

COCOMO II-NN. Nonetheless, Tanh has limitation on the basic architecture due to

the characteristics of the basic COCOMO II-NN when used gaussian function. MLP

that used gaussian function and has three layers is called Radial Basic Neural

Network (RBNN). The main advantages of the RBNN over other MLP networks

include fast learning (Lee et al., 1999), easy design, good generalization, strong

tolerance to input noise and online learning ability (Yu et al., 2011). Thus, these

contributions show that the gaussian function more suitable for the basic COCOMO

II-NN and Tanh is more suitable for the modified COCOMO II-NN architecture.

Besides, COCOMO II NASA93 dataset was used for training and testing

processes which has 93 projects that are available on the public domain from TERA

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

5

(2016). The entire COCOMO II NASA93 dataset was attached in APPENDIX A.

The training, testing, implementation and calculation for this study were done using

MATLAB (R2013a).

1.4 Significance of the Study

This study mainly concerned on how to improve the estimation accuracy of

COCOMO II because as mentioned earlier, this model can be helpful in predicting

the effort needed to develop a software. At the end of this research, it is found that

the proposed method produced better result that is closer to the actual effort

compared to the original COCOMO II. This implies that the proposed method

managed to improve the estimation accuracy of COCOMO II.

Inaccurate estimation is the main reason for projects failure and may cause

projects to be terminated (Molokken & Jorgensen, 2003). As such, accuracy is a very

important issue in software cost estimation especially for executives, managers,

technical staff and particularly practitioners who carry out or depend on cost

estimation (Kemerer, 1987). Accurate estimation of software development cost

remains a challenge for software engineering research due to the shortcomings and

inaccuracies of the models (MacDonell & Gray, 1997).

1.5 Thesis Outline

This chapter had described the research motivation, aims and objectives, scope of the

research, as well as the structure of the whole thesis. The rest of the thesis was

organized as follows.

Chapter 2 focuses on the overview of the software cost estimation, as well as

algorithmic models. The discussion then continues with the description of activation

functions, evaluation criteria and comparison made between of the existing

techniques.

Chapter 3 illustrates the research methodology and discusses on two main

steps of this research which include COCOMO II-NN-Tanh processes and evaluation

and comparison of the developed model with other models.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

Chapter 4 The implementation of ANN with COCOMO II is discuss. Then

discussion on the dataset. The results then compare with two different architectures

namely basic COCOMO II-NN and modified COCOMO II-NN. Results obtain will

analyze based on Magnitude of Relative Error (MRE) and Mean Magnitude of

Relative Error (MMRE) evaluation criteria.

Finally, Chapter 5 concludes the thesis and presents several

recommendations for future work.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

 CHAPTER 2

LITERATURE REVIEW

This chapter presents a report of studies found in the literature related to the research.

Section 2.1 described the terms used in this research in detail and explored the main

topics of the research including software cost estimation models. Section 2.2

discussed on the activation functions and their different types. A general overview of

the evaluation criteria was discussed in Section 2.3. Section 2.4 discussion of the

analysis of variance (ANOVA). A systematic literature review is presented in

Section 2.5. Section 2.6 summarized the whole chapter.

2.1 Software Cost Estimation

Software cost estimation is the process to estimate and predict the effort needed to

develop a software. It is the most crucial and challenging task in software project

management in specific and software engineering field in general (Jones, 2002).

Software project managers and developers are interested to accurately estimate the

effort needed at the early stage of software development. This process estimates the

effort required to develop software based on the software attributes. The degree of

accuracy is measured by comparing the effort obtained from the estimation process

with the actual effort obtained from the dataset. The estimation is considered more

accurate when the estimated effort is closest to the actual effort. Several software

cost estimation models have been developed and improved (Boehm, 1981; Albrecht,

1979; Putnam, 1978; Patil et al., 2014). The software cost estimation models are

divided into two major categories which include algorithmic and non-algorithmic

models (Boehm, 1981). The algorithmic models have many advantages although it is

difficult to learn models and needs large data for learning. Algorithmic models use

mathematical formula to estimate project effort based on the project size and other

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

8

software attributes (Boehm, 1981). The most popular algorithmic cost estimation

models are Boehm’s Constructive Cost Model (COCOMO 81 and COCOMO II),

Albrecht’s Function Point Analysis (Albrecht, 1979) and Putnam’s Software

Lifecycle Management (Putnam, 1978). On the other hand, non-algorithmic models

are easy to learn but require complete information on one very similar previous

project to be compared with current software project (Bardsiri et al., 2012). Non-

algorithmic models were established based on heuristic approaches and experts’

knowledge. Expert Judgement and Top-Down models belong to this category. The

limitations of algorithmic models lead to the exploration of non-algorithmic models

which are soft computing based. Non-algorithmic models need to have the

knowledge of a previously completed project that is similar to the current software

project. Estimation is done on the basis of analysis of previous software projects or

datasets. Some of the techniques based on non-algorithmic models for cost

estimation are artificial neural networks (ANNs) and fuzzy logic (FL) (Shekhar &

Kumar, 2016). Thus, it was observed by Shekhar and Kumar (2016) that the

integration of these two categories produced more efficient and accurate estimation

models.

2.1.1 COCOMO II

COCOMO II is the latest version of COCOMO 81 developed by Boehm in 1995 and

it is the most popular and well-known cost estimation model (Tailor, Saini &

Rijwani, 2014) due to its flexibility and simplicity for estimating the effort expressed

in terms of person-months (PM). PM refered to amount of time one person spends

working on the software development project for one month. COCOMO II is used to

estimate project effort required to develop a software project. Boehm et al. (2000a)

categorizes the entire COCOMO II model into three sublevels or models. They are:

• Application-Composition model: This model is suitable for quickly developed

applications using interoperable components like components based on graphical

user interface builders and is based on new object point’s estimation.

• Early Design model: This model is used in the early stages of a software project

and can be used in Application Generator, System Integration or Infrastructure

Development Sector. It uses Unadjusted Function Points as the measure of size.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

9

• Post-Architecture model: This is the most detailed of the three and is used after

the overall architecture for the project has been designed and could use either

function points or line of code as size estimates.

In COCOMO II, there are several fundamental software attributes used to

estimate the effort required for developing a system which are software size (SS),

cost drivers with its Effort Multipliers (EMs) and scale factors (SFs) (Boehm et al.,

2000a). COCOMO II Post-Architecture model and its software attributes is defined

by Equation 2.1.

(2.1)

 Where

For Post-Architecture model, there are 17 cost drivers with its EMs, 5 SFs

and 1 SS as shown in Figure 2.1

 




5

1
01.1

94.2

j jSFE

A

ii

E

PM EMSSAEffort 17

1

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

REFERENCES

Albrecht, A. J. (1979). Measuring application development productivity. Proc. of the

Joint SHARE/GUIDE/IBM Applicaiton Development Symposium. Vol. 10,

pp. 83-92.

Amit, D. J. (1992). Modeling brain function: The world of attractor neural networks.

Cambridge University Press.

ANOVA, O. W. (2008). Analysis of Variance (ANOVA). Group, 1(4), p. 3.

Attarzadeh, I. & Ow, S. H. (2010a). Proposing a New Software Cost Estimation

Model Based on Artificial Neural Networks. IEEE International Conference

on Computer Engineering and Technology. IEEE. pp. V3-487 – V3-491.

Attarzadeh, I. & Ow, S. H. (2010b). Improving the accuracy of software cost

estimation model based on a new fuzzy logic model. World applied sciences

Journal 8(2). pp. 177-184.

Attarzadeh, I., & Ow, S. H. (2011). Improving estimation accuracy of the COCOMO

II using an adaptive fuzzy logic model. In Fuzzy Systems (FUZZ), 2011 IEEE

International Conference. IEEE. pp. 2458-2464.

Attarzadeh, I. & Ow, S. H. (2014). Proposing an Effective Artificial Neural Network

Architecture to Improve the Precision of Software Cost Estimation

Model. International Journal of Software Engineering and Knowledge

Engineering, 24(06), pp. 935-953.

Badjate, S. K. & Gaikwad, U. K. (2015). Develop Hybrid Cost Estimation Model

For Software Applications.

Bardsiri, V. K., Jawawi, D. N. A., Hashim, S. Z. M. & Khatibi, E. (2012). Increasing

the accuracy of software development effort estimation using projects

clustering. IET software, 6(6), pp. 461-473.

Bergstra, J., Desjardins, G., Lamblin, P. & Bengio, Y. (2009). Quadratic polynomials

learn better image features. Technical Report, Department of Computer

Science and Operational Research, University of Montreal.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

81

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university

press.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs (NJ):

Prentice-hall.

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R. & Selby, R. (1995).

Cost models for future software life cycle processes: COCOMO 2.0. Annals

of software engineering, 1(1), pp. 57-94.

Boehm, B. W., Madachy, R. & Steece, B. (2000a). Software cost estimation with

Cocomo II with Cdrom. Prentice Hall PTR.

Boehm, B., Abts, C. & Chulani, S. (2000b). Software development cost estimation

approaches—A survey. Annals of software engineering, 10(1-4), pp. 177-

205.

Broomhead, D. S. & Lowe, D. (1988). Radial basis functions, multi-variable

functional interpolation and adaptive networks. Royal signals and radar

establishment malvern. united kingdom.

Castellano, G., Fanelli, A. M. & Pelillo, M. (1997). An iterative pruning algorithm

for feedforward neural networks. IEEE Transactions on Neural

Networks, 8(3), pp. 519-531.

Chiang, Y. M., Chang, L. C. & Chang, F. J. (2004). Comparison of static-

feedforward and dynamic-feedback neural networks for rainfall–runoff

modeling. Journal of hydrology, 290(3), pp.297-311.

Crichton, N. (2000). Analysis of variance (ANOVA).

Dan, Z. (2013). Improving the accuracy in software effort estimation: Using artificial

neural network model based on particle swarm optimization. Proc. 2013

IEEE International Conference on Service Operations and Logistics, and

Informatics. IEEE . pp. 180-185.

Deeson, E. (1991). Collins dictionary of information technology. HarperCollins.

Duch, W. & Jankowski, N. (1999). Survey of neural transfer functions.Neural

Computing Surveys, 2(1), pp. 163-212.

Fidele, B., Cheeneebash, J., Gopaul, A. & Goorah, S. S. (2009). Artificial neural

network as a clinical decision-supporting tool to predict cardiovascular

disease. trends in applied sciences research, 4(1), pp. 36-46.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

82

Froelich, A. G., Stephenson, W. R. & Duckworth, W. M. (2008). Assessment of

materials for engaging students in statistical discovery. Journal of Statistics

Education, 16(2), pp.10-22.

Georgi, R., Vogt, T., Team, O. S. A. & Center, L. B. J. S. (2008). Illustrative

Example of a Function Point Analysis for the NASA Crew Exploration

Vehicle Guidance, Navigation & Control Flight Software. National

Aeronautics and Space Administration, Johnson Space Center.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. Proc. of the Thirteenth International

Conference on Artificial Intelligence and Statistics. pp. 249-256.

Hill, T., Marquez, L., O'Connor, M. & Remus, W. (1994). Artificial neural network

models for forecasting and decision making. International Journal of

Forecasting, 10(1), pp. 5-15.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N. & Kingsbury,

B. (2012). Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. IEEE Signal Processing

Magazine, 29(6), pp. 82-97.

Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks

are universal approximators. Neural networks, 2(5), pp. 359-366.

Hussain, H. M. (2014). Linguistic Approaches for Early Measurement of Functional

Size from Software Requirements. Concordia University: Doctoral

dissertation.

IBM knowledge center (2005). from

http://www.ibm.com/support/knowledgecenter/SSRTLW_6.0.1/com.ibm.rati

onal.test.ct.doc/topics/c_datapartitioning.html

Ishak, I. S. & Alias, R. (2005). Designing a strategic information systems planning

methodology for malaysian institutes of higher learning .Issues in

Information Systems, 6(1), pp.325-331.

Jones, C. (2002). Software cost estimation in 2002. The Journal of Defense Software

Engineering, 15(6), pp. 4-8.

Kaastra, I. & Boyd, M. (1996). Designing a neural network for forecasting financial

and economic time series. Neurocomputing, 10(3), pp. 215-236.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

83

Karlik, B. & Olgac, A. V. (2011). Performance analysis of various activation

functions in generalized MLP architectures of neural networks. International

Journal of Artificial Intelligence and Expert Systems, 1(4), pp. 111-122.

Kaushik, A., Chauhan, A., Mittal, D. & Gupta, S. (2012). COCOMO Estimates

Using Neural Networks. International Journal of Intelligent Systems and

Applications, 4(9), pp. 22.

Kaushik, A., Soni, A. K. & Soni, R. (2013). A Simple Neural Network Approach to

Software Cost Estimation. Global Journal of Computer Science and

Technology

Kaushik, A., Tayal, D. K., Yadav, K. & Kaur, A. (2016). Integrating firefly

algorithm in artificial neural network models for accurate software cost

predictions. Journal of Software: Evolution and Process, 28(8), pp. 665-688.

Kemerer, C. F. (1987). An empirical validation of software cost estimation models.

Communications of the ACM, 30(5), pp. 416-429.

Khatibi, V. & Jawawi, D. N. (2011). Software cost estimation methods: A review 1.

Kotsiantis, S. B., Kanellopoulos, D. & Pintelas, P. E. (2006). Data preprocessing for

supervised leaning. International Journal of Computer Science, 1(2), pp. 111-

117.

Kumar, G. & Bhatia, P. K. (2014). Automation of software cost estimation using

neural network technique. International Journal of Computer Applications,

98(20).

Larochelle, H., Bengio, Y., Louradour, J. & Lamblin, P. (2009). Exploring strategies

for training deep neural networks. The Journal of Machine Learning

Research, 10, pp. 1-40.

Lindstrom, B. (2004). A software measurement case study using GQM. J. Lund

Univ., USA.

Lo, B. & Gao, X. (1997). Assessing software cost estimation models: criteria for

accuracy, consistency and regression. Australasian Journal of Information

Systems, 5(1).

Lodwich, A., Rangoni, Y., & Breuel, T. (2009). Evaluation of robustness and

performance of early stopping rules with multi layer perceptrons. Proc.

International Joint Conference on Neural Networks. IEEE. pp. 1877-1884.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

84

Lynch, J. (2009). Chaos manifesto. The Standish Group, Boston.

Madheswaran, M. & Sivakumar, D. (2014). Enhancement of prediction accuracy in

COCOMO model for software project using neural network. Proc.

International Conference on Computing, Communication and Networking

Technologies. IEEE. pp. 1-5.

MacDonell, SG. & Gray, AR. (1998). A comparison of modeling techniques for

software development effort prediction.

Markopoulos, A. P., Georgiopoulos, S. & Manolakos, D. E. (2016). On the use of

back propagation and radial basis function neural networks in surface

roughness prediction. Journal of Industrial Engineering International, 12(3),

pp.389-400.

Mehtani, P. & Priya, A. (2011). Pattern Classification using Artificial Neural

Networks. Doctoral dissertation.

Meli, R. & Santillo, L. (1999) . Function point estimation methods: A comparative

overview. Proc. FESMA. pp. 6-8.

Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised

learning. Neural networks, 6(4), pp. 525-533.

Molokken, K. & Jorgensen, M. (2003). A review of software surveys on software

effort estimation. Proc. 2003 International Symposium on Empirical

Software Engineering. IEEE. pp. 223-230.

Mortimer, R. G. (1999). Mathematics for physical chemistry. Academic Press.

Mukherjee, S. & Malu, R. K. (2014). Optimization of project effort estimate using

neural network. Proc. 2014 International Conference on Advanced

Communication Control and Computing Technologies. IEEE. pp. 406-410.

Nassif, A. B. (2012). Software size and effort estimation from use case diagrams

using regression and soft computing models. The University of Western

Ontario: Doctoral dissertation.

Nawi, N. M., Atomi, W. H. & Rehman, M. Z. (2013). The effect of data pre-

processing on optimized training of artificial neural networks. Procedia

Technology, 11, pp. 32-39.

Patil, L. V., Waghmode, R. M., Joshi, S. D. & Khanna, V. (2014). Generic model of

software cost estimation: A hybrid approach. 2014 IEEE International

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

85

Advance Computing Conference.IEEE. pp. 1379-1384.

Putnam, L. H. (1978). A general empirical solution to the macro software sizing and

estimating problem. IEEE transactions on Software Engineering, 4(4), pp.

345-361.

Putnam, L. H. & Myers, W. (1991). Measures for excellence: reliable software on

time, within budget. Prentice Hall Professional Technical Reference.

Rao, B. T., Sameet, B., Swathi, G. K., Gupta, K. V., RaviTeja, C. & Sumana, S.

(2009). A novel neural network approach for software cost estimation using

Functional Link Artificial Neural Network (FLANN). International Journal

of Computer Science and Network Security, 9(6), pp. 126-131.

Reddy, C. S. & Raju, KVSVN. (2009). A concise neural network model for

estimating software effort. International Journal of Recent Trends in

Engineering, 1(1), pp. 188-193.

Rijwani, P., & Jain, S. (2016). Enhanced Software Effort Estimation Using Multi

Layered Feed Forward Artificial Neural Network Technique. Procedia

Computer Science, 89, pp. 307-312.

Rojas, R. (2013). Neural networks: a systematic introduction. Springer Science &

Business Media.

Saen, R. F. (2009). The use of artificial neural networks for technology selection in

the presence of both continuous and categorical data. World Applied Sciences

Journal, 6(9), pp. 1177-1189.

Sallehuddin, R., Shamsuddin, S. M. H. & Hashim, S. Z. M. (2008). Application of

grey relational analysis for multivariate time series. Eighth International

Conference on Intelligent Systems Design and Applications, 2008. IEEE. pp.

432-437.

Sarno, R., Sidabutar, J. & Sarwosri (2015a). Comparison of different Neural

Network architectures for software cost estimation. Proc. International

Conference on Computer, Control, Informatics and its Applications. IEEE.

pp. 68-73.

Sarno, R., Sidabutar, J. & Sarwosri (2015b). Improving the accuracy of COCOMO's

effort estimation based on neural networks and fuzzy logic model. Proc.

2015 International Conference on Information & Communication

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

86

Technology and Systems. IEEE. pp. 197-202.

Segee, B. E. (1993). Using spectral techniques for improved performance in artificial

neural networks. Proc. of IEEE Int. Conf. on Neural Net. San Francisco, CA,

USA.

Senyard, A., Kazmierczak, E. & Sterling, L. (2003). Software engineering methods

for neural networks. Software Engineering Conference. Tenth Asia-Pacific:

IEEE. pp. 468-477.

Shekhar, S. & Kumar, U. (2016). Review of Various Software Cost Estimation

Techniques. International Journal of Computer Applications, 141(11).

Shivakumar, N., Balaji, N. & Ananthakumar, K. (2016). A Neuro Fuzzy Algorithm

to Compute Software Effort Estimation. Global Journal of Computer Science

and Technology, 16(1).

Shores, T. S. (2007). Applied linear algebra and matrix analysis. Springer Science &

Business Media.

Sibi, P., Jones, S. A. & Siddarth, P. (2013). Analysis of different activation functions

using back propagation neural networks. Journal of Theoretical and Applied

Information Technology, 47(3), pp. 1264-1268.

Singh, S. & Kaur, R. (2015). Estimating effort for corrective software maintenance

using neural networks and regression technique. International Journal of

Computer Science and Communication Engineering, 4(1), pp. 39-44.

Sivakumar, D., & Janaki, K. (2017). Enhancing the Software Effort Prediction

Accuracy Using Reduced Number of Cost Estimation Factors with Modified

COCOMO II Model.

Socher, R. & Mundra, R. S. (2016). CS 224D: Deep Learning for NLP1.

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on

Neural Networks, 2(6), pp. 568-576.

Srinivasan, K. & Fisher, D. (1995). Machine learning approaches to estimating

software development effort. IEEE Transactions on Software Engineering

, 21(2), pp. 126-137.

Stergiou, C. & Siganos, D. (2010). Neural Networks.

Strba, R., Stolfa, S., Stolfa, J., Vondrak, I. & Snasel, V. (2017). An Application of

Neural Network in Method for Use Case Based Effort

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

87

Estimation. Information Modelling and Knowledge Bases XXVIII, 292, pp.

231.

Strike, K., El Emam, K. & Madhavji, N. (2001). Software cost estimation with

incomplete data. IEEE Transactions on Software Engineering, 27(10), pp.

890-908.

Tailor, O., Saini, J. & Rijwani, M. P. (2014). Comparative Analysis of Software Cost

and Effort Estimation Methods: A Review. Interfaces, 5(7), pp.10.

TERA. (2016). from http://openscience.us/repo/effort/cocomo/.

Todhunter, C. (2003). Analysis of variance (ANOVA). The AZ of Social Research: A

Dictionary of Key Social Science Research Concepts, pp. 9.

Tolue, S. F. & Akbarzadeh-T, M. R. (2013). Dynamic fuzzy learning rate in a self-

evolving interval type-2 TSK fuzzy neural network. Proc. 2013 13th Iranian

Conference on Fuzzy Systems. IEEE. pp. 1-6.

Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks

versus logistic regression for predicting medical outcomes. Journal of

clinical epidemiology, 49(11), pp. 1225-1231.

Wang, S. C. (2003). Artificial neural network. In Interdisciplinary computing in java

programming. Springer US. pp. 81-100.

Weisstein, E. W. (2002). Gaussian function. Wolfram Research, Inc.

Wilamowski, M. & Jaeger, R. C. (1996). Implementation of RBF type networks by

MLP networks. in Proc. IEEE Int. Conf. Neural Network., Washington.pp.

1670–1675.

Yu, H., Xie, T., Paszczynski, S. & Wilamowski, B. M. (2011). Advantages of radial

basis function networks for dynamic system design. IEEE Transactions on

Industrial Electronics, 58(12), pp. 5438-5450.

Zadeh, A. L. (2001). The future of soft computing. The 9th IFSA World Congress

and 20th NAFIPS International Conference. Vancouver, Canada. pp. 217-

228.

