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ABSTRACT 

Solution to Navier-Stokes equation by Splitting method in physical orthogonal 

algebraic curvilinear coordinate system, also termed 'stretched coordinate' is presented. 

The unsteady Navier-Stokes equations with constant density are solved numerically. The 

linear terms are solved by Crank-Nicholson method while the non-linear term is solved 

by the second order Adams-Bashforth method. The results show improved in comparison 

of efficiency and accuracy with benchmark steady solution of driven cavity by Ghia et al. 

and other first order differencing schemes including splitting scheme in Cartesian 

coordinate system. Enormous improvements from the original Splitting method in 

Cartesian coordinate observed where accurate solutions are obtained in minimum 17 X 

17 from 33 X 33 resolution for Re = 100, 47 X 47 from 129 X 129 resolution for Re = 

400 and 65 X 65 from 259 X 259 resolution for Re = 1000. PTTA
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CHAPTER I 

INTRODUCTION 

1.1 Ovei~view 

Fluid dynamics essentially deals with motion of liquids and gases, which appear 

to be continuous in its macroscopic structure. All the variables are considered to be 

continuous functions of spatial coordinates and time. The Navier-Stokes equations are 

able to model weather or the movement of air in the atmosphere, ocean currents, water 

flow in a pipe, as well as many other fluid flow phenomena. 

The original Navier-Stokes equations are directly simplified by an assumption 

of constant density. Another simplification that commonly applied in construction of 

computational solution is to set all changes of fluid properties with time to zero. This is 

called steady solution where the Navier-Stokes equations become simpler with only 

steady forms are considered. A problem is termed steady or unsteady depending on the 

frame of reference. For instance, the flow around a ship in a uniform channel is said to 

be steady from the passengers' point of view, but unsteady by observers on the shore. 

Fluid dynamicists often transform problems to frames of reference in which the flow is 

steady in order to simplify the problem. 
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Over the last three decades, the use of CFD techniques in solving fluid flow and 

its applications has grown from being able to model only steady single phase, low 

Reynolds number flows to its current level of use in a wide range of applications. This 

level of growth has been enhanced by the advances in computer technology which have 

vastly reduced the computational times for all computations and simulations as well as 

increasing the size of problems which can be solved. 

The application of Navier-Stokes equation in solving fluid flow has also 

evolved throughout this period of time with numerical method as one of the most 

inspiring technique that been explored. Numerical methods for 2-D steady 

incompressible Navier-Stokes (N-S) equations are often tested for code validation on a 

very well known benchmark problem, the lid-driven cavity flow. Due to the simplicity 

of the cavity geometry, applying a numerical method on this flow problem in terms of 

coding is quite easy and straight forward. Despite its simple geometry, the driven cavity 

flow retains a rich fluid flow physics manifested by multiple counter rotating re-

circulating regions on the corners of the cavity depending on the Reynolds number. In 

the literature, it is possible to find different numerical approaches which have been 

applied to the driven cavity flow problem. 

Amongst the numerous studies that use different types of numerical methods on 

the driven cavity flow found in the literature, priority is given for comparable methods 

with first order accuracy discretization scheme, Reynolds number ranging from 100 to 

1000 and employ either Cartesian or algebraic stretched grid only. Some of the 

comparison works are the Upwind scheme, first suggested by Courant, Isaacson and 

Rees [10], the hybrid scheme, developed by Spalding [11], the power law scheme, 

described by Patankar [12] and the exponential scheme , also described by Patankar[9]. 

Apart from that, literature review also shows that many works have been done 

on the Navier-Stokes equation especially for steady, highly accurate solution which can 

be used as accuracy comparison. Barragy & Carey [15] have used a p-type finite 
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element scheme on a 257 x257 strongly graded and refined element mesh. They have 
o 

obtained a highly accurate (Ah order) solutions for steady cavity flow solutions up to 

Reynolds numbers of Re=12,500. Wright & Gaskell [16] have applied the Block 

Implicit Multigrid Method (BIMM) to the SMART and QUICK discretizations. They 

have presented cavity flow results obtained on a 1024 xl024 grid mesh for Re < 1,000. 

Liao & Zhu [17], have used a higher order streamfiinction-vorticity boundary element 

method (BEM) formulation for the solution of N-S equations. They have presented 

solutions up to Re=l 0,000 with grid mesh of 257 ><257. Ghia et. al. [1] have applied a 

multi-grid strategy to the coupled strongly implicit method. They have presented 

solutions for Reynolds numbers as high as Re=10,000 with meshes consisting of as 

many as 257 x257 grid points. Results by Ghia et. al. has frequently used as the 

benchmark solution of cavity flow. 

The use of Curvilinear Grids, also termed Body Fitted Coordinates (BFC), 

allows the physical domain to be accurately fitted for a large number of cases. The 

mapping of these grids onto their topologically equivalent Cartesian mesh, with the 

associated mapping of the transport equations, extends the class of problems to which 

the numerical method technique can be applied. A similar methodology, in which the 

transformation to a computational domain is implicit in the discretisation techniques, 

has been used by Demirdzic and Peric [7] and many other researchers to solve 

problems with moving boundaries. The problems with this type of approach are that the 

use of BFC meshes increases the storage requirements and adds considerably to the 

complexity of the equations being solved. The approximations made to calculate the 

various terms become significantly more difficult to calculate. This commonly leads to 

further approximations being made and as a consequence errors become significant if 

the physical grid differs substantially from the computational Cartesian mesh. 

Since this current work is only concern on square driven cavity, algebraic 

orthogonal curvilinear coordinate or simply termed, 'Stretched Coordinate' is used. 

Stretched coordinate is selected because it enables direct usage of mathematical models 
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derived in Cartesian coordinate with minimum verifications of the discretization 

methods. Stretched coordinate also enables mesh clustering that serves very well for 

lid-driven cavity problem. Further explanation on the advantages of having stretched 

grid is discussed in section 2.5. 

In two dimensional solution of viscous incompressible flow, the pressure term 

can be eliminated by taking the cross derivative of the momentum equation. The 

pressure term can also be taken under consideration by velocity-pressure coupling 

techniques. Some of the popular velocity-pressure coupling methods are Artificial 

Compressibility method, Fractional-Step method and Pressure Poisson Equation 

method. The most commonly used velocity-pressure coupling technique is SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equation). This technique is found to be 

inefficient since it involve major convergence iteration in determining the pressure 

values for every main velocity-time iteration. As an alternative, Karniadakis [2] had 

introduced a new formulation for high-order time-accurate splitting scheme for the 

solution of the incompressible Navier-Stokes equations. 

The pressure in incompressible flow plays a very important particular role as it 

should always be in equilibrium with the time-dependent divergence-free velocity field, 

but it does not appear explicitly in the equation imposing such a divergence condition. 

While it is clear that the governing equation for pressure is a Poisson equation derived 

from the momentum equation by requiring incompressibility, it is less clear what 

boundary conditions the pressure should be subject to. In particular, it was argued that 

in the absence of singularities as time approaching zero value, property derived 

Neumann and Dirichlet boundary conditions lead to the same solution. However, 

Neumann boundary conditions are more general and always provide a unique solution 

for time approaching zero. 

In Splitting method which is the method used in this current work, the pressure 

satisfies a Poisson equation with compatible Neumann boundary conditions. The exact 
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form of this boundary condition is very important not only because it directly affect the 

overall accuracy of the scheme, but also because it determines the accuracy of the time-

stepping algorithm. This is particularly true in simulations of unsteady flows in 

complex geometry, where a separately solvable second-order pressure equation is still 

the only affordable approach. In this current work, splitting led to first order accuracy, 

so that very small time increment steps are required in order to prevent significant time 

differencing and splitting errors. 

In particular, improved pressure boundary conditions of high order in time are 

introduced for minimum effect of erroneous numerical boundary. A new family of 

stiffly stable schemes is employed in mixed explicit/implicit time integration rules. 

These schemes exhibit much broader stability regions as compared to traditional Adam-

family schemes. The stability properties remain almost constant as the accuracy of the 

integration increases, so that robust third or higher order time accurate schemes can 

readily be constructed. 

1.2 Objective 

A recent attempt to implement Splitting method introduced by Karniadakis et. al 

[2] in algebraic orthogonal curvilinear coordinate is motivated by the necessity to 

obtain more accurate and efficient first order accuracy solution of Navier-Stokes 

equation. First order accuracy scheme is the simplest scheme required for unsteady 

solution of Navier-Stokes equation. Since efficiency is the most commanding issue in 

unsteady solution, it is always worthwhile to have less time consuming scheme without 

sacrificing the accuracy of the solution. 

The current work is meant to bring together the advantage of Splitting method 

as pressure-velocity solver of higher efficiency with the advantage of consuming 
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stretched grid which produce more accurate results in relatively equal number of grid 

points as compared to Cartesian grid. 

The main objectives of the current work can be arranged in more perceptible 

agreement as below: 

i. To develop less mesh sensitive and more efficient numerical Algorithm 

for unsteady two-dimensional incompressible Navier-Stokes equation. 

ii. To introduce Splitting as velocity-pressure coupling method on physical 

orthogonal algebraic curvilinear coordinates, also termed 'stretched 

coordinate' in solving Navier-Stokes equation. 

iii. To study the behavior of the developed algorithm in terms of time 

efficiency, mesh sensitivity, accuracy and its robustness. 

iv. To compare the results obtained with previously published results for the 

traditional driven cavity problem. PTTA
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CHAPTER II 

NUMERICAL SOLUTION TECHNIQUES 

2.1 Introduction to Splitting method 

In two dimensional solution of viscous incompressible flow, the pressure term 

can be eliminated by taking the cross derivative of the momentum equation. The 

pressure term can also be taken under consideration by velocity-pressure coupling 

techniques. Some of the popular velocity-pressure coupling methods are Artificial 

Compressibility method, Fractional-Step method and Pressure Poisson Equation 

method. 

The most commonly used velocity-pressure coupling technique is SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equation). This technique is found to be 

inefficient since it involves major convergence iteration in determining the pressure 

values for every main velocity-time iteration. 

As an alternative, Karniadakis [2] had introduced a new formulation for high-

order time-accurate splitting scheme for the solution of the incompressible Navier-

Stokes equations. 
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The pressure in incompressible flow plays a very important particular role as it 

should always be in equilibrium with the time-dependent divergence-free velocity field, 

but it does not appear explicitly in the equation imposing such a divergence condition. 

While it is clear that the governing equation for pressure is a Poisson equation derived 

from the momentum equation by requiring incompressibility, it is less clear what 

boundary conditions the pressure should be subject to. In particular, it was argued that 

in the absence of singularities as time approaching zero value, property derived 

Neumann and Dirichlet boundary conditions lead to the same solution. However, 

Neumann boundary conditions are more general and always provide a unique solution 

for time approaching zero. 

In Splitting method which is the method used in this current work, the pressure 

satisfies a Poisson equation with compatible Neumann boundary conditions. The exact 

form of this boundary condition is very important not only because it directly affect the 

overall accuracy of the scheme, but also because it determines the accuracy of the time-

stepping algorithm. This is particularly true in simulations of unsteady flows in 

complex geometry, where a separately solvable second-order pressure equation is still 

the only affordable approach. In this current work, splitting led to first order accuracy, 

so that very small time increment steps are required in order to prevent significant time 

differencing and splitting errors 

In particular, improved pressure boundary conditions of high order in time are 

introduced for minimum effect of erroneous numerical boundary. A new family of 

stiffly stable schemes is employed in mixed explicit/implicit time integration rules. 

These schemes exhibit much broader stability regions as compared to traditional Adam-

family schemes. The stability properties remain almost constant as the accuracy of the 

integration increases, so that robust third or higher order time accurate schemes can 

readily be constructed. 
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2.2 Mathematical preliminaries 

Consider a Newtonian flow with constant material properties, including 

constant density, governed by the Navier-Stokes and continuity equations. The Navier-

Stokes equations for constant density flow, in vector form, are 

P 
rdv + v • Vv 

dt 
= -Vp + juV2v, 

2.2.1 

where 

v = ui +vj + wk 2.2.2 

is the velocity vector, p is the pressure, /u is dynamic viscosity, p is fluid density, and 

t is time. 

The continuity equation for constant density is 

V -v = 0 2.2.3 

Consider two-dimensional flow in a rectangle of height, H, and length, L. 

Dimensionless variables are defined as 
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u = 
u 
U'' 

~ V 
V = Z 7 ' 

P pu 
~ X 

H 

2.2.4 

where f/ is a reference velocity. For the present results, U is the constant velocity on the 

top boundary. Dropping the circumflex, the resulting dimensionless equations are 

— + v • Vv = -Vp + — V2v 
dt ^ R 

2.2.5 

where Re is the Reynolds number, defined as 

Re = 
UL 

2.2.6 

In component form for both Cartesian and stretched coordinates, these 

equations are 

du du 1 du 
— + u— + — v— = • 

dt dx y dy 

dv dv 1 dv — + u— + —v— = 
dt dx y dy 

dp J_ 
dx + Re 

_dp _1_ 
dy + R 

fd2u 1 d V 
dx 

d2v 
f dy7 

i s V 
2.2.7 

dx1 Y2 dy2 
C \ 

where / = —. Note that y = 1 for our specific case of square cavity problem. 
L 
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The boundary conditions are the no-penetration condition, v • n = 0, where n is 

a unit vector normal to the boundary, and the no-slip condition, v • F = 0, where f is a 

unit vector tangent to the boundary. For our specific traditional cavity case, the 

tangential velocity is u(x) = 1, where 0 < x < 1. 

2.3 Temporal integration and splitting of the Navier-Stokes equations 

The temporal integration of the Navier-Stokes system is achieved using a semi-

implicit splitting method, similar to the method of Karniadakis et. al [2] and others. 

Consider the Navier-Stokes expression below 

— + N(y) = -Vp + —L(v), 
1 2.3.1 

where L is the linear viscous term and N is the non-linear advective term, 

L(v) = V2v, 
N(v) = v • Vv. 

2.3.2 

Integrate the above equation over one time step, At, 

1M^dt+tM N(v)dt = -fVpdt+ t-^L(v)dt, J* di J< ^ J< Rc 

2.3.3 

where k is the time step. 
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The first term is easily evaluated without approximation, 

dv 
(M™dt = vM-vk. 
I dt 

2.3.4 

A semi-implicit method treats linear terms implicitly for stability, and non-

linear term is achieved with the second-order Adams-Bashforth method, 

|<+1 N(v)dt = At 2.3.5 

The explicit treatment of the nonlinear term avoids sampling N at the leading 

time step, which would result in nonlinear algebraic equations, requiring further 

iteration. The pressure term is treated by reversing the order of integration and 

differentiation, then introducing time-averaged pressure, 

= Vpk+iAt. 2.3.6 

Implicit treatment of the linear viscous term is achieved with the second-order 

Crank-Nicholson method, 

2.3.7 

The combined difference equation is now, 

vk+} - v k + At = -VpMAt + —[vV+1 + V 2 v * ] a / 2.3.7 
2 R„ 
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The continuity equation is imposed at the leading time step, 

V-v*+1 =0. 2.3.8 

In splitting method, (2.3.7) is integrated numerically in three for each time step, 

each stage addressing the three terms independently. Two intermediate velocity fields, 

In order to process the second step, the average pressure, p , must be 

determined. The pressure is not needed for the first step, and therefore can be 

determined afterv .take divergence of (2.3.7) and use the continuity equation to obtain 

the Poisson's equation for pressure, 

where the nonlinear term is neglected. 

L t A A 

All variables require boundary conditions, including v + ,v,v and p . The 

boundary conditions on vA+l are the natural boundary conditions, which must be 

enforced at the final stage if the splitting method. Boundary conditions on v and v can 

be chosen to enhance the numerical aspect of the method. Hence, 

v andv, are introduced in order to achieve this. The three stages are, 

^N(yk)-jN(vk~l) At, 
A 

2.3.9 

2.3.10 
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A — A — 

v • k = v • k = 0 2.3.11 

on all boundaries. 
Finally, there are no natural boundary conditions on the pressure since the value 

of pressure at the boundary depends on the velocity field in the neighborhood of the 

boundary. Pressure boundary conditions must be approximated from the governing 

equations. Take the normal component of (2.3.7) to get, 

k • VpM =k-vk-k-vk+l-k k — Jt+1 - ^ ( v V - A ^ v * - 1 ) A r + — £ - [ v V + 1 +V2v*]A/ 
2 R 

2.3.12 

Karniadakis [2] has shown that all the right hand side terms of above equation 

can be neglected for large Reynolds number, leaving, 

n-Vp k + l= 0. 2.3.13 

For that reason, Karniadakis [2] recommends higher order boundary conditions for a 

better approximation, especially for low Reynolds number flow. 

2.4 Grid generation 

The last two sections construct a system of partial differential equations as a 

mathematical model of cavity flow problem. The solution of this partial differential 

equations system can be greatly simplified by a well-constructed grid. It is also true that 
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a grid which is not well suited to the problem can lead to an unsatisfactory result. In 

some application, improper choice of grid point locations can lead to an apparent 

instability or lack of convergence. One of the central problems in computing numerical 

solutions to partial differential equations is that of grid generation. 

Early work using finite difference methods was restricted to problems \,."here 

suitable coordinate systems could be selected in order to solve the governing equations 

in that base system. As experience in computing complex flowfields was gained. 

general mappings were employed to transform the physical plane into a computational 

domain. Numerous advantages build up when this procedure is followed. In generaL 

transformations are used which lead to a uniformly spaced grid in the computational 

plane while points in physical space may be unequally spaced. 

Solution to lid-driven cavity flow can be improved by the use of proper grid 

arrangement. These are some of the requirements for the desired grid in order to 

maximize accuracy and efficiency of numerical solution for the lid-driven cavity flow: 

High resolution at all four boundaries SInce the velocity gradient IS 

expected to be higher at these regions. 

Higher resolution at all comers since secondary vortices are expected to 

develop at these locations. 

Less resolution at the middle of the cavity SInce faster divergence IS 

expected in this region. 

Referring to the above requirements, Cartesian coordinate is definitely not a 

preferable option since it illustrates a uniform grid size in which sacrifice the other 

requirements for the fulfillment of any single requirement listed above. Figure 2.1 

below exhibit all the above requirements for a better solution of lid-driven cavity flow. 
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