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ABSTRACT 

It has been a long-standing effort to create materials with low density but high strength. 

Foam materials are very light, but compared with bulk materials, their strength is quite 

low because of their random structures. Natural lightweight materials such as bone, is 

a cellular solid with optimized structure. The aim of this study is to fabricate silica-

nickel oxide (SiO2-NiO) foams with 20 µm to 800 µm open pore size, 50% to 80% of 

porosity, good physical and mechanical properties. In this research, silica (SiO2) 

powder and nickel oxide (NiO) powder with different compositions of 2 wt.%, 4 wt.%, 

6 wt.%, 8 wt.% and 10 wt.% were mixed together with binders which were 

polyethylene glycol (PEG) and carboxymethyl cellulose (CMC) to prepare slurry 

solution for impregnation of polyurethane (PU) sponge as the template. Silica-Nickel 

Oxide foams were fabricated by slurry method and sintered at 1000ºC, 1100ºC, 1200ºC 

and 1300ºC. Characterisation of SiO2-NiO foams included morphological analysis, 

porosity and density test, and compression test were done to determine the foam 

microstructure, apparent porosity, bulk density and compressive strength. The 

morphology of SiO2-NiO foam showed open pore with size ranging from 20 µm to 

739 µm, interconnected cells by strut and close pore. The result of apparent porosity 

and bulk density of SiO2-NiO foams calculated according to Archimedes’ principle. 

The lowest result for apparent porosity obtained was 53.03% and the highest was 

66.21%, while the lowest and highest value for bulk density were 0.89 g/cm3 and 1.22 

g/cm3, respectively. The result for compressive strength of SiO2-NiO foam was within 

the range of 0.21 MPa to 1.86 MPa. The foam with good physical and mechanical 

properties obtained by 6 wt.% of SiO2-NiO foams sintered at 1300°C and will be used 

for further research in steam methane reforming application.  
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ABSTRAK 

Pelbagai usaha telah dilakukan untuk menghasilkan bahan yang mempunyai 

ketumpatan yang rendah dengan kekuatan yang tinggi. Bahan berbusa merupakan 

bahan yang sangat ringan, tetapi jika dibandingkan dengan bahan pukal, kekuatan 

bahan berbusa agak rendah kerana struktur rawaknya. Bahan semulajadi seperti tulang 

merupakan pepejal selular dengan struktur yang dioptimumkan. Tujuan penyelidikan 

ini adalah untuk menghasilkan silika-nikel oksida (SiO2-NiO) berbusa dengan liang 

bersaiz 20 µm hingga 800 µm, 50% hingga 80% jumlah keliangan, dengan sifat-sifat 

fizikal dan mekanikal yang baik. Dalam penyelidikan ini, silika (SiO2) dan nikel oksida 

(NiO) dengan komposisi berbeza yang terdiri daripada 2 wt.%, 4 wt.%, 6 wt.%, 8 wt.% 

dan 10 wt.% dicampurkan dengan pengikat iaitu politena glikol (PEG) dan 

karbosimetil selulosa (CMC) untuk menyediakan buburan bagi proses perendaman 

span poliuretena (PU) yang bertindak sebagai pemegang aram. Silika-Nikel Oksida 

berbusa dihasilkan melalui kaedah buburan dan disinter pada suhu 1000⁰C, 1100ºC 

dan 1300ºC 1200⁰C. Pencirian SiO2-NiO berbusa termasuk analisis morfologi, ujian 

keliangan dan ketumpatan, dan ujian mampatan telah dilakukan untuk mengetahui 

mikrostruktur, keliangan terbuka, ketumpatan pukal dan kekuatan mampatan. 

Morfologi SiO2-NiO berbusa menunjukkan liang terbuka dengan saiz dalam 

lingkungan 20 µm hingga 739 µm, saling dihubung oleh sangga dan liang tertutup. 

Hasil keliangan terbuka dan ketumpatan menyeluruh untuk SiO2-NiO berbusa telah 

dikira berdasarkan prinsip Archimedes’. Jumlah keliangan terbuka paling rendah ialah 

53.03% dan paling tinggi ialah 66.21%, manakala nilai paling rendah bagi ketumpatan 

pukal ialah 0.89 g/cm3 dan paling tinggi ialah 1.22 g/cm3. Hasil kekuatan mampatan 

untuk SiO2-NiO berbusa ialah dalam lingkungan 0.21 MPa hingga 1.86 MPa. Ciri-ciri 

fizikal dan mekanikal berbusa yang paling baik diperolehi oleh 6 wt.% SiO2-NiO 

berbusa yang telah dibakar pada suhu 1300°C dan akan digunakan dalam kajian 

perubahan gas metana menggunakan wap. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Porous materials show a dramatic development nowadays instead of solid materials 

which have been used for the fabrication of variety applications. The applications 

include catalysis, filtration, thermal insulation, impact-absorbing structures, high 

specific strength materials, performs for metal-ceramic composites, biomedical 

implants and high-efficiency combustion burners (Dhara and Bhargava, 2003). For 

ceramic material, it offers higher temperature and environmental stability in 

comparison to conventional polymers or metals, and typical materials used for 

manufacturing cellular ceramics including crystalline inorganic materials such as 

silicon carbide, alumina, zirconia, cordierite, mullite, and also silicate glass and carbon 

as well as concrete (Colombo, 2006).  

 Cellular ceramics constitute a specific class of materials containing a high level 

of porosity (greater than 60 vol%) which are characterized by the presence of a 

recognizable ‘cell’, that is an enclosed empty space possessing faces and solid edges. 

The faces can either be fully solid or void, giving a closed cell or an open cell material, 

respectively (Colombo, 2006). Silica foam comes with close, fully open or partial 

interconnected porosity that can be produced from a broad range of ceramic materials 

in both oxide and non-oxide. Besides, it consists of open and closed cell that is 

commonly used for thermal insulation, fire protection, molten metal filtration, diesel 

engine and hot gas filtration. Most applications of porous microspheres are based on 

the porous structure such as porosities, pore sizes, and surface areas.  
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 Silica foams are typically porous materials with the volume fraction of porosity 

ranging from 70% to 90%, and density varying from 0.3 to 0.6 g/cm3. Porosity plays 

an important role in determining the capacity of efficiency and release kinetics (Cai et 

al., 2013). Porous ceramics offer interesting properties in comparison with dense 

ceramics such as permeability to fluids, high specific surface area, low density, low 

thermal conductivity, thermal stability, high corrosion and wear resistance (Sciamanna 

et al., 2015). These properties depend on the composition and the microstructure of 

the porous ceramic. The microstructure features are highly influenced by the 

processing route used such as slurry method, compaction method, gel-casting and a 

few more that has been widely used in order to produce the porous material.  

 There are several methods used for the preparation of cellular ceramics such as 

foams, honeycomb structures and interconnected rods, fibres and hollow spheres as 

reviewed by Colombo (2006). The examples of fabrication method are replication of 

a sacrificial foam template or also known as slurry method, direct foaming and burn-

out of fugitive pore formers.  There are also other fabrication methods in order to 

produce porous silica foam such as gel-casting, powder metallurgy, freeze casting, gas 

entrapment and few more. Among those various type of fabrication methods, slurry 

method has been chosen to fabricate porous silica foam product. Slurry method has 

been founded and patented by Schwartzwalder and Somer (1963) state that cellular 

ceramic articles are produced in accordance with the present invention by immersing 

an open-celled porous element of synthetic polymer or natural organic material in a 

slurry of finely-divided ceramic powder plus ceramic binder so as to uniformly coat 

the inner cell defining walls of the element with a thin layer of the slurry. About 1 to 

5 wt.% of binder composition is adding to the ceramic slurry to enhance the 

compressive strength of ceramic foam up to 1 to 2 MPa (Han et al., 2002). 

 Ceramics with engineered porosity are promising materials for a number of 

functional and structural applications such as thermal insulation, filters, catalyst 

support, bio-scaffolds for tissue engineering, and performs for composite fabrication 

that has been enlightened by Hammel et al. (2014). In this research study, porous 

structure of SiO2-NiO foam will be used as a catalyst support in steam methane 

reforming technology.  
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 Steam methane reforming technology is important to produce hydrogen gas 

(H2) which is the simplest and the most plentiful gas in the universe (Amin et al., 

2010). Reforming reactions of methane, which is the main component of natural gas, 

plays an important role in the production of synthesis gas and hydrogen from natural 

gas (Li et al., 2011). The demand for hydrogen gas (H2) grows as it is widely used as 

raw material in chemical industry, food processing, hydrogenation process, production 

of ammonia and methanol, in the Fischer-Tropsch synthesis and in the pharmaceutical 

industry (Alves et al., 2013). It has been investigated in biomass pyrolysis that nickel 

(Ni) is one of the best metal catalysts for tar elimination because it catalyses the 

cleavage of C-C, O-H, and C-H bonds, as well as the water-gas reaction 

(Widyaningrum et al., 2012).  

 It is necessary to identify this slurry method which promises a foam with the 

morphology consists of 50% to 80% of porosity, open pore size within 20 µm to 800 

µm and interconnected microstructure. The structure of foam which consists of large 

number of open pores and sinter at high temperature increase the reforming reaction 

compare to the material with dense structure. Materials containing high porosity 

exhibit special properties such as permeability to fluid, high specific surface area and 

low density that usually cannot be achieved by the conventional dense counterparts 

(Sciamanna et al., 2015). It is also compulsory to fabricate SiO2-NiO foams with good 

morphology, physical and mechanical properties to withstand stress during assembling 

and long-term operation, as they have to guarantee an adequate operation lifetime 

instead of reducing the production cost. 

1.2 Problem Statement 

Morphology of ceramic foam is a study to observe the microstructure which consists 

of open pore, closed pore and interconnected cells by strut. The size of open pore 

obtains from replication method within the range of 1 µm up to 2 mm which cannot 

be obtained by other method. The variation of strut sizes which connect the pores 

increase the strength of the foam. Ceramic foam with high porosity approximately 

90%, low bulk density under 1.0 g/cm3 and good compressive strength is fabricated by 

selecting the proper composition of raw materials to prepare the slurry solution for 
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replication process. This is because the quality of ceramic coating on the polymeric 

sponge is highly dependent on the viscosity of the slurry instead of density of 

polymeric sponge (Nor et al., 2009). Proper selection of SiO2 powder, NiO powder 

and binders will determine the slurry concentration and affect final properties of 

sintered foam which includes the morphology of the foam. 

 Apart of selecting the composition of raw material, processing temperature is 

also one of the challenges for material’s scientists to select the suitable temperature for 

foam fabrication. A research on several sintering temperatures are compulsory to 

obtain a porous SiO2-NiO foams with morphology which consisted of 50% to 80% of 

porosity, and also has good mechanical and physical properties. In firing stage, the 

green body undergoes numerous endothermic and exothermic processes, including 

organic removal like binder or space holder, dehydration, decomposition and phase 

formation (Gupta et al., 2010). The common problem occurs in the production of 

porous ceramic product is associate with low strength. Defects can be minimized and 

the sintered body would not crack with proper heating and atmosphere control such as 

low heating and cooling rate which is 2°C/min for SiO2-NiO foams fabrication. 

 There are several factors such as material composition, size of raw material, 

fabrication method, type of binder and its distribution that affect the morphology, 

physical and mechanical properties of porous ceramic foam. Porosity is one of the 

crucial factors that controlling the performance, properties, strength, and density of the 

ceramic foam. Materials containing 50% up to 80% of porosity is preferable compared 

to dense ceramics because it offers interesting properties such as permeability to fluids, 

low density, high corrosion and wear resistance.  It is suitable for steam methane 

reforming application because the foam with open pore structure let the methane 

gasses pass through the foam easily for gas conversion process. The conversion of gas 

from methane (CH4) to hydrogen gas (H2) occurs at temperature of 400°C to 900°C 

(Amin et al., 2011). 
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1.3 Research Objectives   

The objectives below are the solution to the problem statements in the fabrication of 

porous materials. The objectives of this research are: 

1) To investigate the composition of SiO2 powder based on the SiO2 foams 

morphology to fabricate SiO2-NiO foams.  

2) To identify the suitable composition and sintering temperature for SiO2-NiO 

foams fabrication process. 

3) To characterise physical properties and mechanical properties of SiO2-NiO 

 foams after sintering process. 

1.4 Scope of Study 

Several scopes and criteria have been studied and determined to carry out laboratory 

works for foam fabrication. The scope in this research study can be divided into several 

points which are material usage, fabrication and finally the characterisation of SiO2 

foams and SiO2-NiO foams. The scopes of this research study are summarized as 

below: 

i. Raw materials used in this study are SiO2 powder, NiO powder, 

polyurethane (PU) sponge as the template, polyethylene glycol (PEG) 

and carboxymethyl cellulose (CMC) as binder and distilled water. 

ii. Various compositions of SiO2 foams from 45 wt.%, 50 wt.%, 55 wt.%, 

60 wt.% and 65 wt.% are studied with 2.5 wt.% of CMC and 2.5 wt.% 

PEG fabricated by slurry method. 

iii. Method to fabricate SiO2-NiO foams is slurry method with 55 wt.% of 

SiO2 and variation of NiO compositions consisting of 2 wt.%, 4 wt.%, 

6 wt.%, 8 wt.% and 10 wt.%. The composition for binders which are 

PEG and CMC is 2.5 wt.%, respectively. 

iv. Two stages of sintering profile are set up with sintering temperatures of 

1000°C, 1100°C, 1200°C, and 1300°C. 
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