

A COMPARISON OF CK AND MARTIN’S PACKAGE METRIC SUITES IN

PREDICTING PACKAGE REUSABILITY IN OPEN SOURCE OBJECT-

ORIENTED SOFTWARE

KHALED ALHADI MEFTAH

A dissertation submitted in partial

fulfillment of the requirement for the award of the

Degree of Master of Computer Science (Software Engineering)

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

MARCH 2016

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iii

DEDICATION

My family and my friends who are always with me.

May God blessed all of us always.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iv

ACKNOWLEDGEMENT

In the name of Allah, the most Beneficent, the most Merciful. In preparing

this dissertation, I have been in touch with many people who have given me great

support and beneficial ideas that have led to its success. At the very beginning, I

would like to thank my parents for their unlimited support to me and my research,

even though what I am studying was not the field they wanted me to go through, I

thank them very much, and I ask Allah the Almighty to grant them Paradise.

I would also like to take this opportunity to sincerely thank my supervisor Dr.

Hj. Mohd Zainuri Bin Saringat for his precious time, the facilities he offered me, and

the great advice he gave me during this journey of my Master’s project.

Not to forget my fellow postgraduate students who have spared some of their

time praying for my success, thank you sincerely and wish you success in your lives.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

v

ABSTRACT

Packages are units that organize source code in large object-oriented systems.

Metrics used at the package granularity level mostly characterize attributes such as

complexity, size, cohesion and coupling. Many of these characterized attributes have

direct relationships with the quality of the software system being produced.

Empirical evidence is required to support the collection of measures for such metrics;

hence these metrics are used as early indicators of such important external quality

attributes. This research compared the CK and Martin’s package metric suites in

order to characterize the package reusability level in object-oriented software.

Comparing the package level of metrics suites as they measure an external software

quality attribute is supposed to help a developer knows which metric suite can be

used to effectively predict the software quality attribute at package level. In this

research two open source Java applications, namely; jEdit and BlueJ were used in the

evaluation of two package metrics suites, and were compared empirically to predict

the package reusability level. The metric measures were also used to compare the

effectiveness of the metrics in these package metrics suites in evaluating the

reusability at the package granularity level. Thereafter metric measures of each

package were normalized to allow for the comparison of the package reusability

level among packages within an application. The Bansiya reusability model equation

was adapted as a reusability reference quality model in this research work.

Correlation analysis was performed to help compare the metrics within package

metrics suites. Through the ranking of the package reusability level, results show that

the jEdit application has 30% of its packages ranked with a very high reusability

level, thus conformed to the Pareto rule (80:20). This means that the jEdit application

has packages that are more reusable than packages in the BlueJ application.

Empirically, the Martin’s package coupling metric Ce with an r value of 0.68, is

ranked as having a positive strong correlation with RL, and this has distinguished the

Martin’s package metrics suite as an effective predictor of package reusability level

from the CK package metrics suite.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

vi

ABSTRAK

Pakej adalah unit yang menguruskan kod sumber dalam sistem berorientasikan objek

yang besar. Metrik yang digunakan di peringkat butiran pakej kebanyakannya

mempunyai ciri-ciri seperti kekompleksan, saiz, perpaduan dan gandingan.

Kebanyakan karakter atribut ini mempunyai hubungan secara langsung dengan

kualiti sistem perisian yang dihasilkan. Bukti empirikal diperlukan untuk menyokong

koleksi pengukuran metrik tersebut, dan oleh sebab itu metrik ini digunakan sebagai

penunjuk awal sifat-sifat penting kualiti luaran. Kajian ini membandingkan metrik

suite pakej CK dan metrik suite pakej Martin untuk menilai tahap guna semula pakej

di dalam perisian berorientasikan objek. Melalui perbandingan tahap pakej metrik

suite yang mengukur sifat luar kualiti perisian sepatutnya dapat membantu

pembangun untuk mengetahui metrik suite yang mana yang boleh digunakan dengan

berkesan dalam meramal sifat kualiti perisian di peringkat pakej. Dalam penyelidikan

ini, dua sumber terbuka aplikasi Java, iaitu jEdit dan BlueJ telah digunakan dalam

penilaian dua pakej metrik suite, dan dibandingkan secara empirikal untuk meramal

tahap boleh gunasemula pakej tersebut. Selain itu, pengukuran metrik telah

digunakan untuk membandingkan keberkesanan metrik ini di dalam pakej metrik

suite, bagi menilai tahap boleh gunasemula di peringkat pakej butiran. Selepas itu,

langkah-langkah pengukuran metrik setiap pakej telah dinormalkan bagi

membolehkan perbandingan tahap boleh gunasemula pakej antara setiap pakej dalam

setiap aplikasi. Persamaan model boleh gunasemula oleh Bansiya telah disesuaikan

sebagai model kualiti rujukan boleh gunasemula dalam kerja-kerja penyelidikan ini.

Analisis korelasi telah dijalankan bagi membantu membandingkan metrik dalam

metrik pakej suite. Melalui kedudukan tahap boleh gunasemula pakej, keputusan

menunjukkan bahawa aplikasi jEdit mempunyai 30% daripada pakejnya yang

memiliki tahap boleh gunasemula yang sangat tinggi, mematuhi apa yang telah

ditentukan dalam peraturan Pareto (80:20). Ini bermaksud bahawa aplikasi jEdit

mempunyai pakej boleh gunasemula yang lebih tinggi berbanding pakej dalam

aplikasi BlueJ. Secara empirikal, gandingan metrik Ce dengan nilai r dari 0.68

dalam pakej Martin telah dikelaskan sebagai mempunyai korelasi positif yang kukuh

dengan RL, dan ini membezakan metrik suite pakej Martin sebagai peramal tahap

boleh gunasemula pakej yang berkesan dari metrik suite pakej CK.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

vii

CONTENTS

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

CONTENTS v

LIST OF TABLES x

LIST OF FIGURES xii

CHAPTER 1 INTRODUCTION 1

1.1 Research Overview 1

1.2 Research Background 2

1.3 Problem Statement 5

1.4 Research Aim and Objectives 6

1.5 Scope of the Study 6

1.6 Significance of the Study 7

1.7 Chapter Summary 8

CHAPTER 2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Software Reusability 10

2.2.1 Software Reuse 12

2.2.2 Challenges of Software Reuse 13

2.2.3 Classification of Software Reuse 17

2.3 Measuring Software Reusability 18

2.3.1 Package Metrics Suites 19

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

viii

2.3.2 Reusability Measurement Reference

Model 22

2.4 Comparing Package Metrics Suites 23

2.5 Chapter Summary 25

CHAPTER 3 RESEARCH METHODOLOGY 26

3.1 Introduction 26

3.2 Study Context 29

3.3 Measuring the Reusability Properties at

Package Level 29

3.4 Evaluating and Comparing Package

Reusability Level 35

3.5 Comparing Package Level Metric Suites that

Predict Reusability in Open Source Software 36

3.6 Chapter Summary 37

CHAPTER 4 RESULTS AND DISCUSSION 39

4.1 Introduction 39

4.2 Case Studies Used 39

4.3 Measurement Tools Used 41

4.4 Package Reusability Properties Measurement 42

4.4.1 Package Reusability Properties

Measurement Using CK Metrics Suite 43

4.4.2 Package Reusability Properties

Measurement Using Martin’s Metrics

Suite 49

4.5 Evaluation and Comparison of Package

Reusability Level 54

4.5.1 jEdit Normalized Metric Package

Measures 54

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

ix

4.5.2 BlueJ Normalized Metric Package

Measures 58

4.5.3 Computing and Ranking Package

Reusability Level in jEdt 62

4.5.4 Computing and Analyzing Package

Reusability Level in BlueJ 65

4.6 Comparison of Reusability Package Metrics 70

4.6.1 Comparison of Reusability Package

Metrics in jEdit 70

4.6.2 Comparison of Reusability Package

Metrics in BlueJ 74

4.5 Chapter Summary 78

CHAPTER 5 CONCLUSION 79

5.1 Introduction 79

5.2 Package Reusability Properties Measurement 79

5.3 Evaluation and Comparison of Package

Reusability Level 81

5.4 Comparison of the Package Metric Suites 83

5.5 Contribution and Recommendations 84

5.6 Chapter Summary 85

REFERENCES 86

VITA 91

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

x

LIST OF TABLES

1. 1 Assessment of Software Reusability 5

3. 1 Operational Research Work Plan 28

3. 2 Martin’s Design Property and Metrics Map 30

3. 3 CK Design Property and Metrics Map 30

3. 4 Package Reusability Level measures 35

3. 5 Strength of Correlation Relationship given an r value 37

4. 1 jEdit versions used 39

4. 2 BlueJ versions used 40

4. 3 Metric Measurement Tool and Metric Used 41

4. 4 jEdit CK Metrics Package Measures for Three Versions 45

4. 5 BlueJ CK package metrics measurement 46

4. 6 jEdit Martin’s Metrics Package Measures for Three Versions 50

4. 7 BlueJ Martin’s package metrics measurement 51

4. 8 jEdit CK Metrics Normalized Package Measures 56

4. 9 jEdit Martin’s Metrics Normalized Package Measures 57

4. 10 BlueJ CK Metrics Normalized Package Measures 59

4. 11 BlueJ Martin’s Metrics Normalized Package Measures 60

4. 12 jEdit CK Metrics Normalized Package Reusability Level 62

4. 13 jEdit Martins Metrics Normalized Package Reusability Level 64

4. 14 BlueJ CK Metrics Normalized Package Reusability Level 66

4. 15 BlueJ Martin’s Metrics Normalized Package Reusability

Level 68

4. 16 jEdit Version 4.5.0 CK Package Metrics Correlation Results 70

4. 17 jEdit Version 5.1.0 CK Package Metric Correlation Test

Results 71

4. 18 jEdit Version 5.2.0 CK Package Metric Correlation Test

Results 71

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xi

4. 19 jEdit Version 4.5.0 Martin’s Package Metric Correlation Test

Results 72

4. 20 jEdit Version 5.1.0 Martin’s Package Metric Correlation Test

Results 73

4. 21 jEdit Version 5.2.0 Martin’s Package Metric Correlation Test

Results 73

4. 22 BlueJ Version 3.0.0 CK Package Metric Correlation Test

Results 74

4. 23 BlueJ Version 3.1.0 CK Package Metric Correlation Test

Results 75

4. 24 BlueJ Version 3.1.5 CK Package Metric Correlation Test

Results 75

4. 25 BlueJ Version 3.0.0 Martin’s Package Metric Correlation

Test Results 76

4. 26 BlueJ Version 3.1.0 Martin’s Package Metric Correlation

Test Results 77

4. 27 BlueJ Version 3.1.5 Martin’s Package Metric Correlation

Test Results 77

5. 1 A Summary of Package Change Rate Using CK Metrics

Suite 80

5. 2 A Summary of Package Change Rate Using Martin’s Metrics

Suite 80

5. 3 jEdit Packages Reusability Ranking Levels in CK metrics

suite 81

5. 4 jEdit Packages Reusability Ranking Levels in Martin’s

metrics suite 82

5. 5 BlueJ Packages Reusability Ranking Levels in CK metrics

suite 82

5. 6 BlueJ Packages Reusability Ranking Levels in Martin’s

metrics suite 82

5. 7 Highest r values for the CK metrics correlation obtained

from jEdit and BlueJ 83

5. 8 Highest r values for the Martin’s metrics correlation

obtained from jEdit and BlueJ 84

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xii

LIST OF FIGURES

3. 1 Research Activity Framework 27

3. 2 Package Diagram for the HYPO system 32

4. 1 jEdit Reusability Level Ranking using CK Metrics

Normalized measures 63

4. 2 jEdit Reusability Level Ranking using Martin’s Metrics

Normalized measures 65

4. 3 BlueJ Reusability Level Ranking using CK Metrics

Normalized measures 67

4. 4 BlueJ Reusability Level Ranking using Martin's Metrics

Normalized measures 69

 PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

CHAPTER 1

INTRODUCTION

1.1 Research Overview

Software reuse is a process in which a new software application is built from existing

software (Shiva and Shala, 2007). The concept is not new in programming and can

be traced back to the advent of the concept of subroutines and functions. However, it

came to be widely known during the NATO Software Engineering Conference in

1968 when it was formally proposed by Douglas McIlroy of Bell laboratories (Frakes

and Kyo, 2005). Since then the concept has been bolstered by the tremendous growth

in both software development and programming paradigms that support software

reuse in principle.

Shiva and Shala (2007), reported that in software industry, corporations such

AT&T, HP, Tata Consultancy Services (TCS) and many others have greatly

embraced the concept of reusability in software development, due to the promises

that the concept offers. The promises that software reuse offer include but not limited

to; reduced software development cost, low maintenance and more so increased

productivity on the part of the developer (Meena and O'Brien, 2011). Software reuse

increases the productivity of the developer and can be of great help especially in an

environment that software features become obsolete so fast like in the open source

community.

Since consumers of such communities require new features very rapidly and

bearing in mind that the consumer base is large, then features requested might tend to

be enormous. Thus, when such features are effected on the current releases of a

software product. Thus, a new product release is in inevitable (Wu, 2006). This is no

surprise to the current state in software development, where it has becomes a known

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

2

fact that software constantly changes; since the business environment in which

software operates in is also very dynamic in nature (Stephens and Rosenberg, 2007).

As was foreseen by Lehman (1979), software should change to meet the

requirements of a changing environment and hence realizing its potential too. Hence,

software is said to evolve with changing needs in the operating business

environment.

As software changes, its design structure also changes, this can happen either

during the software development phase or at the maintenance phase. Structural

changes may increase software complexity, which consequently hamper its external

product properties such as understandability, maintainability and internally may also

affect design properties such as reusability, modifiability and modularity (Vasa,

2010).

 In addition, developers productivity need to be enhanced and software

reusability is essential in this direction. This require a purposeful embracement of

developing software that is reusable as its being developed. To accomplish that

objective, it is important to have control of reusability as a design property and as

software is being developed.

1.2 Research Background

Due to the way developers in open source environment handle software changes as

they maintain and enhance features of current releases, it might not be easy to

maintain a very sound structured design that can support some of the mentioned

software quality attributes especially reusability (Brown and Booch, 2002).

Reusability is said to have a very considerable effect on general software quality

(Goel and Bhatia, 2013). Though software changes can be a bit challenging

especially when there is a requirement such as maintaining good software quality on

reusable software components. So too be able to achieve this, time and effort is

required to always assess the quality of reusable components (Goel and Bhatia,

2013).

Assessing a software product quality attribute, require the reference to a

quality model, which defines the properties that are to be measured in order to make

a decision on the quality level of such an attribute. It is important to note that

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

3

software reusability as a software quality attribute was missing in ISO 9126 and as

such was recently introduced into the ISO 25010 software quality model (ISO/IEC

25010, 2011). In ISO 25010, software reusability is one of the sub-characteristics of

the external quality attribute maintainability, and therefore can only be measured

using internal properties of the software product (ISO/IEC 25010, 2011). Since, it

was missing even in the earlier ISO 9126 standard, researchers specified their own

reusability assessment models including the one proposed by Poulin (1994), which

are oftenly referred to as extended quality models (Thapar et al., 2014).

Using the extended quality models, various quality factors related to software

reusability have been measured, which include: portability, flexibility,

understandability, independence, stability and many others (Poulin, 1994), mostly

assessing the reusability level of software products. In this section, a review of some

of the related research in terms of assessment of software reusability is done and a

summary of these related research studies are given in Table 1.1. This research work

is concern with recent studies that have assessed software reusability in open source

community.

Fazal et al. (2012), illustrate an evolutionary case study to evaluate a

proposed conceptual reusability model which was used to study the reusability of

software during evolution. An evaluation of the model was conducted using a case

study, where two open source projects were used, to evaluate the metrics in the said

reusability attribute model. Various releases of the said open source projects were

evaluated, both at the class and method granularity levels using an assorted set of

reusability metrics as per the proposed reusability attribute model. The model of

proposed attribute reusability proposed various new metrics that were used in the

assessment of software reusability. Except for the consideration of scale for the

various metrics that were used in coming up with the new metrics, there is no

mathematical rigour used to justify the coefficients of the various metrics in the

equations of the new metrics.

Another research work done by Goel and Bhatia (2013), evaluated metrics in

object-oriented software written in C++ based on three inheritance features with an

objective of finding out which of these features have more impact on the software

reusability. Inheritance features investigated include: multilevel, multiple and

hierarchical inheritance; three C++ programs which had these features were used in

this study. This study used Chidamber and Kemerer (CK) metrics suite in measuring

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

4

the inheritance features, later proposed new metrics for measuring the said

inheritance features. However, the metrics were not validated, thus the researchers

used their own intuition to suggest the aggregation of some of their metrics. From the

original CK metrics and their derived metrics, it was found out that multi-level

inheritance has more impact on reusability among the three features corroborating

the principle of multi-level inheritance as a good indicator for reusability.

Ampatzoglou et al. (2011), did an empirical investigation on the reusability of

design patterns and packages in open source projects, in order to help developers

have a starting point in white box software reuse. The main concern in that research

work was to characterize the reusability of these projects, identify reusable design

patterns and packages that can be of help to developers that require to use them in

other projects. The research work only investigated one release of each software

project that was studied, and the granularity level was at package and design pattern

level. Design level metrics from the Quality Model for Object Oriented Design

(QMOOD) were used in characterising the reusability level of the software

investigated in the study.

Another related research study is by Makkar et al. (2012), specified an

inheritance metric that is better than Depth of Inheritance (DIT) or Depth of

Inheritance of Class (DITC), with a reusability perspective, with the claim that

current inheritance metrics are primitive and only give rough estimate of the

inheritance of a class or lack validation support. The metric is theoretically validated

through Weyuker’s nine axioms, showing a good coverage of the inheritance concept

in a class. Though, the metric might be good in terms of its rigour in validation and

its measurement, it only covers one aspect of reusability, therefore other metrics need

to be identified and used to accomplish the assessment of reusability as a whole.

A few of the research studies discussed this section considered investigating

software reusability as software evolves and more, so all are not identify the

corresponding software components which can be reused based on the software

projects that were studied as shown in Table 1.1. Moreover, they are lacking in

decision to advice the developers mentioned at their projects ways of how to reuse

the software components present in their projects, so that they can increase

productivity as they come up with new releases

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

5

Table 1. 1: Assessment of Software Reusability

Authors Case Study No. of Projects Granularity

Level

Quality

Model

Evolution

(Fazal et al.,

2012)

Java Open

Source

Projects

2 (Jasmin,

pBeans)

6 versions and

10 versions

Class,

method

Proposed a

quality model

with new

metrics

proposed

Yes

(Goel and

Bhatia, 2013)

C++

programs

3 programs (3

classes)

Class CK metrics

used, new

metrics were

also proposed

No

(Ampatzoglou et

al., 2011)

Java Open

Source

Projects

29 projects Design

Patterns,

packages

QMOOD

(Design level

metrics)

No

(Makkar et al.,

2012)

Reusability

Metric

specification

No project Class DIT, DITC No

Moreover, from the summary of the research studies as presented in Table

1.1, it is evident that different studies have touched a different granularity levels

when it comes to reuse component. The class has been the most consistent

granularity level used in most studies discussed, so this can largely be attributed to

the metrics used. One other hand, aspect that was observed in many studies has

appeared with a proposal of new reusability metrics, through the mathematical rigour

required to validate them if they were lacking in serious way.

1.3 Problem Statement

Comparing package level metrics suites "as they measure an external software

quality attribute" is supposed to help a developers to know which metric suite can be

used to effectively predict the software quality attribute at package level.

Nonetheless, software changes that are implemented due to addition feature and

maintenance, that affect at the internal structures of the software, hence directly

affecting design properties such as reusability, modularity and modifiability.

This research work, would like to compare two package level metrics suites

on the design property, reusability. The purpose is to understand which of the two

suites can effectively predict the reusability level of packages within an object-

oriented software. The two package level metrics suites that were used to compare

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

6

package reusability level, were; the Martin’s metrics suite and the CK metrics suite.

The reusability computation index equation by (Bansiya, 2002) was adapted as the

reusability quality model in this research work.

1.4 Research Aim and Objectives

The aim of this study is therefore to compare two package level metrics suites on the

design property and reusability; in order to understand which of the two suites can

effectively predict the reusability level of packages within object-oriented software.

The aim of this study was achieved through the following objectives:

i. Measure package reusability properties in two open source Java software

using CK package metrics suite.

ii. Measure the package reusability properties in two open source Java software

using Martins package metrics suite.

iii. Evaluate and compare package reusability level within the two open source

Java software.

iv. Evaluate the effectiveness of the two package metric suites in measuring

package reusability level.

1.5 Scope of the Study

Some open-source software undergo a tremendous changes within a very short time,

because of the environment they operate under; this puts a lot of constraint to the

community developers, especially when coming up with new releases. Therefore, if

the developers can be helped in terms of knowing which parts of their software can

easily be reused; it can go a great length in reducing the development time of new

features as requested by users.

This research would like to fill-in such a gap by first being able to

characterize the reusability levels of packages in a mature open-source object-

oriented software using two well-known package metrics suites. Two open source

object-oriented software namely jEdit and BlueJ written in Java were used; the two

open source projects were considered in this research since the two are from the

same problem domain as Java programming editors. Three measurement tools,

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

7

namely; Metrics 1.3.8, JHawk and JDepend were used together with one reverse

engineering tool called ObjectAid; all these tools were used as plug-ins in the Eclipse

Java IDE. This measurement activity will help the developers to know the reusability

of the packages in question, to help control deterioration of its structure in future

changes. The object-oriented granularity level of concern in this research is the

pegged at the package level, this is because the class is a very low level element for

consideration in terms of reuse. The two metrics suite that were used are; Martin’s

(2006) package metrics suite and CK (1991; 1994) package metrics suite.

A comparison of the measurements from the reusability properties was done

to know which of the two metric suites could effectively predict package reusability

in an object-oriented software. These measurements can be used to allow the

developers to know which package are more reusable than the others in terms of the

metrics values. As an indicator, this will go a long way to control the design

properties, because each package was evaluated on at least a minimum of three

measures, letting the developer understands the packages structural elements, such as

coupling, cohesion and its interface size. The comparison of the metrics from the two

metrics suites was done using correlation analysis which using the measures of

reusability properties obtained from two open Java source software.

1.6 Significance of the Study

Measuring a software product is essential in software engineering for commonly two

purposes as described by Fenton (Fenton and Bieman, 2015); first, to understand the

level of the quality attribute in the product, secondly to be able to control it as its

being developed. This study will first help the developer to address basic issues that

is essential to reusability, such as: understanding the package reusability level in the

software product as it is being developed; ultimately then know which of the

packages are likely to be more reusable than the others. It will also help the

developer to know which of the two package metric suites is more effective in

predicting package reusability in object-oriented software. These are some of the

concerns that this research tried to handle through the results obtained from

measuring the reusability level of two open source case study, namely; jEdit and

BlueJ using the two package metrics suites.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

8

 Measurement in a software product is an indicator of an attribute quality level

within a software product, which sends a signal to the developer that the software

product is moving towards the right direction in terms of the specified design goals

or not. In this research the package reusability level was measured to ascertain its

level in the software product, hence go a long way to help the developer to

understand the reusability level of each package in two open source Java software.

This will go a long way in guiding the design of the software product being

developed and let the developer reuse such packages in developing other software

products in the same domain. The two package reusability measures will also help to

characterize the structural design properties of the software by measuring the

cohesion and coupling among packages, before computing the reusability level of the

package. Through the consistency of the metric values from each metric suite the

developer will be able to know which of the two metrics suites can effectively

predict the reusability level.

1.7 Chapter Summary

This chapter was able to introduce the concept of reusability from a measurement

point of view and its relationship to software evolution, this was covered in Section

1.1. In Section 1.2, a brief overview of the related work that of concern, that show

the missing link in literature was discussed to help the researcher map the scope of

this research work. That was followed immediately by a description of the problem

statement in Section 1.3, whose objectives were specified in Section 1.4. After

which, the scope of the research work was specified in the Section 1.5. In Section

1.6, a justification of the study was fully discussed.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

A common phenomenon among software development houses is that, the process of

software development is always faced with issues in terms of cost, not meeting

delivery time, delivery of software that does not fully meet user’s functionality or has

runtime errors among other issues (Nazareth and Rothenberger, 2004). Software

reuse has been recognized by many researchers (Tripathy and Naik, 2014; Keswani

et al., 2014; Spoelstra et al., 2011; Agresti, 2011) as a way that can help to solve

some of the software crisis issues mentioned; especially when the software’s

evolution rate is a bit faster.

User’s needs always increase continuously, and to accommodate those needs

the softwares should also change. It is therefore necessary for developers to craft

software that is flexible enough, which can accommodate change when required,

afford extendibility with or without rework. Such a description fits so well to the

characteristics of software product property called software reusability. Most

software systems that have exhibited some success in the market, should be able to

add new system capabilities when required - that is as it evolves; this can be possible

if software modules written earlier can be reused (Stierna and Rowe, 2003). Hence,

software evolution and software reusability are related in one way or another;

software that is reusable can easily evolve as user needs or change in requirements.

As software evolves then the developer needs to also be careful on how its

internal properties also change to be able to facilitate later reuse of some software

artefacts. Thus, it is essential for the developer to understand and control the level of

some internal product attributes such as reusability, modularity, modifiability among

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

10

others; which have a direct effect on external product properties. To be able to

characterize and hence control the reusability level as software evolves, reusability

level measurement is required for each software release as it evolves.

The need for the software measurement in order to characterize and control a

software product attribute, specifically for reusability was briefly discussed in sub

section 1.2. That section also gave an overview of the existing research that has been

conducted in the field of software reusability, which was then be further expounded

in this sub section 2.3 and 2.4. To achieve the objectives stated in sub section 1.4, a

package reusability metrics are required; these are discussed in details sub section

2.3.1. Before that discussion, a detailed coverage of what software reusability entails

is first done in the Section 2.2 that follow.

2.2 Software Reusability

Software reusability is a software product property that specifies the ability of a

software artefact to be reused in developing new software (ISO/IEC 25010, 2011).

This property hangs on the process of software reuse, which involves crafting new

software systems by using already existing software artifacts instead of developing

them from scratch (De’ and Rao, 2013; Heinemann et al., 2011; Lucrédio et al.,

2008). In most large software systems, it is always possible to find reuse

opportunities, this can be confirmed by the facts given by Nazareth and Rothenberger

(2004), that suggested about 75% of functions within a program can be reused in

other programs. That fact is also confirmed what was suggested by Joyce (1990), that

roughly about 15% of all source code is unique; meaning the other code can be easily

reused in other contexts. Thus, in most software systems, that are large enough, there

should be software artifacts that can be reused either within that system or externally.

The estimates suggested here are mostly based on software systems that are

similar, which in most cases will be from similar application domains, also may be

from a specific software systems domain or are using similar programming

languages (Nazareth and Rothenberger, 2004; Sommerville and Kotonya, 1998).

There are many examples of software reuse in practice, stemming from as easy as

functions as well as subroutines, where a repetitive task is put together in a sub

program, then called when required; though not a common example. Other examples

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

11

include libraries or packages, application programming interfaces (API),

frameworks, design patterns among other examples (Sojer and Henkel, 2011;

Sommerville, 2010; Postmus and Meijler, 2008; Brown and Booch, 2002). In Section

2.2.3, a detailed classification of the software reuse is done, and in each case

examples are provided.

The open source community, has provided an avenue for software reuse as

acknowledged by Brown and Booch (2002), libraries, APIs, frameworks and many

others have been provided with access to the source code also; making it easier for

developers to directly reuse or rework some solutions to suit their needs. In the open

source community, frameworks and libraries for many recurring tasks are provided

for in software repositories such as Source Forge, Linux, Apache and many others

(Sojer, 2011; Brown and Booch, 2002). Examples of popular frameworks that have

been used in market with tremendous impact include web application frameworks

like Apache, Ant, Hibernate, Struts; programming platforms like Eclipse, Netscape

among others (Heinemann et al., 2011). The contribution of these frameworks and

libraries have touched many software development and some may not be able to

survive without such software in use. Open source software is driven towards reuse,

since they have to keep up with the rapid pace of dynamic change in user

requirements and effecting new user requirements (Brown and Booch, 2002). In as

much as these repositories are good, they tend to be abused in terms of software

reuse.

With the advent of the many online code repositories offering access to

source code, some software developers who copy and paste such code into their

software systems may perceive that as software reuse (Barzilay and Urquhart, 2014).

While this process make the developer not reinvent the wheel as it were, it is a

process of copying and pasting, which culminates to code duplication, leading to bad

code seems as described by Fowler et al. (1999). As good as it is to the developer at

the time of doing it, it should not be confused with software reuse; it is code

duplication. As the access to such repositories is there, source code reuse should be

in form of the impacts that are modular in form such as libraries, packages among

others. Such modular impacts when required in development, can then be used in that

form or reworked but not copied. This is one of many issues which faced in case of

software reuse, many examples are given in sub section 2.2.2; before then a

discussion of the need for reuse and its advantages is done in sub section 2.2.1.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

12

2.2.1 Software Reuse

Software reuse has been widely accepted, has seen a lot of progress made in the

software industry, in relation to reducing the issues that are always associated with

the phenomena of software crisis. In literature, reusing already existing code has a lot

of benefits that include:

i. Increased Productivity

The use of already existing software artifacts increase the productivity of

software developers, since new products are not written from scratch and can

therefore use their time to write that part of the software that really is unique

(Rothenberger et al., 2003; Lim, 1994). This in a way expedites the creation

of a new software product, hence reduces the time to develop and

considerable reduces the cost of the software produced (Meena and O'Brien,

2011). This is a very important reuse benefit since one of the issues that

software development is battling out in practice is increasing production of

software and ultimately reducing the cost of the product. This was one of the

concerns of McIlroy and his colleagues, in their seminal work (McIlroy et al.,

1968) on software reuse coined the concept software factory in 1968.

ii. Improved Software Quality

An existing software impacts that can be reused presents a tested piece of

software, hence when reused assures that the product realized will also

conform to the quality level of the impacts (Barzilay and Urquhart, 2014;

Lim, 1994). As said earlier, the part of software that is unique is always

relatively small compared to the parts that are reused, hence if a software

product is built from existing software artifacts the end product will be of

high quality (Meena and O'Brien, 2011). Again this property considerably

reduces the quality issues that of concern in software development, since

reusable artifacts have a proven quality level.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

13

iii. Enhanced Code and Design Standards

Using existing frameworks, present a proven system architecture that the

developer should conform to, hence in a way will push the developer to

conform to a coding and design standard that is with reference to the

framework being used (Heinemann et al., 2011; Brown and Booch, 2002).

Making it clear that developers that are using the similar frameworks will

follow a certain way of reasoning in terms of coding and design standards.

Hence, developers within such domain of frameworks can easily share

reusable software artifacts and to some extent follow all design principles

within that domain.

iv. Facilitates Knowledge Reuse

Software reuse is one way of sharing software development knowledge

amongst developers (Sojer, 2011). This was further enhanced by introduction

of design patterns (Gamma et al., 1994) which involves expert developers

sharing their expert experience with novice designers through patterns.

Through frameworks some design patterns are now part of developer’s toolkit

and it is a must in one way or the other to follow these design patterns to fully

utilize the framework.

The four purposes which also be viewed as benefits of software reuse are not

an exhaustive list but form a basis of almost all other objectives or reasons why

software reuse is important to the software developer and software development

house. It is obvious it is not all roses to software reuse, challenges of software reuse

are presented in the next sub section.

2.2.2 Challenges of Software Reuse

Despite the benefits that can be accrued by reusing software artifacts, software reuse

has still not reached its full potential due to many challenges it faces (Spoelstra et al.,

2011). This is evident in any field that has a lot to accomplish in varying contexts of

use, again the issue of it being a young concept and the complexity of the artifact that

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

REFERENCES

Abran, A. (2010). Software Metrics and Software Metrology. John Wiley & Sons,

Inc.

Agresti, W. W. (2011). Software Reuse: Developers’ Experiences and Perceptions.

Journal of Software Engineering and Applications. 4(01), 48.

Ampatzoglou, A., Kritikos, A., Kakarontzas, G. and Stamelos, I. (2011). An

empirical investigation on the reusability of design patterns and software

packages. Journal of Systems and Software. 84(12), 2265-2283.

Bansiya, J. and Davis, C. G. (2002). A hierarchical model for object-oriented design

quality assessment. Software Engineering, IEEE Transactions on. 28(1), 4-

17.

Barzilay, O. and Urquhart, C. (2014). Understanding reuse of software examples: A

case study of prejudice in a community of practice. Information and Software

Technology. 56(12), 1613-1628.

Brown, A. W. and Booch, G. (2002). Reusing Open-Source Software and Practices:

The Impact of Open-Source on Commercial Vendors. In Gacek, C. (Ed.)

Software Reuse: Methods, Techniques, and Tools. (pp. 123-136). Springer

Berlin Heidelberg.

Chidamber, S. R. and Kemerer, C. F. (1991). Towards a metrics suite for object

oriented design. ACM.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented

design. Software Engineering, IEEE Transactions on. 20(6), 476-493.

De’, R. and Rao, R. A. (2013). Open Source Reuse and Strategic Imperatives. In

Sim, S. E. and Gallardo-Valencia, R. E. (Eds.) Finding Source Code on the

Web for Remix and Reuse. (pp. 187-204). Springer New York.

Elish, M. O. (2010). Exploring the Relationships between Design Metrics and

Package Understandability: A Case Study. Program Comprehension (ICPC),

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

87

2010 IEEE 18th International Conference on.June 30 2010-July 2 2010. 144-

147.

Elish, M. O., Al-Yafei, A. H. and Al-Mulhem, M. (2011). Empirical comparison of

three metrics suites for fault prediction in packages of object-oriented

systems: A case study of Eclipse. Advances in Engineering Software. 42(10),

852-859.

Fazal, E. A., Mahmood, A. K. and Oxley, A. (2012). An evolutionary study of

reusability in Open Source Software. Computer & Information Science

(ICCIS), 2012 International Conference on.12-14 June 2012. 967-972.

Fenton, N. and Bieman, J. (2015). Software Metrics: A Rigorous and Practical

Approach, Third Edition. CRC Press.

Fowler, M., Beck, K., Brant, J. and Opdyke, W. (1999). Refactoring: Improving the

Design of Existing Code. Westford, MA - USA: Addison Wesley Longman,

Inc.

Frakes, W. B. and Kyo, K. (2005). Software reuse research: status and future.

Software Engineering, IEEE Transactions on. 31(7), 529-536.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994). Design patterns:

elements of reusable object-oriented software. Pearson Education.

Goel, B. M. and Bhatia, P. K. (2013). Analysis of reusability of object-oriented

systems using object-oriented metrics. SIGSOFT Softw. Eng. Notes. 38(4), 1-

5.

Harrison, R., Counsell, S. J. and Nithi, R. V. (1998). An evaluation of the MOOD set

of object-oriented software metrics. Software Engineering, IEEE

Transactions on. 24(6), 491-496.

Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B. and Irlbeck, M.

(2011). On the Extent and Nature of Software Reuse in Open Source Java

Projects. In Schmid, K. (Ed.) Top Productivity through Software Reuse. (pp.

207-222). Springer Berlin Heidelberg.

Holmes, R. and Walker, R. J. (2013). Systematizing pragmatic software reuse. ACM

Trans. Softw. Eng. Methodol. 21(4), 1-44.

Horton, I. (2011). Ivor Horton's Beginning Java. John Wiley & Sons.

ISO/IEC 25010 (2011). Systems and software engineering — Systems and software

Quality Requirements and Evaluation (SQuaRE) — System and software

quality models. BS ISO/IEC 25010. BS ISO/IEC.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

88

Jalender, B., Gowtham, N., Kumar, K. P., Murahari, K. and Sampath, K. (2010).

Technical impediments to software reuse. Int. J. Eng. Sci. Technol. 2(11),

6136-6139.

Joyce, E. J. (1990). Reusable software: passage to productivity? Management

information systems. (pp. 203-207). Scott, Foresman \& Co.

Keswani, R., Joshi, S. and Jatain, A. (2014). Software Reuse in Practice. Advanced

Computing & Communication Technologies (ACCT), 2014 Fourth

International Conference on.8-9 Feb. 2014. 159-162.

Lehman, M. M. (1979). On understanding laws, evolution, and conservation in the

large-program life cycle. Journal of Systems and Software. 1(0), 213-221.

Lim, W. C. (1994). Effects of reuse on quality, productivity, and economics.

Software, IEEE. 11(5), 23-30.

Lucrédio, D., dos Santos Brito, K., Alvaro, A., Garcia, V. C., de Almeida, E. S., de

Mattos Fortes, R. P. and Meira, S. L. (2008). Software reuse: The Brazilian

industry scenario. Journal of Systems and Software. 81(6), 996-1013.

Makkar, G., Chhabra, J. K. and Challa, R. K. (2012). Object oriented inheritance

metric-reusability perspective. Computing, Electronics and Electrical

Technologies (ICCEET), 2012 International Conference on.21-22 March

2012. 852-859.

Malhotra, R. and Khanna, M. (2013). Investigation of relationship between object-

oriented metrics and change proneness. International Journal of Machine

Learning and Cybernetics. 4(4), 273-286.

Martin, M. and Martin, R. C. (2006). Agile principles, patterns, and practices in C#.

Pearson Education.

McIlroy, M. D., Buxton, J., Naur, P. and Randell, B. (1968). Mass-produced

software components. Proceedings of the 1st International Conference on

Software Engineering, Garmisch Pattenkirchen, Germany. sn, 88-98.

Meena, J. and O'Brien, L. (2011). A comparison of software reuse in software

development communities. Software Engineering (MySEC), 2011 5th

Malaysian Conference in.13-14 Dec. 2011. 313-318.

Mili, H., Mili, F. and Mili, A. (1995). Reusing software: issues and research

directions. Software Engineering, IEEE Transactions on. 21(6), 528-562.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

89

Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B. and Ducasse, S.

(2013). Software quality metrics aggregation in industry. Journal of

Software: Evolution and Process. 25(10), 1117-1135.

Morisio, M., Ezran, M. and Tully, C. (2002). Success and failure factors in software

reuse. Software Engineering, IEEE Transactions on. 28(4), 340-357.

Mubarak, A., Counsell, S. and Hierons, R. M. (2009). Does an 80:20 rule apply to

Java coupling? Proceedings of the 13th international conference on

Evaluation and Assessment in Software Engineering. UK: British Computer

Society.

Nazareth, D. L. and Rothenberger, M. A. (2004). Assessing the cost-effectiveness of

software reuse: A model for planned reuse. Journal of Systems and Software.

73(2), 245-255.

Postmus, D. and Meijler, T. D. (2008). Aligning the economic modeling of software

reuse with reuse practices. Information and Software Technology. 50(7–8),

753-762.

Poulin, J. S. (1994). Measuring software reusability. Software Reuse: Advances in

Software Reusability, 1994. Proceedings., Third International Conference

on.1-4 Nov 1994. 126-138.

Prieto-Diaz, R. (1993). Status report: software reusability. Software, IEEE. 10(3), 61-

66.

Rothenberger, M. A., Dooley, K. J., Kulkarni, U. R. and Nada, N. (2003). Strategies

for software reuse: a principal component analysis of reuse practices.

Software Engineering, IEEE Transactions on. 29(9), 825-837.

Schmidt, D. C. (1999). Why software reuse has failed and how to make it work for

you. C++ Report. 11(1), 1999.

Sherif, K. and Vinze, A. (2003). Barriers to adoption of software reuse: A qualitative

study. Information & Management. 41(2), 159-175.

Shiva, S. G. and Shala, L. A. (2007). Software Reuse: Research and Practice.

Information Technology, 2007. ITNG '07. Fourth International Conference

on.2-4 April 2007. 603-609.

Sojer, M. (2011). Open source software developers’ perspectives on code reuse.

Reusing Open Source Code. (pp. 20-130). Gabler.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

90

Sojer, M. and Henkel, J. (2011). Code Reuse in Open Source Software Development:

Quantitative Evidence, Drivers, and Impediments. Rochester: Social Science

Research Network.

Sommerville, I. (2010). Software Engineering. 10th. edition. Boston, MA: USA:

Addison-Wesley.

Sommerville, I. and Kotonya, G. (1998). Requirements Engineering: Processes and

Techniques. John Wiley & Sons, Inc.

Spoelstra, W., Iacob, M. and Sinderen, M. v. (2011). Software reuse in agile

development organizations: a conceptual management tool. Proceedings of

the 2011 ACM Symposium on Applied Computing. TaiChung, Taiwan: ACM.

Stephens, M. and Rosenberg, D. (2007). Use Case Driven Object Modeling with

UML: Theory and Practice. Apress.

Stierna, E. J. and Rowe, N. C. (2003). Applying information-retrieval methods to

software reuse: a case study. Information Processing & Management. 39(1),

67-74.

Suresh, Y., Pati, J. and Rath, S. K. (2012). Effectiveness of Software Metrics for

Object-oriented System. Procedia Technology. 6(0), 420-427.

Thapar, S. S., Singh, P. and Rani, S. (2014). Reusability-based quality framework for

software components. SIGSOFT Softw. Eng. Notes. 39(2), 1-5.

Tripathy, P. and Naik, K. (2014). Reuse and Domain Engineering. Software

Evolution and Maintenance. (pp. 325-357). John Wiley & Sons, Inc.

Utts, J. (2014). Seeing through statistics. Cengage Learning.

Vasa, R. (2010). Growth and Change Dynamics in Open Source Software. Ph.D

Thesis, Swinburne University of Technology.

Wu, J. (2006). Open Source Software Evolution and Its Dynamics. Ph.D Thesis,

University of Waterloo.

Zhao, Y., Yang, Y., Lu, H., Zhou, Y., Song, Q. and Xu, B. (2015). An empirical

analysis of package-modularization metrics: Implications for software fault-

proneness. Information and Software Technology. 57(0), 186-203.

Zimmermann, T., Premraj, R. and Zeller, A. (2007). Predicting Defects for Eclipse.

Predictor Models in Software Engineering, 2007. PROMISE'07: ICSE

Workshops 2007. International Workshop on.20-26 May 2007. 9-9.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

