THE FRAMEWORK OF DIRECT AND INDIRECT EFFECT OF PROJECT RISK RESPONSE-RELATED MEASURES ON PROJECT PERFORMANCE IN MANAGING CONSTRUCTION DELAY

PRIYADATCHINI A/P KARUNAKARAN

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy (PhD) in Civil Engineering

Faculty of Civil Engineering and Built Environmental Universiti Tun Hussein Onn Malaysia

OCTOBER 2020

Specially dedicated to my beloved family, seniors, professors, lecturers and all my beloved friends who had encouraged, guide and inspired me throughout my journey of education.

ACKNOWLEDGEMENT

I would like to express my highest gratitude to my supervisor, Prof. Madya Dr. Ts. Abdul Halid Bin Abdullah and also my co-supervisors, Ts. Dr. Sasitharan Nagapan and Mr. Mohd. Helmy Abd. Wahab for their guidance that had been given to me throughout this journey. Much appreciation is extended to Professor Murali Sambasivan (Taylor's Lakeside College, Selangor), Dr. Gopal Sekar (Muhibbah Engineering Sdn. Bhd., Selangor) and Dr. Wan Mohammad Asyraf Afthanorhan (Universiti Sultan Zainal Abidin, Terengganu) for their full support during my final year. Without their guidance and inspiration, it would not be possible for this research title procedure to be assessed.

My deepest appreciation goes to my lovely family. I would like to thank my parents, Mr. and Mrs. Karunakaran, for giving me so much love, understanding, and financial support all these years until I successfully graduated. To my sibling and my sister-in law, Mr. and Mrs. Yovaraj, I would like to thank them for the encouragement and emotional support that they had given to me. I would also like to thank my extended family (ESONA) for giving me a chance to prove myself. In addition, my special thanks to my closest friend, Engr. Sathiaraj Natianandam, for his patience, care, and support over the past years. I would not be completing this journey if it was not for him. Not forgetting all those friends whose paths have crossed with mine over these years. Their support and encouragement helped me to overcome all the challenges during the process of completing this research. I am truly grateful to all the experts who had conducted research workshops. Their teaching method had motivated me the most throughout this journey. Without their support, I would not have gone so far. Finally, I am grateful for God's provision of peace, joy, challenges, and grace for growth.

ABSTRACT

Project performance can be enhanced via proper risk management, particularly with the development of risk response measures. Though delay issues have been explored in many studies, to date, no study has attempted to measure how delay factors and risk measures are associated with the project performance. Therefore, the aim of this study is to establish the framework of the direct and indirect effect of project risk responserelated measures (RM) on project performance (PP) in managing project-related delay factors (DF) in Malaysian construction companies. A total of 332 questionnaire responses were collected from Grade 7 contractors via posts, online survey, email, and by hand. The data was examined using Statistical Package of Social Sciences and Structural Equation Modelling. The result of the study showed that all RMs have significant effect on time and cost performance, except for corrective-related measures and their effect on time performance. Both the DF and RM have a significant effect on PP. Also, the mediating effect was found to be significant on PP. This research provides guidelines for construction practitioners and decision makers on identifying critical delay issues and ways to deal with it with effective risk response measures in order to enhance the project performance. This research also benefits the researchers to have a clear view of the theoretical parts and comprehensive analyses in dealing with delays in the construction industry. This research highly recommends the researchers to further explore on risk behaviour from a different point of views to understand a firm's intention in mitigating risk.

ABSTRAK

Prestasi projek dapat ditingkatkan dengan pengurusan risiko yang berkesan terutamanya dengan pembangunan langkah pengurusan risiko. Walaupun isu kelewatan telah diterokai dalam pelbagai kajian, sehingga kini, tiada kajian dapat menyimpulkan sejauh mana faktor kelewatan dan pengurusan risiko boleh mempengaruhi prestasi projek. Oleh itu, matlamat kajian ini adalah untuk mengkaji kesan langsung dan tidak langsung langkah pengurusan risiko (RM) terhadap prestasi projek (PP) dalam menangani faktor kelewatan projek (DF) untuk syarikat pembinaan Malaysia. Sejumlah 332 soal selidik telah dikumpul melalui pos, tinjauan dalam talian, e-mel dan secara bersemuka dari kontraktor Gred 7. Data dianalisis menggunakan (SPSS) dan Pemodelan Persamaan Berstruktur (SEM). Hasil kajian menunjukkan bahawa RM memberikan kesan yang signifikan terhadap prestasi masa dan kos kecuali untuk langkah pemulihan dan kesannya terhadap prestasi masa. DF dan RM memberikan kesan yang signifikan terhadap PP. Kesan pengantara turut didapati signifikan ke atas PP. Kajian ini memberikan garis panduan untuk pengamal pembinaan dan pembuat keputusan untuk mengenal pasti isu kelewatan yang paling kritikal dan cara untuk menanganinya dengan langkah pengurusan risiko yang berkesan untuk meningkatkan prestasi projek industri pembinaan Malaysia. Kajian ini turut memberi manfaat kepada penyelidik dengan memberikan pandangan yang jelas mengenai teori dan analisis komprehensif dalam menangani kelewatan dalam industri pembinaan. Kajian ini turut memberikan saranan kepada para penyelidik untuk melaksanakan kajian lanjut mengenai tingkah laku risiko daripada sudut pandangan yang berbeza untuk memahami niat syarikat dalam mengurangkan risiko.

CONTENTS

	TITLE	i
	STUDENT'S DECLARATION	ii
DEDICATION		iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	XV
	LIST OF SYMBOLS AND ABBREVIATIONS	xvii
	LIST OF APPENDICES	XX
CHAPTER 1	INTRODUCTION	1
	1.1 Prefatory remarks	1
	1.2 Background of this research	2
	1.3 Motivation of the research	5
	1.4 Research problem	10
	1.5 Research questions	13
	1.6 Research aim and objectives	13
	1.7 Research scope	14

	1.8 Significance of this research	14
	1.9 Research structure	16
	1.10Summary	17
CHAPTER 2	LITERATURE REVIEW	18
	2.1 Introduction	18
	2.2 Definition of key terms	19
	2.3 Theoretical background	21
	2.3.1 Project management theory	21
	2.3.2 Project risk management theory	23
	2.3.3 Transaction Cost Economics theory	26
	2.3.4 Expected utility theory	28
	2.3.5 Prospect theory	29
	2.3.6 Behavioural theory of the firm	30
	2.4 Construction management	33
	2.5 Project performance	36
	2.6 Project-related delay factors	40
	2.6.1 Coordination-related factors	43
	2.6.2 Resources-related factors	46
	2.6.3 Environmental-related factors	48
	2.7 Project risk response-related measures	48
	2.7.1 Preventive-related measures	53
	2.7.2 Predictive-related measures	56
	2.7.3 Corrective-related measures	57
	2.7.4 Organisational-related measures	59
	2.8 Research gaps	61
	2.9 Strengthening the framework	61
	2.10 Research model and hypothesis/proposition	
	development	65
	2.10.1 Research model framework	65
	2.10.2 Impact of project-related delay factors	

	and project performance	66
	2.10.3 Impact of project risk response-related	
	measures and project performance	70
	2.10.4 Mediating effect of project risk response-	
	related measures on project-related	
	factors and project performance	74
	2.11 Operational definition	76
	2.12 Summary	78
CHAPTER 3	METHODOLOGY	81
	3.1 Introduction	81
	3.2 Research design	82
	3.3 Population and sampling	84
	3.4 Measurement of variables/instrumentations	85
	3.5 Pilot study	88
	3.6 Data collection procedures	91
	3.7 Techniques of data analysis	92
	3.7.1 Preliminary data analysis	92
	3.7.2 Descriptive statistical analysis	93
	3.7.3 Common method variance analysis	94
	3.7.4 Demographic factor analysis	95
	3.7.5 Relative importance index analysis	95
	3.7.6 Inferential statistical analysis	96
	3.8 Expert panel discussion and feedback	106
	3.9 Summary	106
CHAPTER 4	DATA ANALYSIS	108
	4.1 Introduction	108
	4.2 Response rate analysis	109
	4.3 Preliminary data analysis	109

CILADTED 5	DISCUSSION AND CONCLUSIONS	142
	4.10 Summary	139
	4.9 Expert panel discussion and feedback analysis	138
	variable	138
	4.8.4 Organizational size as the control	
	4.8.3 Two stage modelling	131
	performance	126
	related measures and project	
	4.8.2 Relationship of project risk response-	
	factors and project performance	121
	4.8.1 Relationship of project-related delay	
	4.8 Inferential statistical analysis	121
	4.7 Relative importance index analysis	118
	4.6 Demographic factor analysis	114
	4.5 Common method bias analysis	113
	4.4 Descriptive statistical analysis	111

CHAPTER 5 DISCUSSION AND CONCLUSIONS 142

5.1 Introdu	action	142
5.2 Recapi	tulation on the research findings	143
5.3 Discus	sion on the research findings	145
5.3.1	Relationship between project-related	
	delay factors and project performance	145
5.3.2	Relationship between project risk	
	response-related measures and project	
	performance	150
5.3.3	Mediating effect of project risk	
	response-related measures on project-	
	related delay factors and project	
	performance	155
5.3.4	Size of organizational as control variable	156

5.3.5 Summary of conclusions on research	
questions	158
5.4 Relative importance index analysis	160
5.5 Implications of the research	162
5.5.1 Theoretical implications of the research	162
5.5.2 Practical implications of the research	163
5.6 Limitations of the research findings	165
5.6.1 Sample size	165
5.6.2 Stakeholders' representation	165
5.6.3 Consideration of factors	166
5.6.4 Sector-wise construction scope	166
5.6.5 Grade of contractors	166
5.6.6 Generalizability	166
5.7 Recommendations for future research	167
5.7.1 Overall construction companies' project	
performance	167
5.7.2 Sector-wise construction scope	167
5.7.3 Stakeholders' impact on project	
performance	168
5.8 Conclusion	168
REFERENCES	169
APPENDIX A	182
APPENDIX B	191
PUBLISHED PAPERS AND	
ACHIEVEMENTS	196

VITA

LIST OF TABLES

1.1	World's GDP growth rate	2
1.2	Strategic thrusts of CIMP and CITP	4
1.3	Statistics for delayed and sick project as of 2019	6
1.4	Reports by KKR and AG	7
1.5	Significance of this research	15
2.1	Definition of key terms	19
2.2	Theoretical foundation for project management	22
2.3	Types of decision making	31
2.4	Construction management area	34
2.5	Past empirical studies on delay issues	41
2.6	Past empirical studies on delay risk measures	51
2.7	Operational definition	76
3.1	Summary of research design	83
3.2	Recommended sample size	85
3.3	Research questionnaire sources	87
3.4	Likert scale used in this research	88
3.5	Reliability result	90
3.6	Summary of data collection procedure	91
3.7	Indicators for outliers	93
3.8	Indicators for normality	94
3.9	Considerations on measurement model	100
3.10	Indicators for internal consistency, indicator	
	reliability, convergent validity and discriminant	
	validity	101
3.11	Standard assessment criteria for structural model	103

4.1	Univariate outlier assessment (z-score)	110
4.2	Mahalabonis D ² Distance (significance value)	110
4.3	Descriptive statistics assessment	111
4.4	Harmen's single factors test	113
4.5	Correlations among latent variables through PLS	
	Algorithm	114
4.6	Demographic characteristics	114
4.7	Descriptive statistical analysis for demographic	
	factor analysis	116
4.8	Correlation statistics on respondent details	117
4.9	Relative importance index (RII) analysis	119
4.10	Summary of most important factors	120
4.11	Loadings, reliability and validity of DF-PP	
	measurement model	123
4.12	Heterotrait-Monotrait Ratio, T-values and P-values of	
	DF-PP measurement model	125
4.13	Loadings, reliability and validity of RM-PP	
	measurement model	127
4.14	Heterotrait-Monotrait Ratio, T-values and P-values of	
	RM-PP measurement model	129
4.15	R squared of RM-PP measurement model	129
4.16	Direct effect of sub-risk measures and project	
	performance	130
4.17	Normality evaluation	132
4.18	Loadings, reliability and validity of second order	
	measurement model	134
4.19	Discriminant validity (HTMT) of second order	
	measurement model	134
4.20	R squared	135
4.21	Direct effect	135
4.22	Specific indirect effect	137
4.23	Degree of mediation	137
4.24	Analysis of control variable	138

4.25	Summary of supported hypothesis	140
4.26	Summary of final findings	141
5.1	Hypothesis testing analysis summary	143
5.2	Results of the first hypothesized path	146
5.3	Path loadings and RII values of project-related delay	
	factors	146
5.4	Results of the second hypothesized path	150
5.5	Path loadings and RII values of project risk response-	
	related measures	151
5.6	Results of the third hypothesized path	155
5.7	Significance level of control variable	157
5.8	Summary of discussion on research questions	159
5.9	Summary of discussion on relative importance index	
	analysis	160
5.10	Summary of most important factors for each	
	dimensions	161

xiv

LIST OF FIGURES

1.1	The organization and flow of chapter one	1
1.2	GDP of Malaysian economy growth	3
1.3	Malaysia construction output	5
2.1	The organization and flow of chapter two	19
2.2	Managerial process of project management	22
2.3	Risk management process	24
2.4	Determinants of TCE theory	28
2.5	Determinants of behavioural theory of the firm	31
2.6	Processes of decision making	31
2.7	Managerial process for construction projects	33
2.8	Contractual relationship for each procurement	
	method	35
2.9	Involvement of contractors in managerial processes	
	and the beneficial of procurement triangle	36
2.10	Dimensions of project performance	39
2.11	Dimensions of project-related delay factors	43
2.12	Dimensions of project risk response-related measures	52
2.13	Strengthening the theories	64
2.14	Research framework	66
3.1	The organization and flow of chapter three	74
3.2	Flowchart of data analysis techniques	92
3.3	Aspects to be considered for employ PLSSEM	98
3.4	Simple mediation model using path diagrams	104
4.1	The organization and flow of chapter four	108
4.2	Normality assumptions	112

4.3	Composite loadings of DF-PP measurement model	122
4.4	New composite loadings of DF-PP measurement	
	model	123
4.5	Composite loadings of RM-PP measurement model	126
4.6	Two-Stage model	133
5.1	The organization and flow of chapter five	142
5.2	Summary of findings	158

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

%	-	Percentage
α	-	Cronbach alpha
f ²	-	Effect size
AG	-	Auditor-general
AVE	-	Average variance extracted
BNM	-	Bank Negara Malaysia
СВ	-	Covariance-based
CdF	-	Coordination-related factors
CF	-	Cost-related factors
CFA	-	Confirmatory factor analysis
CIDB	-	Construction Industry Development Board
CIMP	-	Construction Industry Master Plan
CITP	-	Construction Industry Transformation Program
СМ	-15	Corrective-related measures
CPM CPM	<u>p</u> 05	Critical Path Method
CR	-	Composite reliability
CREAM	-	Construction Research Institute of Malaysia
CSFs	-	Critical success factors
D^2	-	Mahalanobis distance
DF	-	Project-related delay factors
DVs	-	Dependent Variables
DSM	-	Department of Statistics Malaysia
<i>e.g.</i>	-	Exempli gratia or for example
EF	-	Environmental-related factors
ETP	-	Economic Transformation Program
<i>G1-7</i>	-	Grade 1-7

GDP	-	Gross Domestic Product
GFCF	-	Gross Fixed Capital Formation
GNI	-	Gross National Income
GST	-	Goods and services tax
Но	-	Null Hypothesis
HTMT	-	Heterotrait-monotrait
IBS	-	Industrialised Building System
IVs	-	Independent Variables
KKR	-	Ministry of Works
KPKT	-	Ministry of Housing and Local Government
MARA	-	People's Trust Council
MVs	-	Mediator Variables
MYR	-	Malaysian Ringgit
ОМ	-	Organizational-related measures
P-value	-	Significance value
PdM	-	Predictive-related Measures
PERT	-	Project Evaluation and Review Techniques
PLS	-	Partial Least Square
PMBOK	-	Project Management Body of Knowledge
PP	-	Project Performance
PvM	-115	Preventive-related measures
RF	PUU	Resources-related Factors
RII	-	Relative Importance Index
RM	-	Project Risk response-related measures
RO	-	Research objectives
RQ	-	Research questions
SD	-	Standard deviation
SE	-	Standard error
SEM	-	Structural equation modelling
SME	-	Small and medium enterprise
SST		Sales and service tax
SPSS	-	Statistical Package for Social Sciences
TCE	-	Transaction Cost Economics

TF	-	Time-related factors
TN 50	-	Transformational National 2050
UK	-	United Kingdom
USD	-	United States Dollar
VIF	-	Variance inflation factor
WBS	-	Work breakdown structure

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Research questionnaire	86
В	Validation form	107

CHAPTER 1

INTRODUCTION

1.1 Prefatory remarks

This chapter provides a brief explanation of this research study. It presents the background of this study on construction industry, the motivation of the study, research problem, research questions, research objectives, research scope and limitations, significance of the study, and overall structure of the research as shown in Figure 1.1.

Figure 1.1: The organization and flow of chapter one

1.2 Background of this research

The economic transformation of every region globally is dependent on the performance or output of the construction sector (Sekar, 2017). The economic expansions for the key regions in the world, measured in terms of gross domestic product (GDP) value, are as given in Table 1.1

Table 1.1: World's GDP growth rate (The World Bank, 2019a)

No.	Geography/Region	GDP growth rate in % (as of year 2018)
1	East Asia and Pacific	3.6
2	Europe and Central Asia	1.7
3	Latin America and Caribbean	0.5
4	Middle East and North Africa	0.6
5	North America	2.0
6	South Asia	5.5
7	Sub Saharan Africa	-0.3

Based on Table 1.1, East Asia and Pacific, which includes Malaysia, holds the second highest GDP growth rate as high as 3.6 % in the world. Clearly, for Asia, that includes Malaysia, the construction sector plays an important role as one of the top growth-initiating factors for a nation's economy (Department of Statistics Malaysia (DSM), 2017), despite of multiple external challenges such as falling oil prices, introduction of taxes, weaker currency, rising inflation, fiscal deficit and so on (Sekar *et al.*, 2018). The impact of these challenges on economic activities in Malaysia, that includes the output of construction industry, can seen on the GDP annual growth of Malaysia is plotted as in Figure 1.2.

Based on Figure 1.2, during the period of 2010 to 2016, Malaysia's GDP growth rate has registered an average annual growth rate of 5.46 % despite of its tragic experience on financial crisis and economic downturn in year 2009. Based on Central Bank of Malaysia (BNM) (2014), the annual report for the year 2014 indicated there were signs of weakening consumer demand caused by the combination of monetary tightening and high levels of Malaysia's household debt. This eventually leads to a steep decline in the economy growth for Malaysia from the end of year 2014 to 2016 (BNM, 2016). Despite the challenging economic environment, Malaysia could able to rebound with a strong growth rate by 5.9 % in the year 2017 before it moderated back to 4.8 % in the year 2018.

Figure 1.1: GDP of Malaysian economy growth (The World Bank, 2019b)

Being a developing country with the aim to achieve developed nation status by year 2050 via Transformation National 2050 (TN 50), the Malaysian government has invested heavily in conventional projects such as residential, non-residential, infrastructure, and social amenities. The Government also has initiated several mega projects to improve and increase the country's infrastructure facilities (Construction Industry Development Board (CIDB), 2017). The large volume of construction work with an estimated development allocation of Malaysia Ringgit (MYR) 260.0 billion (United States Dollar [USD] 60.6 billion) has commenced in 2016 under the 11th Malaysia Plan (from 2016 to 2020), which is an ongoing phase in gearing Malaysia to achieve the 2050 National Transformation (DSM, 2017).

The Malaysian government has taken several initiatives by developing and implementing the industry Master Plans through CIDB to improve and strengthen the

performance of the industry. This includes Construction Industry Master Plan (CIMP 2006 - 2015) and Construction Industry Transformation Program (CITP 2016 - 2020). The objective of industry Master Plans is to facilitate construction project managers with numerous strategic thrusts to achieve the National Economic Transformation Program (ETP) of Malaysia (CIDB, 2015). Following are the key strategic thrusts of CIMP and CITP outlined in Table 1.2.

Table 1.2: Strategic thrusts of CIMP and CITP (CIDB, 2015; CITP, 2019)

CIMP (2006 - 2015)	CITP (2016 - 2020)
 To integrate the construction industry value chain to enhance productivity and efficiency To strengthen the construction industry image To strive for the highest standard of quality, occupational safety and health and environment practices To develop human resource capabilities and capacities in the construction industry To innovate through research and development and adopt new construction method To leverage on information and 269 communication technology in the construction industry To obtain benefit from globalisation including the export of construction products and services 	 Quality, safety and professionalism Related to everyday practices to reduce cost and improve time performance; creating high quality products; and efficient safety & health environment Environmental sustainability Related to high compliance to the environmental sustainability ratings and practices Productivity Related to efficient adoption of new technologies and modern practices; high skilled and highly paid workforce Internationalisation and competitiveness Related to quickness of practitioners to compete in the construction world with highly skilled and professional workforce.

Despite the great extent of initiatives made by government to support construction project performance, construction projects in Malaysia are seen easily generating unwarranted, uncertain event or condition called risk (Cheung, Suen & Cheung, 2004). Based on the historical valuations of the construction output in Malaysia as shown in Figure 1.3, it shows a fluctuating growth rate between extremities that swinging from as high as 35 % in 2012 to as lows as -6.3 % in 2020. This prompts us to investigate the risks impose to the performance of a project to understand how it decelerates the multiplier effects to the nation's economy (Abdullah *et al.*, 2009).

Figure 1.3: Malaysia construction output (Trading Economics, 2020)

For decades, delays in construction work have become part and parcel of the construction industry's ongoing challenges, locally and globally. The delay in work is described as the slowing down of work or time lag without any stoppage of work (Bartholomew, 1988). The main reasons of why delay issues are remaining not mitigated are because minor delay factors are frequently overlooked, and in a prolonged period, its cumulative effect has severe impact on project time and cost performance (Ibrahim, 2017). The delay issue appears to be challenging due to the industry's one-off endeavours with organizational, technological and nature complexity (Baccarini, 1996; Wood & Ashton, 2010; Zailani *et al.*, 2016). Sambasivan & Soon (2007) found delays can cause time overrun, cost overrun, disputes, arbitration, litigation and total abandonment.

1.3 Motivation of this research

According to Abdul-Aziz & Abdelnaser (2011) and also Ministry of Housing and Local Government (KPKT) (2020), any projects in Malaysia that face delay between 10 % to 30 % when compared to its actual progress is categorized under "delayed project", whereas any projects that face delay more than 30 % or if the construction

REFERENCE

- Abdullah, M. R., Abdul Azis, A. A., & Rahman, I. A. (2009). Potential Effects on Large Mara Construction Projects due to Construction Delay. *International Journal of Integrated Engineering (Issue on Civil and Environmental Engineering)*, 1(2), 53-62.
- Abdul-Rahman, H., Berawi, M., Berawi, A., Mohamed, O., Othman, M., & Yahya, I. (2006). Delay Mitigation in the Malaysian Construction Industry. *Journal of Construction Engineering and Management*, 132(2), 125-133.
- Abdul-Rahman, H., Yahya, I. A., Berawi, M. A., & Wah, L. W. (2008). Conceptual Delay Mitigation Model using A Project Learning Approach in Practice. *Construction Management and Economics*, 26(1), 15-27.
- Ahmad, A. (2014). Examining Risk Behavior And Risk Management Practices In Oil And Gas Construction Industry. Johor, Malaysia: Universiti Teknologi Malaysia: PhD Thesis. Retrieved from http://eprints.utm.my/id/eprint/50820/25/AziraAhmadMFP2014.pdf
- Aibinu, A. A. (2009). Avoiding and Mitigating Delay and Disruption Claims
 Conflict : Role of Precontract Negotiation. Journal of Legal Affairs and
 Dispute Resolution in Engineering and Construction, 1(1), 47-58.
 doi:10.1061/(ASCE)1943-4162(2009)1:1(47)
- Alaghbari, W. E., Kadir, M., Salim, A., & Ernawati (2007). The Significant Factors Causing Delay of Building Construction Projects in Malaysia. *Engineering, Construction and Architectural Management,* 14(2), 192-206.
- Alwin, D.F., Hauser, R.M. (1975). The Decomposition of Effects in Path Analysis. *American Sociological Review*, 40(1), 37-47.
- Asiedu, R. O., Adaku, E., & Owusu-Manu, D.-G. (2017). Beyond the Causes Rethinking Mitigating Measures to Avert Cost and Time Overruns in Construction Projects. *Construction Innovation*, 17(3), 363-380.

- Assaf, S. A., & Al-Hejji, S. (2006). Causes of Delay in Large Construction Projects. International Journal of Project Management, 24(4), 349-357.
- Auditor General Report (2013). Activities of the Federala Ministrues/Departments and Management of the Government Companies (Series 1). Kuala Lumpur: National Audit Department Malaysia.
- Auditor General Report (2016). The Federal Governemnt's Financial Statement for the year 2016 and Financial Management of the Federal Ministries/Departments and Statutory Bodies (Series 1). Kuala Lumpur: National Audit Department Malaysia.
- Baron, R., & Kenny, D. (1986). The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. *Journal of Personality and Social Psychology*, 51, 1173-1182.
- Belassi, W., & Tukel, O. (1996). A New Framework For Determining Critical Success/Failure Factors in Projects. International Journal of Project Management, 14(3), 141-151.
- Belout, A., & Gauvreau, C. (2004). Factors Influencing Project Success: The Impact of Human Resource Management. International Journal of Project Management, 22(1), 1-11.
- Bhattacherjee, A. (2012). Social Science Research: Principles, Methods, and Practices (2 ed.). Zurich, Switzerland: Creative Commons Attribution.
- Bohm, J., & Harris, D. (2010). Risk Perception and Risk-Taking Behavior of Construction Site Dumper Drivers. *International Journal of Occupational Safety and Ergonomics (JOSE), 16*(1), 55-67.
- Borsboom, D., Mellenbergh, G. J., Heerden J. v. (2003). The Theoretical Status of Latent Variables. *Psychological Review*, *110*(2), 203-219.
- Borsboom, D., Mellenbergh, G. J., Heerden J. v. (2004). The Concept of Validity. *Psychological Review*, 111(4), 1061-1071.
- Bronte, S. (2015). Beyond the Iron Triangle: Evaluating Aspects of Success and Failure using Project Status Model. *Journal of Computing & Information Systems*, 19(2), 21-37.
- Cain, M. K., Zhang, Z. & Yuan, K. (2017). Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation. *Behavior Research Methods*, 49, 1716-1735.

- Chai, C. S., Yusof, M. A., & Habil, H. (2015). Mitigation in the Malaysian Housing Industry: A Structural Equation Modelling Approach. *Journal of Construction in Developing Countries*, 20(1), 65-83.
- Champ, P., Donovan, G., & Barth, C. (2013). Living in a Tinderbox: Wildfire Risk Perceptions and Mitigating Behaviours. *International Journal of Wildland Fire*, 22, 832-840.
- Cheung, S. O., Suen, H., & Cheung, K. K. (2004). PPMS: A Web-based Construction Project Performance Monitoring System. Autom. Constr., 13(3), 361-366.
- Coltman, T., Devinney, T., Midgley, D., & Venaik, S. (2008). Formative versus
 Reflective Measurement Models: Two Applications of Formative
 Measurement. *Journal of Business Research*, 61(12), 1250-1262.
- Construction Industry Development Board (CIDB). (2017, October 27). Construction Industry Development Board (CIDB) Official Page. Retrieved from Number and Value of Project Awarded by Project Value Range and Contractor Registration Grade for March 2017: http://www.cidb.gov.my/index.php/my/
- Construction Industry Development Board (CIDB). (2015). Annual Report 2015. Kuala Lumpur: http://cidb.gov.my/sites/default/files/2020-03/CIDB%20Annual%20Report%202015.pdf
- Construction Industry Transformation Program (CITP). (2019). *CITP Initiatives*. Retrieved December 9, 2019, from Construction Industry Transformation Program (CITP): http://www.citp.my/citp-initiatives/
- Cooke-Davies, T. (2002). The "Real" Success Factors on Projects. International Journal of Project Management, 20, 185-190.
- Dao, B., Hasanzadeh, S., & Esmaeilli, B. (2018). The Association between Risk Perception and the Risk-Taking Behaviors of Construction Workers. *Construction Research Congress 2018*, 433-442.
- Department of Statistics Malaysia (DSM). (2017). *Main Statistics on Construction Projects Awarded As of June 2017*. Retrieved December 9, 2019, from Department of Statistics Malaysia (DSM): http://www.cidb.gov.my/images/content/pdf/statistik/Construction-Industry-Statistic---Jun-2017.pdf
- Dozzi, S. P., & AbouRizk, S. M. (1993). Productivity in Construction. Canada: National Research Council Canada.

- Eccles, R. G. (1981). The Quasifirm in the Construction Industry. *Journal of Economic Behavior and Organization*, 2(4), 335-357.
- Edwards, P., & Bowen, P. (1998). Risk and Risk Management in Construction: A Review and Future Directions for Research. *Engineering Construction & Architectural Management*, 5(4), 339-349.
- Efron, B. & Gong, G. (1983). A Leisurely Look at the Bootstrap, the Jackknife and Cross-Validation. *The American Statistician*, *37*(*1*), 36-48.
- Endut, I., Akintoye, A., & Kelly, J. (2005). Cost and Time Overruns of Projects in Malaysia. Proceedings of the 2nd Scottish COnference for Postgraduate Researchers of the BUilt and Natural Environment (PRoBE) (pp. 243-252).
 Rotterdam, Netherlands: Glasgow Caledonian University.
- Enshassi, A., Al-Najjar, J., & Kumaraswamy, M. (2009). Delays and Cost Overruns in the Construction Projects in the Gaza Strip. *Journal of Financial Management of Property and Construction*, 14(2), 126-151.
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods*, 41(4), 1149-1160.
- Fornell, C., & Larcker, D. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. *Journal of Marketing Research*, 18(1), 39-50.
- Franke, G, & Sarstedt, M. (2019). Heuristics versus Statistics in Discriminant Validity Testing: A Comparison of Four Procedures. *Internet Research*, 29(3), 430-447.
- Garson, G. D. (2012). *Testing Statistical Assumptions*. Asheboro, NC: Statistical Associates Publishing.
- Goh, C., & Abdul-Rahman, H. (2013). The Identification and Management of Major Risks in the Malaysian Construction Industry. *Journal of Construction in Developing Countries*, 18(1), 19-32.
- Gold, A. H., Malhotra, M. & Segars, A. H. (2001). Knowledge Management: An Organizational Capabilities Perspective. *Journal of Management Information Systems*, 18(1), 185-214.
- Good, P. I., & J. W. Hardin. 2003. *Common errors in statistics (and how to avoid them)*. John Wiley and Sons, Hoboken, New Jersey, USA.

Greener, S. (2008). Business Research Methods. London: Ventus Publishing.

- Guo, F., Chang-Richards, Y., Wilkinson, S., & Li, T. (2014). Effects of Project Governance Structures on the Management of Risks in Major Infrastructure Projects: A Comparative Analysis. *International Journal of Project Management*, 32(5), 815-826.
- Hair, J.F., Risher, J.J., Sarstedt, M., & Ringle, C.M. (2019). When to Use and How to Report the Results of PLS-SEM. *European Business Review*, *31*(1), 2-24
- Hair, J. F., Hult, G. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2 ed.). Thousand Oaks, CA: Sage Publications.
- Hair, J., Black, W., Babin, B., & Anderson, R. (2010). *Multivariate Data Analysis: A Global Perspective* (7 ed.). Upper Saddle River, New Jersey: Pearson Education Inc.
- Hamid, F., Rangel, G., Taib, F., & Ramayah, T. (2013). The Relationship Between Risk Propensity, Risk Perception and Risk-Taking Behaviour in an Emerging Market. *The International Journal of Banking and Finance*, 10(1), 134-146.
- Hamzah, N., Khoiry, M. A., Arshad, I., Badaruzzaman, W. H., & Tawil, N. M. (2012). Identification of the Causes of Construction Delay in Malaysia. *International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering*, 6(12), 1063-1068.
- Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit Indices for Partial Least Squares Path Modeling. *Computational Statistics*, 28(2), 565-580.
- Henseler, J., Ringle, C.M. & Sarstedt, M. (2015), A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling, *Journal of the Academy of Marketing Science*, 43(1), 115-135.
- Hertzog, M. (2008). Considerations in Determining Sample Size for Pilot Studies. Research in Nursing & Health, 31, 180-191.
- Holden, Mary & Lynch, Patrick. (2004). Choosing the Appropriate Methodology: Understanding Research Philosophy. The Marketing Review – Market, Rev. 4. 10.1362/1469347042772428.
- Hossain, L. (2009). Communications and Coordination in Construction Projects. *Construction Management and Economics*, 27, 25-39.
- Hwang, B.-g., Shan, M., & Supa at, N. N. (2017). Green Commercial Building Projects in Singapore: Critical Risk Factors Factors and Mitigation Measures. *Sustainable Cities and Society*, 30, 237–247.

- Inouye, J. (2014). Risk Perception: Theories, Strategies and Next Steps. New Zealand: The Campbell Institute. Retrieved December 9, 2019, from https://www.nsc.org/Portals/0/Documents/CambpellInstituteandAwardDocume nts/WP-Risk%20Perception.pdf
- Jamaludin, S. Z., Mohammad, M. F., & Ahmad, K. (2014). Enhancing the Quality of Construction Environment by Minimizing the Cost Variance. *Procedia-Social* and Behavioral Sciences, 153, 70-78.
- James, L.R. & Brett, J.M. (1984). Mediator, Moderators, and Tests for Mediation. Journal of Applied Psycology, 69(2), 307-321.
- Johanson, G., & Brooks, G. (2010). Initial Scale Development: Sample Size for Pilot Studies. *Educational and Psychological Measurement*, 70(3), 394-400.
- Jugdev, K., & Muller, R. (2005). A Retrospective Look at our Evolving Understanding of Project Success. *Project Management Journal*, 36(4), 19-31.
- Judd, C.M. & Kenny, D.A. (1981). Process Analysis: Estimating Mediation in Treatment Evaluations. *Evaluation Review*, 5(5), 602-619.
- Jung, W., & Han, S. H. (2017). Which Risk Management Is Most Crucial for Controlling Project Cost? *Journal of Management in Engineering*, 33(5), 1-13.
- Kaliprasad, M. (2006). The Human Factor II: Creating a High Performance Culture in an Organization. *Journal of Cost Engineering*, 48(6), 27-34.

Kangari, R. (1988). Construction Risk Management. *Civil Engineering Systems*, 5(3), 114-120.

- Kerzner, H. (2003). Project Management: A Systems Approach to Planning, Scheduling and Controlling. New York: John Wiley and Sons.
- Kline, R. (2011). *Principles and Practice of Structural Equation Modeling* (3 ed.). New York: The Guilford Press.
- Kock, N. (2015). One-tailed or Two-tailed P Values in PLS-SEM? International Journal of e-Collabration, 11(2), 1-7
- Kolltveit, B. J., & Gronhaug, K. (2004). The Importance of the Early Phase: The Case of Construction and Building Projects. *Int. J. Proj. Manag*, 22(7), 545-551.
- Larson, E. (1995). Project Partnering: Results of Study of 280 Construction Projects. Journal of Management in Engineering, 11(2), 30-35.
- Li, H., Arditi, D., & Wang, Z. (2012). Transaction-Related Issues and Construction Project Performance. *Construction Management and Economics*, *30*, 151-164.

- Lim, C., & Mohamed, Z. M. (2000). An Exploratory Study into Recurring Construction Problems. *International Journal of Project Management*, 18, 267-273.
- Loosemore, M., Raftery, J., Reilly, C., & Higgon, D. (2006). *Risk Management in Projects* (2 ed.). UK: Taylor and Francis.
- Low, B., Man, S., Chan, A., & Alabdulkarim, S. (2019). Construction Worker Risk-Taking Behavior Model with Individual and Organizational Factors. *International Journal of Environmental Research and Public Health*, 16(8), 1335-1347.
- MacKinnon, D. Valente, M. & Gonzalez, O. (2020). The Correspondence between Causal and Traditional Mediation Analysis: the Link is the Mediator by Treatment Interation, *Prevention Science*, 21(2), 147-157.
- MacKinnon, D., Coxe, S., & Baraldi, A. (2012). Guidelines for the Investigation of Mediating Variables in Business Research. *Journal of Business and Psychology*, 27(1), 1-14.
- MacKinnon, D., Lockwood, C., Hoffman, J., West, S. & Sheets, V. (2002). A Comparison of Methods to Test Mediation and Other Intervening Variable Effects, *Psychological Methods*, 7(1), 83-104.
- Malone, T., & Crowston, K. (1994). The Interdisciplinary Study of Coordination. ACM Computing Surveys, 26(1), 87-119.
- Martin, W., Martin, I., & Kent, B. (2009). The Role of Risk Perceptions in the Risk Mitigation Process: The Case of Wildfire in High Risk Communities. *Journal* of Environmental Management, 91, 489-498.
- Marzook, M., & El-Rasas, T. (2014). Analyzing Delay Causes in Egyptian Construction Projects. *Journal of Advanced Research*, 5(1), 49-55.
- Mathieu, J. & Taylor, S. (2006). Clarifying Conditions and Decision Points for Mediational Type Inferences in Organizational Behaviour. *Journal of Organizational Behaviour*, 27, 1031-1056.

Mbachu, J. (2011). Sources of Contractor's Payment Risks and Cash Flow Problems in the New Zealand Construction Industry: Project Team's Perceptions of the Risks and Mitigation Measures. *Construction Management and Economics*, 29, 1027-1041.

- McFarlane, B., McGee, T., & Faulkner, H. (2011). Complexity of Homeowner Wildfire Risk Mitigation: An Integration of Hazard Theories. *International Journal of Wildland Fire*, 20(8), 921-931.
- Meliá, J., Mearns, K., Silva, S. A., & Lima, L. (2008). Safety Climate Responses and the Perceived Risk of Accidents in the Construction Industry. *Safety Science*, 46(6), 949-958.
- Memon, A., Rahman, I., & Azis, A. (2012). Time and Cost Performance in Construction Projects in Southern and Central Regions of Peninsular Malaysia. *International Journal of Advances in Applied Sciences*, 1(1), 45-52.
- Memon, A., Rahman, I., Abdullah, M., & Aziz, A. (2014). Factors Affecting Construction Cost Performance in Project Management Projects: Case of MARA Large Projects. *International Journal of Civil Engineering and Built Environment*, 1(1), 30-35.
- Meng, X. (2012). The Effect of Relationship Management on Project Performance in Construction. *International journal of project management*, *30*(2), 188-198.

Ministry of Housing and Local Government (KPKT) (2020). eHome, Official Portal

National

Housing

Department:

https://ehome.kpkt.gov.my/index.php/pages/view/79

Ministry of Public Works (2009).

- Mohamed, N., Ridwan, A., Saoula, O., & Issa, M. (2019). Factors Causing Mismanagement in Public/Private Contracts: An Indonesian Perspective. *Management Science Letters*, 9, 1429-1438.
- Mohamed, S., Ali, T., & Tam, W. (2009). National Culture and Safe Work Behaviour of Construction Workers in Pakistan. *Safety Science*, 47(1), 29-35.
- Munns, A., & Bjeirmi, B. (1996). The Role of Project Management in Achieving Project Success. International Journal of Project Management, 14(2), 81-87.
- Nagaraju, S., Reddy, B. S., & Chauduri, A. R. (2012). Resource Management in Construction Projects – A Case Study. *Engineering Science and Technology: An International Journal*, 2(4), 660–665.
- News Strait Times. (2018, August 15). Govt Urged to Formulate Strategy to Strengthen Construction Sector. Retrieved December 9, 2019, from News

Strait Times: https://www.nst.com.my/business/2018/08/401633/govt-urged-formulate-strategy-strengthen-construction-sector

- Nitzl, C., Roldán, J.L. and Cepeda, C.G. (2016), Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models, *Industrial Management and Data Systems*, 119(9), 1849-1864
- Nooteboom, B. (1993). Firm Size Effects on Transaction Costs. Small Business Economies, 5(4), 283-295.
- Odeck, J. (2004). Cost Overruns in Road Construction What are Their Sizes and Determinants? *Transp. Policy*, 11(1), 43-53.
- Odeh, A. M., & Battaineh, H. T. (2002). Causes of Construction Delay: Traditional Contracts. International Journal of Project Management, 20(1), 67-73.
- Olanrewaju, A. L., & Aziz, A. (2015). Building Maintenance Processes and Practices. Singapore: Springer Science. doi:DOI 10.1007/978-981-287-263-0_2
- Olawale, Y. A., & Sun, M. (2010). Cost and Time Control of Construction Projects: Inhibiting Factors and Mitigating Measures in Practice. *Construction Management and Economics*, 28(5), 509-526.
- Olawale, Y., & Sun, M. (2015). Construction Project Control in the UK: Current Practice, Existing Problems and Recommendations for Future Improvement. *International Journal of Project Management*, 33, 623–637.
- Oshana, M. (2001). Responsibility: Philosophical Aspects. International Encyclopedia of the Social & Behavioral Sciences, 13279-13283.
- Patrick, F. S. W., & Jimmy, Y. C. H. (2006). An Investigative Study of the Application of Lessons Learned Systems in Construction Projects. *Journal for Education in the Built Environment*, 1(2), 27-38.
- Podsakoff, P.M., MacKenzie, S.B. & Lee, J. (2003). Common Method Biases in Behavioural Research: A Critical Review of the Literature and Recommended Remedies. *Journal of Applied Psychology*, 88(5), 879-903.
- Prasad, K., Vasugi, V., Venkatesan, R., & Bhat, N. S. (2018). Critical Causes of Time Overrun in Indian Construction Projects and Mitigation Measures. *International Journal of Consturction Education and Research, Article in press*, 1-23. doi:https://doi.org/10.1080/15578771.2018.1499569

- Preacher, C., & Hayes, A. (2008). Asymptotic and Resampling Strategies for Assessing and Comparing Indirect Effects in Multiple Mediator Models. *Behavior Research Methods*, 40(3), 879-891.
- Rahman, I. A., Memon, A. H., & Karim, A. A. (2013). Significant Factors Causing Cost Overruns in Large Construction Projects in Malaysia. *Journal of Applied Sciences*, 13, 286-293. doi:10.3923/jas.2013.286.293
- Rajeh, M. A. (2014). Comparative Analysis of Construction Procurement Systems Based on Transaction Costs. Auckland, New Zealand: Auckland University of Technology : Ph.D Thesis.
- Rammstedt, B. & Beierlein, C. (2014). Can't we make it any shorter? The limits of personality assessment and way to overcome them. *Journal of Individual Differences*, 35(4), 212-220.
- Ringle, C.M., Sarstedt, M., & Straub, D.W. (2012). A critical look at the use of PLS-SEM in MIS quarterly, *MIS Quarterly*, *36* (1), iii-xiv
- Roloff, J., Aßländer, M., & Zamantili Nayir, D. (2015). The Supplier Perspective: Forging Strong Partnerships with Buyers. *Journal of Business Strategy*, 36(1), 25-32.
- Roslan, N. (2015). Mitigation Measures for Controlling Time and Cost Overrun Factors. University Tun Hussein Onn Malaysia: Master's Degree Thesis.

Roslan, N., Noor, Y., Zainun, N. Y., & Memon, A. H. (2015). Relevancy of Factors and Mitigation Measures in Controlling Time and Cost Overrun Towards Malaysian Environment. *Applied Mechanics and Materials*, 773-774, 1007-1011.

- Salah, A., & Moselhi, O. (2014). Estimating Post- and Pre-mitigation Contingency in Construction. *Risk Analysis IX*, 47, 243-250.
- Sambasivan, M., & Soon, Y. (2007). Causes and Effects of Delays in Malaysian Construction Industry. *International Journal of Project Management*, 25(5), 517-526.
- Sambasivan, M., Deepak, T., Salim, A. N., & Ponniah, V. (2017). Analysis of Delays in Tanzanian Construction Industry: Transaction Cost Economics (TCE) and Structural Equation Modeling (SEM) Approach. *Engineering, Construction* and Architectural Management, 24(2), 308-325.

- Santoso, D., & Soeng, S. (2016). Analyzing Delays of Road Construction Projects in Cambodia: Causes and Effects. *Journal of Management in Engineering*, 32(6), 1-11.
- Saunders, M., Lewis, P., & Thomhill, A. (2009). Research Methods for Business Students (5 ed.). Essex: Pearson Education Limited.
- Schermelleh-Engel, Karin. (2015, May 17). Re: Is Cronbach's alpha too low because of only 2 items? [Blog comment]. Retrieved from: https://www.researchgate.net/post/Is_Cronbachs_alpha_too_low_because_of_o nly_2_items/55577bb160614b110d8b4582/citation/download.
- Sekar, G. (2017). Impact of Project and Organizational Related Factors on Project Performance of Construction Companies in Malaysia. Malaysia: Universiti Utara Malaysia : DBA Thesis.
- Sekar, G., Viswanathan, K., & Sambasivan, M. (2018). Effects of Project-Related and Organizational-Related Factors on Five Dimensions of Project Performance: A Study Across the Construction Sectors in Malaysia. *Engineering Management Journal, 30*(4), 247-261. doi:https://doi.org/10.1080/10429247.2018.1485000
- Sekaran, U., & Bougie, R. (2009). Research Methods for Business: A Skill Building Approach (5 ed.). West Sussex, UK: John Wiley & Sons Ltd.
- Shebob, A., Dawood, N., Shah, R., & Xu, Q. (2012). Comparative Study of Delay Factors in Libyan and the UK Construction Industry. *Engineering, Construction and Architectural Management, 19*(6), 688-712.
- Shrnhur, A. J., Levy, O., & Dvir, D. (1997). Mapping the Dimensions of Project Success. Project Management Journal, 28(2), 5-13.
- Sitkin, S., & Pablo, A. (1992). Reconceptualizing the Determinants of Risk Behaviour. *Academy of Management Review*, *17*(1), 9-38.
- Small and Medium sized Enterprises (SME). (2019, December 9). Size of organization. Retrieved from Small and Medium Sized Enterprises (SME) Corporation Malaysia (2019): http://www.smecorp.gov.my/index.php/en/policies/2015-12-21-09-09-49/smedefinition
- SmartPLS. (2019, November 29). *Model fit*. Retrieved from SmartPLS official page: https://www.smartpls.com/documentation/algorithms-and-techniques/model-fit

- Soane, A. (2016). Learning from Experience to Avoid Collapse. *Proceedings of the Institution of Civil Engineers: Forensic Engineering*, 169(4), 127-132.
- Tawil, N. M., Khoiry, M., Arshad, I., Hamzah, N., Jasri, M., & Wan Badaruzzaman, W. (2013). Factors Contribute to Delay Project Construction in Higher Learning Education Case Study UKM. *Research Journal of Applied Sciences, Engineering and Technology*, 5(11), 3112-3116.
- Tavakol, M. & Dennick, R. (2011). Making Sense of Cronbach's Alpha. International Journal of Medical Education, 2, 53-55
- Tehseen, S., Ramayah, T. & Sajilan, S. (2017). Testing and Controlling for Common Method Variance: A Review of Available Methods, *Journal of Management Sciences*, 4(2), 142-168
- The National Audit Department. (2012). *Auditor General Report Year 2012*. Putrajaya, Malaysia: The National Audit Department.
- The World Bank. (2019a). *GDP per capita growth (annual %) Malaysia*. Retrieved December 9, 2019, from World Bank Official Page: https://data.worldbank.org/indicator/NY.GDP.PCAP.KD.ZG?locations=MY

The World Bank. (2019b). World Bank GDP Statistics of 2019. Retrieved December9,2019,fromTheWorldBank:https://data.worldbank.org/indicator/NY.GDP.PCAP.KD.ZG?locations=Z4-8S-Z7-ZQ-XU-ZJ-ZG

- Trochim, W. (2006). *The Research Methods Knowledge Base*. Available at: https://conjointly.com/kb/ [assessed: 12 Oct 2019]
- Trading Economics. (2019). Malaysia GDP From Construction. Retrieved December 9, 2019, from Trading Economics: https://tradingeconomics.com/malaysia/gdpfrom-construction
- Urbach, N. & Ahlemann, F. (2010). Structural Equation Modeling in Information Systems Research Using Partial Least Squares. *Journal of Information Technology Theory and Application*, 11(2), 5-40
- Wetzels, M., Oderkerken-Schröder, G., & van Oppen, C. (2009). Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration. *MIS Quarterly*, 33(1), 177-195.
- Williamson, O. E. (1989). Transaction Cost Economics. In R. Schmalensee, & R. Willig (Eds.), Handbook of Industrial Organization (1 ed., Vol. 1, pp. 135-182). New York: Elsevier.

- Yap, J. B., Abdul-rahman, H., & Wang, C. (2018). Preventive Mitigation of Overruns with Project Communication Management and Continuous Learning : PLS-SEM Approach. *Journal of Construction Engineering and Management*, 144(5), 1-10.
- Zailani, S., Md. Ariffin, H. A., Iranmanesh, M., Moeinzahed, S., & Iranmanesh, M. (2016). The Moderating Effect of Project Risk Mitigation Strategies on the Relationship between Delay Factors and Construction Project Performance. *Journal of Science and Technology Policy Management*, 7(3), 346-368.
- Zainol, Z. (2014). The Effects of Customer-Brand Relationship Investments on Customer Engagement. Bangi: Ph. D Thesis. Universiti Kebangsaan Malaysia.