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ABSTRACT

Fractional ordinary differential equation (FODE) and fractional partial differential
equation (FPDE) emerges in various modelling of physics phenomena. Over past
decades, several fractional derivative and operator has been introduced such as
Caputo-Fabrizio operator, Caputo-Hadamard fractional derivative, Marchaud
fractional derivative or Caputo fractional derivative. The fractional differential
equations defined in these fractional derivatives and operators definition are difficult
or impossible to solve analytically. Therefore, we seek after highly accurate
numerical scheme in efficient ways such as predictor-corrector method, finite
difference scheme and spectral collocation method in this research for FODE and
FPDE. Caputo-Fabrizo operator is a definition which is verified that does not fit the
usual concept neither for fractional nor for integer derivative integral. The main
interest of this operator is having regular kernel and which is a necessity of using a
model describing the behavior of classical viscoelastic materials, electromagnetic
system and viscoelastic materials. Furthermore, associated integral for Caputo-
Fabrizio operator is also presented using Laplace transform and Inverse Laplace
transform. Hence, we first introduce predictor-corrector scheme involving Caputo-
Fabrizo operator, a > 0 which represents higher order of approximation O(h"),r =
min(6; +n, &,),n = [a], &, 6, > 0 as compared to the order of approximation of
the classical Caputo fractional derivative O(h"),r = min(6; + a, §,), especially
ina € (0,1). Besides that, the Marchaud fractional derivative is a generalization of
the Riemann-Liouville fractional derivative, so, we also first develop predictor-
corrector scheme involving the Marchaud fractional derivative for a € (0, 1) with
applying its improper integral form of the definition instead of Riemann-Liouville
definition. This method is stated order of approximation O(h'*%), his discrete step
size. Due to the difficulty of dealing with the logarithmic function kernel in
Hadamard fractional derivative, finite difference scheme in Caputo-Hadamard

fractional derivative, 0 < a < 1 via incomplete gamma function is also first derived.
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Truncation error is also conducted using Lagrange interpolation, which leads to the
order of approximation O(Ax?), Ax is space step size. At the end, spectral collocation
method via solving a type of eigenvalue problem involving Laguerre polynomials,
a > 0 decrease needed computation time by implementing minimum summation step
with applying eigenvalue degree Laguerre polynomials in order to obtain the
accurate approximate solution. Error analysis and Comparative analysis for
illustrative examples of solving these developed method with other existing method

are shown.
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ABSTRAK

Persamaan pembezaan pecahan biasa (PPPB) dan persamaan pembezaan pecahan
separa (PPPS) muncul dalam pelbagai pemodelan fenomena fizik. Selama beberapa
dekad yang lalu, beberapa pembezaan dan operator pecahan telah diperkenalkan
seperti operator Caputo-Fabrizio, pembezaan pecahan Caputo-Hadamard, pembezaan
pecahan Marchaud atau pembezaan pecahan Caputo. Persamaan pembezaan pecahan
yang ditakrifkan dalam pembezaan pecahan dan definisi operator ini sukar atau
mustahil untuk diselesaikan secara analitik. Oleh itu, kami mencari skema berangka
yang sangat tepat dengan kaedah yang cekap seperti kaedah peramal-pembetul,
skema perbezaan terhingga dan kaedah kolokasi spektrum dalam penyelidikan ini
untuk PPPB dan PPPS. Operator Caputo Fabrizo adalah definisi yang disahkan yang
tidak serasi dengan konsep biasa baik untuk pecahan mahupun kamiran terbitan
integer. Kepentingan utama operator ini adalah memiliki kernel biasa dan yang
merupakan keperluan menggunakan model yang menggambarkan tingkah laku bahan
viskoelastik klasik, system elektromagnetik dan bahan viskoelastik. Selain itu,
kamiran yang berkaitan untuk operator Caputo-Fabrizio juga diterangkan dengan
menggunakan jelmaan Laplace dan jelmaan Laplace songsang. Oleh itu, pertama
kalinya, kami memperkenalkan skema peramal-pembetul yang melibatkan operator
Caputo-Fabrizo, a > 0 mewakili penghampiran peringkat tinggi O(h"),r =
min(d; +n, §,),n = [a],d;,8, > 0 sepertimana berbanding dengan peringkat
penghampiran pembezaan pecahan Caputo klasik O(h"),r = min(é; + a, J;) ,
terutamanya dalam selang a € (0,1). Selain itu, pembezaan pecahan Marchaud
merupakan generalisasi untuk pembezaan pecahan Riemann-Liouville. Dengan itu,
kami membangunkan skema peramal-pembetul yang melibatkan pembezaan pecahan
Marchaud untuk o € (0,1) dengan menggantikan definisi Riemann-Liouville
dengan menggunakan definisi kamiran improper. Kaedah ini mempunyai
penghampiran peringkat O(h'*%) , h ialah saiz langkah diskrit. Oleh kerana

kesukaran menangani kernel fungsi logaritma dalam Pembezaan pecahan Hadamard,
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skema perbezaan terhingga dalam pembezaan pecahan Caputo-Hadamard, 0 < a <
1 melalui fungsi gamma yang tidak lengkap juga dibangunkan untuk pertama kalinya.
Ralat pemotongan juga dilakukan dengan menggunakan interpolasi Lagrange,
dimana ia membawa kepada peringkat penghampiran O(Ax?), Ax ialah saiz Langkah
bagi ruang. Akhir sekali, kaedah kolokasi spektrum dengan menyelesaikan sejenis
masalah nilai eigen yang melibatkan Polinomial Laguerre, o > 0 dapat
mengurangkan masa pengiraan dengan melaksanakan langkah penjumlahan
minimum dengan menerapkan nilai eigen berdarjah polynomial Laguerre untuk
mendapatkan penyelesaian penghamiran yang tepat. Analisis ralat dan analisis
perbandingan untuk contoh penyelesaian bagi kaedah yang dibangunkan oleh kami

dengan kaedah lain juga ditunjukkan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Fractional calculus is an extension of integer order calculus which involves integral
Jf(x) and n™ order derivative of function D" f(x), n € Z*. For the integral of function
Jf(x), it can be defined as:

Jf(X)=f f(s)ds (1.1)
Moreover, n order derivative of the function with respect to x is given by:
7 dn
D' f(x) = p ~f(x) (1.2)
X

Specifically, the first derivative of function %{ f(x) measures the rate of change of func-
tion with respect to the change of x. In other words, the gradient of a line over the

interval 1s well-known.

4 () = tim LEHOD T (1.3)
dx

5x—0 ox
Leibniz and L-Hospital began to initiate the idea of generalizing integer order deriva-
tive to fractional order derivative in 1695. Some great mathematicians such as La-
grange, Laplace, Lacroix, Fourier, Riemann, Green, Holmgren, Grunwald, Letnikov,
Sonini, Laurent, Nekrassov, Krug, Weyl and others had developed subsequent related
fractional derivative, @ € R} (Oldham & Spanier, 1974; Miller & Ross, 1993; Kilbas
et al., 20006).
Lacroix first discovered the fractional order derivative formula from integer order deriva-
tive of a power series, k,n € Z* (1.4)

_ k—n
D'x _—(k—n)!x ,k>n (1.4)



By replacing the factorial parts with Gamma function, (n — 1)! = I'(n)
I(z) = f xle7*dx, R(z)>0 (1.5)
0

Equation (1.4) can be easily generalized to the fractional order derivative of x* as

shown, k, @ € R}:
I'k+1) N
Da k — k a,
Y T Tk—ar 1)

In the case of fractional order, @ = 1/2 and the power of function, k = 1

k>a (1.6)

D7 (x) = 1a+h T D X2
T(1-1+1)

:2\/5
v/

These initial of theoretical developments were discovered by Abel, Liouville, Greer,
Fourier, and Riemann (Gorenflo & Vessella, 1991; Greer, 1858; Kilbas et al., 1993).

Moreover, Sonin and Letnikov (Sonin, 1869; Letnikov, 1872) applied n order deriva-

(1.7)

tive of Cauchy’s integral formula:

D' f(z) = nt AC N

27 Jo (3 = 2yt (1.8)

Thus, the well-known Riemann-Liouville fractional derivative (Letnikov, 1872) as
shown in (1.9) was formed which originated from generalizing expression (1.8) to

fractional order case

1 d"

RL n«a _
Do = I'n — a)dx”

f x(x -0 f( dt, a>0 (1.9)

wheren -1 <a <n.
Laurent extended the given idea of closed circuit of Sonin and Letnikov to open circuit
which is known as the Laurent loop, and the Riemann-Liouville fractional integral

definition is defined as, according to Lazarevi€ et al. (2014):

RLp= f(x) = 1 f x(x - * ' f(dt, a>0 (1.10)
(@) Jo

Moreover, Grunwald and Letnikov formulated a new fractional derivative given as a
limit of arbitrary order difference quotient instead of general first principle of differ-

entiation. Today, it is called the Grunwald-Letnikov fractional derivative in Loverro



(2004).
ACFG) | Xo(=1Y(9)f(x = jh)
= lim
ho h—0 he

where the binomial coefficients are denoted by:

(a) B a!
il e -

Besides, Marchaud provided an integral version of limit of @ order difference quotient

GLD“f(x):}liné ,a>0 (1.11)

(Grunwald-Letnikov derivative) which is known as the Marchaud fractional derivative
((Samko et al., 1993), Chapter 2, Section 5, Page 111).

fO a0 fa-0

M na —_
D f(-x) - F(l _ a,) X@ F(l _ a,) 0 tl+a/

(1.12)
In case of the axis R' € (—oo, 00), if the function f(x) € Lp(Rl) is a bounded continu-
ous function, then Marchaud fractional derivative ¥ D® f(x) will work for all arbitrary
values of p € [1, 00).

MDIMILf(x) = f(x) (1.13)

where the spaces L,(R') is the set of Lebesgue measurable function f(x), complex val-
ued in general for which f_ D:o |f(x)]P dx < oo. While the Riemann-Liouville fractional

derivative ®-D® f(x) fit the case p = 1 only in the frames of L, spaces, f(x) € L,(R").
REDIRELS f(x) = f(x) (1.14)

Since P
DI = o f f@ydt (1.15)

which assumes summability of f(x) at infinity. In case of p > 1, we shall use Marchaud
fractional derivative, instead of Riemann-Liouville fractional derivative, treating them
as convergent in the norm of L,(R') which is a bounded continuous function.

Apart from that, Caputo reformulated Riemann-Liouville fractional derivative which
refers to convolution integral is taken before n— derivative instead of taking n— deriva-
tive first before convolution-type integral. Caputo fractional derivative provided mem-

ory effect of initial condition (Caputo, 1967), given by:

1 ! n—a—1 dn _
—a)ﬁ (x—1) ﬁf(t) dt, a >0, n=[a] (1.16)

C na _
Df(X)—F(n

In 2015, Michele Caputo and Mauro Fabrizio (Caputo & Fabrizio, 2015) proposed the
—fa}(x-0)

new Caputo-Fabrizo operator by replacing (x—1)""*~! with e @ and F(nl—a) with AIIE{{Z}})




based on Caputo fractional derivative definition in equation (1.16), with the assumption
of fa)=0, s=1,2,---,[a]forn—1 < a < n, @ € R,. The main difference between
Caputo-Fabrizo operator and Caputo fractional derivative definition is that, contrary
to the classical Caputo fractional derivative with the singular kernel, the exponential
kernel in the Caputo-Fabrizo operator doesn’t have singularity for x = 7. In fact, the
main interest of this new operator is due to the necessity of using a model describing the
behaviour of classical viscoelastic materials, electromagnetic systems and viscoelastic

materials, etc.

CFDaf(x) — M({al}) fx f[a]*'l(t)ei(la—)((g’)dt (117)
1 - {(l’} a

where |, [@], {a}, [@] are the floor(@), ceil(a), decimal part and integer part of «
respectively, and M(«) is a normalization function such that M({a}) = 1.

On the other hand, analogous to the Riemann-Liouville derivative using integration
first before differentiating the integral kernel, Hadamard fractional derivative, 7D f(x)
for @ > 0 and f(x) € H'(a, b), a > 1 is defined as (Kilbas et al., 2006):

iy = (v} L [ XY@

Due to the difficulties of taking integration as a part in solving numerical approxima-
tion of Hadamard fractional derivative (1.18), a natural extension of Caputo fractional
derivative and Hadamard fractional derivative is to define the Caputo-Hadamard frac-
tional derivative of order @ > 0, “D? f(x) where f(x) € H'(a,b), a > 1 by Jarad et al.
(2012).

g 2 1 X f n—a-1 » i n _
Df(x)_—r(n_a)fa (ln(t)) r" (dt) FOdt, n=T[al (1.19)

Recently, the study of fractional derivatives/integral in the field of fractional
calculus is essential. This is because fractional calculus has many applications in var-
ious fields, such as fractional conservation of mass, groundwater flow problem, frac-
tional advection dispersion equation, time-space fractional diffusion equation models,
structural damping models, PID controllers, acoustical wave equations for complex
media, fractional Schrédinger equation in quantum theory and variable-order frac-
tional Schrodinger equation (Wheatcraft & Meerschaert, 2008; Laskin, 2000; Bhrawy
& Zaky, 2017; Ray, 2016; Astrom & Hiagglund, 1995; Hendricks Franssen & Kinzel-
bach, 2008; Benson et al., 2000; Jiang et al., 2012; Bhrawy & Zaky, 2015; Zareian &
Medina, 2010).

Fractional differential equation is an equation that involves fractional deriva-

tives of an unknown function, which can be roughly categorized as:



1. Fractional ordinary differential equation that involves only fractional derivatives
with respect to a single independent variable, e.g.
i. Time Fractional Ordinary Differential Equation, D f(t)
ii. Space Fractional Ordinary Differential Equation, DY f(x)
2. Fractional partial differential equation that involves fractional derivatives with
respect to more than one independent variable, e.g.
i. Time Fractional Partial Differential Equation, D! f(¢, x, y, z)
il. Space Fractional Partial Differential Equation, D$ f(z, x, y, z)

iii. Space-Time Fractional Partial Differential Equation

D?f(f,X,y,Z),sz(t,x,)’,Z),D;Yf(t, x’y9z)’D?f(t’x7y’Z)a cee
Dg+ﬁ f(t, x,y,2), Djt*ﬁ f(t, x,y,2), Di;ﬁ ft, x,y,2),...

In this research, our main focuses are on fractional ordinary differential equa-
tion (FODE) and fractional partial differential equation (FPDE) related to the Caputo-
Fabrizo operator, Caputo-Hadamard fractional derivative, Marchaud fractional deriva-
tive and Caputo fractional derivative. There are other types of classical fractional
derivative in existing literatures such as: Griinwald—Letnikov derivative, Sonin—Letnik-
ov derivative, Liouville derivative, Hadamard derivative, Riesz derivative, Riesz—Miller
derivative, Miller—Ross derivative, Weyl derivative, Erdélyi—Kober derivative and some
new fractional derivatives include: Machado derivative, Chen—Machado derivative,
Coimbra derivative, Katugampola derivative, Caputo—Katugampola derivative, Hil-
fer derivative, Hilfer—Katugampola derivative, Davidson derivative, Chen derivative,
Atangana—Baleanu derivative and Pichaghchi derivative (Miller & Ross, 1993; Kil-
bas et al., 1993; Ross, 1975; Gorenflo & Mainardi, 2008; Podlubny, 1998; Kiryakova,
1993; Loverro, 2004; Kilbas et al., 2006; Samko et al., 1993).

Nowadays, many well-known analytical methods and numerical methods have
been developed to solve fractional differential equation by many researchers (Li et al.,
2011; Guo et al., 2015; Bhrawy & Zaky, 2016). Among that are the linear multistep
method, discretization method, spectral method and integral transform method. The
linear multistep method (Lubich, 1985) is a combination of the predictor step and cor-
rector step to solve numerically fractional ordinary differential equation in both integer
and fractional derivatives order. In the predictor step, function values and its deriva-
tive values at previous points are used to get an approximate solution at a subsequent
point (predicted value). Then, the obtained predicted value is used in the corrector step
using implicit method in order to refine the approximation solution at the same subse-
quent point. The efficiency of this multistep method is in storing and using the value

of previous steps as compared to discarding it to get high accuracy.



Common fractional linear multistep methods include fractional Adams—Bas-
hforth methods, fractional Adams—Moulton methods, and fractional backward differ-
entiation formulas. Fractional Adams—Bashforth methods are explicit methods such as
the fractional Euler method. Moreover, fractional Adams—Moulton methods which in-
cluding fractional Trapezoidal rule and fractional backward differentiation formulas are
implicit methods. Predictor-corrector so-called Adams—Bashforth—-Moulton method
(Baskonus & Bulut, 2015) refers to the Adams—Bashforth method and Adams —Moul-
ton method.

In past decades, a detailed error analysis for a fractional Adams—Moulton meth-
od has been developed in sense of the fractional Caputo derivative by Diethelm et al.
(2004). Meanwhile, Caputo-Fabrizo operator has been proposed as a new definition of
fractional Caputo derivative. However, there is no fractional Adams—Bashforth
—Moulton method that considers the Caputo-Fabrizo operator. Due to the characteris-
tic of this new definition having regular kernel, therefore, Caputo-Fabrizo operator has
been applied in developing the Adams—Bashforth—Moulton method which involves the
fractional Euler rule and fractional Trapezoidal rule. This method shows high accu-
racy in solving problems of FODE. The detailed error analysis of this method is also
investigated. Besides that, the Marchaud fractional derivative is a generalization of
the fractional Riemann-Liouville definition. It has been given less attention compared
to the Caputo derivative, Riemann-Liouville derivative or even Caputo-Fabrizo opara-
tor. However, Marchaud derivative regularizes the Riemann-Liouville definition so that
it can undergo linear multistep method. Predictor-corrector scheme for solving non-
linear differential equation involving Marchaud derivative and its application will be
discussed in this research.

Another method related to the linear multistep method is the discretization
method (Liu et al., 2018). Based on the existing literature review, the discretization
method uses difference formula as an approximation means in solving linear/ nonlin-
ear fractional ordinary differential equations and fractional partial differential equa-
tion. The discretization method is thus a finite difference method which refers to a
numerical method by approximating it as a difference equation in discretization form.
Difference formulas such as n — th order forward, central and backward difference
formula, n = 1,2,... are applied in solving various FODE and FPDE with Caputo
fractional derivative, Caputo-Fabrizo operator, Riemann-Liouville fractional deriva-
tive and Hadamard fractional derivative. In 2019, the finite difference scheme related
to Caputo-Hadamard fractional derivative had not been introduced by anyone. There-
fore, this led us to construct the finite difference scheme for Caputo-Hadamard frac-

tional derivative via incomplete gamma function in solving linear/ nonlinear fractional



differential equations.

In addition, the existing literature considers the spectral collocation method of
solving multi-term fractional differential equation based on the generalized Laguerre
polynomial only in Ghoreishi & Mokhtary (2014). Hence, in the area of fractional or-
dinary differential equation (FODE), the eigenvalue problem involving Legendre poly-
nomial has been proposed. However, there are no considerations of the spectral collo-
cation method based on solving a type of eigenvalue problem of Laguerre polynomial.

Therefore, this prompted us to consider this finding of FODE.

1.2 Problem statement

The fractional differential equations defined in Caputo-Fabrizio operator, Caputo-

Hadamard fractional derivative, Marchaud fractional derivative or Caputo fractional
derivative are not easy to solve analytically due to the unavailability of analytical
solution sometimes, even if analytic solution is available, but it is complex, time-
consuming and costly, therefore, we need to develop a numerical scheme such as
predictor-corrector method, finite difference scheme and spectral collocation method
to tackle the related problem. Analytic methods give an exact result like an integral or
exact expression for the solution to get qualitative answer which shows us exactly what
happens with each variable while numerical methods are usually more adaptable in ap-
proximating result to get quantitative answer by iteratively generate a sequence of ap-
proximations to the solution for mathematical problems. In addition, Caputo-Fabrizio
operator is relatively new and has a regular kernel by Caputo & Fabrizio (2015). Beside
that, the Caputo-Hadamard fractional derivative has an advantage over the Hadamard
fractional derivative in dealing with logarithmic function kernel (Jarad et al., 2012)
as well as a forgotten history: Marchaud fractional derivative is a generalization of
Riemann-Liouville integrals at improper integral form (Samko et al., 1993). There are
still relatively limited works which have been done to obtain the simple, reliable, and
accurate solution for the problem defined in these operator, therefore, we first develop
predictor-corrector scheme involving Caputo-Fabrizo operator which represents higher
order of approximation O(h"),r = min(d; + n,d,),n = [a| compared to the order of
approximation of the classical Caputo fractional derivative O(h"), r = min(d; + a, 6,),
especially in @ € (0, 1). Beside that, the Riemann-Liouville fractional derivative defini-
tion is invalid for developing its initial value problem which is a main part in predictor-
corrector method, so, we also first develop predictor-corrector scheme involving the
Marchaud fractional derivative with applying its improper integral form of the defini-

tion instead of Riemann-Liouville definition. Due to the difficulty of dealing with the
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