DEVELOPMENT OF TIMBER CONCRETE COMPOSITE (TCC) BEAM WITH POST-TENSIONING

WISSAM MUSHINA OBEED

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy

Faculty of Civil Engineering and Built Environment Universiti Tun Hussein Onn Malaysia

MARCH 2020

ACKNOWLEDGEMENT

I would like to express my utmost gratitude and appreciations to my main supervisor Associate Prof. Dr. David Yeoh for his guidance, encouragement and assistance throughout this amazing research journey. My sincere appreciation also extends to my co-supervisors Dr. Norhayati Abd Ghafar and Koh Heng Boon for their assistance and encouragement.

Thanks and acknowledgement to the all lectures at Structural Engineering Department of UTHM, Specially, Prof. Ir. Dr. Abdul Aziz bin Abdul Samad, Associate Prof. Dr. Norwati Jamalulddin and Dr. Sallehulddin Shah Ayop from for the assistance during this research.

ABSTRACT

Post-tensioning is a method of reinforcing (strengthening) concrete or other materials with high-strength steel strands or bars. The timber type that is used in all researches is the engineering timber products laminated veneer lumber (LVL) and glue-laminated wood (Glu-Lam), while avoiding using natural timber due to its properties' variety. More recent improvement is using post-tensioning technique for the engineering timber products. The main material in this research is natural Kempas timber. The primary objective of this research is to develop of a method of timber beam post-tensioning and proposed empirical Equation to predict the bending moment capacity for timber beam and timber concrete composite beam through the bending strength properties. The experimental program is divided into 3 major phases across the duration of this study. Phase A present post-tensioning method, this phase indicate two methods of posttensioning "forced bending jacking PT-B" and "pre-stressing jacking PT-J". Phase B present timber bending performance in term of (strength and failure behavior), include 4 point bending tests for timber beams and post-tensioning timber beams, the timber beam size (40 mm x90 mm x1200 mm) the tendon type is threaded rod bar with two colors silver color (9.4 mm) and black color (8.85 mm). Phase C involved post-tensioned timber concrete composite beam (the concrete layer is 65 mm) Bending Performance. From the test results for the two methods of pre-stressing it is clear that pre-stressing Jacking give higher residual deflection 98.2 % for silver color rod bar against black color with 88.8 % residual deflection. So this type of rod bar (silver color with long nut coupling) is the more efficient in use due to the high contact friction surface area for long coupling nut. The bending tests of post-tensioned beams show the range of bending strength capacity increasing 12 % to 46 %. There were three types of failure is tensile, compression and splitting shear failure depending on the timber quality (degree of natural effect). The PT-TCC give bending strength increment according to degree of composite action 500 mm, 100 mm and 70 mm screw spacing is 68 %, 85 % and 150 % respectively. The empirical Equation derived for bending moment capacity for posttensioning Kempas timber beam is basically depended on the experimental relation between vertical deflection and rod bar strain. The empirical Equation shows 3.06 kN

constant difference for the theoretical equation and the equation form is $PT_{empirical} = \frac{8EI\Delta}{eL^2} - 3.06$. In the case of PT-TCC the proposed equation depend on the concept of connector slip modulus. A three paths of estimation were discussed depend on push out test slip modulus. The gamma design method show that the slip modulus of pushout test gives a proper estimation in the case of PT-TCC specimens bending strength design.

ABSTRAK

Post-tensioning adalah kaedah pengukuhan (menguatkan) konkrit atau bahan lain dengan helai atau bar keluli kekuatan tinggi. Jenis kayu yang digunakan dalam semua penyelidikan adalah produk kayu kejuruteraan kayu laminasi laminasi (LVL) dan kayu berlapis-laminasi (Glu-Lam), sambil mengelakkan menggunakan kayu semulajadi kerana pelbagai sifatnya. Penambahbaikan yang lebih baru menggunakan teknik pascategangan untuk produk kayu kejuruteraan. Bahan utama dalam kajian ini adalah kayu Kempas semula jadi. Objektif utama penyelidikan ini adalah untuk membangunkan satu kaedah rasuk balak kayu dan persamaan empirikal yang dicadangkan untuk meramalkan kapasiti momen lentur bagi rasuk balak kayu dan rasuk konkrit balak melalui sifat kekuatan lenturan. Program eksperimen dibahagikan kepada 3 fasa utama sepanjang tempoh kajian ini. Fasa A iaito kaedah pasca tegangan menuinjukkan dua kaedah "ketinggian terpaksa membongkok (PT-B) dan pra tekai abicu (PT-J). Tahap B, menunjukkan prestasi lenturan kayu dari segi (kekuatan dan kegagalan tingkah laku), termasuk 4 titik ujian lenturan untuk balak kayu dan bataiy bar pasca tegangan, saiz balak kayu (40 mm x 90 mm x 1200 mm) tendon maralur dengan warma perak (9.4 mm) dan warna hitam (8.85 mm). Fasa C melibatkan balak komposit konkrit pasir bertentangan (lapisan konkrit adalah 65 mm) prestasi lenturan. Dari hasil ujian untuk kedua-dua kaedah pra-menekankan, bahawa pra menekanan bicu memberikan pesongan sisa yang lebih tinggi 98.2 % untuk bar njukkan rod warna perak beterfens warna hitam dengan pesongan sisa 88.8 %. Oleh itu, bar rod jenis ini (warna perak dengan gandinganskru panjang) adalah lebih cekap digunakan kerana kawasan permukaan geseran tinggi untuk ikatan sku yang panjang. Ujian lenturan rasuk pasca-tegangan menunjukkan julat kapasiti kekuatan lenturan yang meningkat 12 % hingga 46 %. Terdapat tiga jenis kegagalan ialah tegangan, pemampatan dan pemisahan kegagalan ricih bergantung kepada kualiti kayu (darjah kesan semula jadi). PT-TCC memberikan kenaikan kekuatan lenturan mengikut tahap tindakan komposit 500 mm, 100 mm dan 70 mm masing-masing adalah 68 %, 85 % dan 150 %. Persamaan empirical yang diperolehi untuk kapasiti momen lentur untuk balak kayu Kempas pasca-tegangan pada dasarnya bergantung pada hubungan eksperimen antara tegangan menegak dan tegangan bar.

Persamaan empirikal menunjukkan perbezaan persamaan 3.06 kN untuk persamaan teoretikal dan bentuk persamaan adalah $PT_{empirical} = \frac{8EI\Delta}{eL^2} - 3.06$. Dalam kes PT-TCC persamaan yang dicadangkan bergantung kepada konsep modulus slip penyambung. Tiga anggaran telah dibincangkan bergantung kepada modulus slip. Kaedah rekabentuk gamma menunjukkan bahawa ujian modulus slip memberikan anggaran yang tepat dalam kes reka bentuk kekuatan lenturan PT-TCC.

TABLE OF CONTENTS

TITLE	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
CONTENTS	ix
LIST OF TABLES	xiv

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem statement	5
1.3	Research objectives	6
1.4	Scope of work	7
1.5	Significance of the research	7
1.6	Thesis organization	8

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	9
2.2	Theoretical investigation of post-tensioning	10
2.3	Advantages of the pre-stressing system	11
2.4	Timber as construction material	12
2.5	Kempas timber according to MS 544	12
2.6	Influence of timber properties on structural application	13
2.7	Early attempts of pre-stressing timber	14
2.8	Timber beams pre-stressing method	15
2.8.1	Post-tensioning of glulam timber with steel tendons	16
2.8.2	Prestressed glulam timbers reinforced with steel bars	18
2.8.3	Post-tensioning glulam timber beams with basalt FRP	
	tendons	21
2.8.4	Application of a new system of self-tensioning	23

1

10

	2.9	The post-tensioned timber beam behaviour	25
	2.10	Post-tensioned timber elements according to	
		structural function	27
	2.10	.1 Post-tensioned timber beams and frames for gravity Loads	27
	2.10	2 Bridge deck MTC stress laminated deck	28
	2.11	The losses of timber pre-stressing force (long-term behaviour)	31
	2.12	Examples of structures with unbonded post-tensioned timber	33
	2.13	Timber concrete composite	36
	2.14	Connections for composite concrete systems	39
	2.15	Design methods of timber concrete composite elements	41
	2.15	.1 Exact method	42
	2.15	2 Approximate method	42
	2.15	.3 Design procedure of timber concrete composite the EC5	43
	2.16	Summary	45
.3	EXPE	RIMENTAL PROGRA MME	47
	31	Introduction	47

CHAPTER 3 EXPERIMENTAL PROGRA MME

3.1 47 Introduction 3.2 Breakdown of experimental phases 47 Detail of the specimens 3.3 51 3.4 Material selections 53 3.4.1 Timber beams 53 3.4.2 Post-tensioning threaded rod bar 55 3.4.3 Concrete 56 3.5 Four point bending test 58 3.6 Preliminary post-tensioning method on small specimens 60 3.7 Post-tensioning by pre-stressing jack (PT-J) 65 3.8 Post-tensioning solution by forced-bending jacking 68 3.9 Post-tensioning by forced-bending method (the process) 72 3.10 76 Pushout test 3.11 Experimental Program for (Phase B and C) 79 3.12 TCC specimens' detail 79

	3.13	Post-tensioned TCC specimen	82
	3.14	Experimental program for phase D experimental analysis	85
	3.15	Summary	86
CHAPTER 4	POST	-TENSIONING METHOD (PHASE A)	87
	4.1	Introduction	87
	4.2	Material properties	87
	4.2.1	Timber tests (bending and compression parallel to grain)	87
	4.2.2	2 Threaded rod bar tests	91
	4.3	Post-tensioning method and solution (Phase A)	92
	4.3.1	The maximum safe cambering during posttensioningprocess	92
	4.3.2	2 Post-tensioned method PT jacking	94
	4.3.3	B Post-tensioned method forced bending	95
	4.4	Inference of post-tensioning force	97
	4.5	The Post-tensioning method su mmary	102
CHAPTER 5	BEND	DING PERFORMANCE OF PT AND TCC BEAM	103
	5.1	Introduction	103
	5.2	Material properties	103
	5.3	Push out connection test results of strength and stiffness	103
	5.4	Bending performance of post-tensioned timber	107
	5.4.1	The bending strength similarity groups	110
	5.4.2	2 The post-tensioning methods groups	113
	5.4.3	3 The type of rod bar groups	114
	5.5	Behaviour of the timber beam only and PT beam	116
	5.6	Bending performance of TCC	118
	5.7	Bending performance of post-tensioning TCC beams	121
	5.8	Summary of bending performance beams	127
CHAPTER 6	MOM	IENT STRENGTH CAPACITY PREDICTION	134
	6.1	Introduction	129
	6.2	Theoretical prediction of post-tensioning force	129

xi

6.3	Experimental estimation for PT beams	130
6.4	Proposed empirical formula to predict moment strength	135
6.5	Proposed empirical formula to predict moment strength	139
6.6	Summary	144

CHAPTER 7 CONCLUSION

145

7.1	Post-tensioning method (objective 1)	145
7.2	Bending performance of the PT timber beam and the TCC	145
7.3	Moment strength capacity prediction of PT timber beam	146
7.4	Research contribution	147
7.5	Recommendations for future research	147
EFERENCES		148
PPENDICES		
57 PERPUS		

REFERENCE

APPENDICES

157

LIST OF TABLES

Table 3.1:	The supplementary tests for the timber	55
Table 3.2:	The Kempas timber density and moisture	57
	content	
Table 3.3:	Mix proportion for 1 m ³ concrete mix design	59
	(DOE) for characteristic compressive	
	strength at 35 MPa	
Table 3.4:	The compressive strength of cubes at age 7	59
	and 28 days	
Table 3.5:	The prepared specimens for timber beam	65
	and reinforced beam	
Table 3.6:	3-Points bending results (single section	66
	specimens)	AMINA
Table 3.7:	The dimensions detail of the screw	74
Table 3.8:	Screw size detail	78
Table 3.9:	Detail of TCC for bending test	82
Table3.10:	Schematic drawing of specimen for timber	83
	beam and TCC beams	
Table 3.11:	Specimen for timber beams and TCC beams	84
Table 3.12:	Detail of PT-TCC specimens for bending	85
	test	
Table 4.1:	The experimental results of collapse load at	91
	4 point bending test, corresponding bending	
	moment, bending stress, and modulus of	
	elasticity	
Table 4.2:	The experimental results of compressive	93
	stress	
Table 4.3:	The experimental results of tensile yield and	94
	ultimate strength for the black and silver rod	

bars

Table 4.4:	Theoretical calculation data for equivalent	96	
	post-tensioning force to bending		
Table 4.5:	The total theoretical stress in the	97	
	compression zone and its components.		
Table 4.6:	Residual deflection for timber in case of	98	
	post-tensioning jack device		
Table 4.7:	Residual deflection for bending jacking	99	
	process at end of beams using long nuts		
	coupling		
Table 4.8:	Post-tensioning force estimation 1 st Method	101	
	(rod bar deformation) from the experiment.		
Table 4.9:	Post-tensioning force estimation 2 nd and	103	
	3 rd Method (bending force equivalent) and		
	theoretical estimation.		
Table 4.10:	The PT force estimation in 3 methods error	104	
	% (PT method-PT rod strain)		
Table 5.1:	F _{max} , slip modules of service limit state (ks)	107	
	and slip modules of ultimate limit state (ku)		
	for screws		
Table5.2:	The summary of preliminary test results	109	
Table 5.3:	The results of the 4-point bending test of	113	
	post-tensioning for all tested specimens		
Table 5.4:	1st group maximum bending moment and	114	
	(IF.B.M)		
Table 5.5:	2nd group maximum bending moment and	115	
	(IF.B.M)		
Table 5.6:	3rd group maximum bending moment and	115	
	(IF.B.M)		
Table 5.7:	Maximum bending moment and (IF.B.M)	116	
	for B.J. method		

Table 5.8:	Maximum bending moment and (IF.B.M)	117	
	for P.J. method		
Table 5.9:	Four point bending tests for post-tensioned	119	
	beam timber using the silver rod bar		
Table 5.10:	4-point bending tests for post-tensioned	120	
	beam timber using the black rod bar		
Table 5.11:	Data analysis for the behaviour of the timber	121	
	beam and the post-tensioned beam.		
Table 5.12:	Maximum load and horizontal and vertical	122	
	displacement of TCC specimen with 3 and		
	10 screw connectors		
Table 5.13:	The behaviour of failure sequences	124	
	according to bending moment-deflection		
	curves for 10 screws		
Table 5.14:	The behaviour of failure sequences	125	
	according to bending moment-deflection		
	curves for 3 & 10 screws		
Table 5.15:	The behaviour of failure sequences	128	
	according to bending moment-deflection		
	curves for 3 screws		
Table 5.16:	The behaviour of failure sequences	130	
	according to bending moment-deflection		
	curves for 10 screws		
Table 5.17:	Maximum load for Timber, TCC specimen	131	
	(with 3 and 10 screws) and displacement.		
Table 6.1:	The theoretical post-tensioning force	134	
	estimation for experimental specimens		
Table 6.2:	The theoretical post-tensioning force	137	
	estimation for experimental specimens		
Table 6.3:	The experimental bending moment due to	138	
	post-tensioning force		

Table 6.4:	The theoretical post-tensioning force 140
	estimation and experimental post-tensioning
	force
Table 6.5:	The theoretical post-tensioning force 141
	estimation for experimental specimens
Table 6.6:	The theoretical post-tensioning force 142
	estimation for experimental specimens
Table 6.7:	The bending stress estimation Method1, 144
	bending stiffness EI and bending stress σm_2
Table 6.8:	The equivalents slip modulus according to 145
	Method 2
Table 6.9:	The bending stress estimation Method2, 145
	bending stiffness EI and bending stress σm_2
Table 6.10:	bending stiffness EI and bending stress σm2The bending stress estimation method 3146The bending stress estimation comparison147
Table 6.11:	The bending stress estimation comparison 147
	between the methods 1, 2, 3
	between the methods 1, 2, 3

LIST OF FIGURES

Figure1.1:	Construction of unbonded post-tensioned	3
	timber frame	
Figure 1.2:	Layout of post-tensioned timber frame	4
Figure 2.1:	Stress profiles from post-tensioning and	10
	load application	
Figure 2.2:	The sufficient bond between the steel	17
	tendon and the timber	
Figure 2.3:	a) Typical post-tensioning arrangement of B	18
	Series beams; b) Application and	
	monitoring of post-tension force	
Figure 2.4:	The cross section types: T series:	19
	unreinforced beams, simply strengthened	AMINA
	beams with upper and lower steel bar, 10	
	mm in diameter; R series: strengthened	
	beams with an upper steel bar, 10 mm in	
	diameter; and P series: a lower prestressed	
	bar, 10 mm in diameter.	
Figure 2.5:	The mechanical tensioning device for	20
	applying the pretension to bar	
Figure 2.6:	Detail of the attachment to steel bar end in	20
	the mechanical tensioning device for	
	applying the pretension to bar	
Figure 2.7:	Diagram of initial beam preparation for R,	22
	U and B series	
Figure 2.8:	The sufficient bond between the FRP	23
	tendon and the timber	
Figure 2.9:	Self-tensioning devices at the supports of	24
	the structural element	
Figure 2.10:	3D-Prototype of the mechanical device	25

Figure 2.11:	a) Typical tensile failure of unreinforced	26	
	glulam timber; b)Typical compressive/shear		
	failure of post-tensioned glulam timber		
Figure 2.12:	Post-tensioned LVL timber box beam with	28	
	a draped tendon		
Figure 2.13:	a) LNL Deck b) TNL Deck	29	
Figure 2.14:	Cross-section of a typical LSL deck	30	
Figure 2.15:	Cross-section of LVL hollow core post-	31	
	tensioned slab-on-girder bridge		
Figure 2.16:	a) Bridge for pedestrians in Murau. Austria	34	
	b) The Swiss Centre for Global Dialogue,		
	with post-tensioned timber beams		
Figure 2.17:	Buildings with post-tensioned timber walls	35	
	(a): Visualisation of the Nelson		
	Marlborough Institute of Technology		
	building (b): The Carterton Events Center		
Figure 2.18:	Buildings with post-tensioned timber	36	
	frames a): The Te Ara Hihiko building b):		
	The Merritt building (McGar,) c):		
	Connection of the St Elmo Courts		
	(Chapman,) d): The ETH House of Natural		
	Resources on the campus site of ETH in		
	Zurich		
Figure 2.19:	The concept of composite action	38	
Figure 2.20:	Symmetrical push-out test of TCC	39	
Figure 2.21:	A nail	40	
Figure2.22:	Lag screws	41	
Figure 2.23:	Cross-section (left) and stress distribution	45	
	(right) of a composite beam with partial		
	shear connection		
Figure 3.1:	Experimental program flow chart	48	

Figure 3.2:	Phase A detail	49	
Figure 3.3:	Phase B detail	49	
Figure 3.4:	Phase C detail	50	
Figure 3.5:	Phase D detail	50	
Figure 3.6:	Details of cross section types: (a) Timber	51	
	beam, (b) Post-tensioned Timber beam		
Figure 3.7:	Post-tensioned timber beam by using end	52	
	plate and screw (Phase 2)		
Figure 3.8:	(a) Post-tensioned timber concrete	52	
	composite floor cross section (b) cross		
	section x-x (Phase 3)		
Figure 3.9:	(a) Kempas timber beam type (b) groove	54	
	timber beam used in posttensioned		
	specimens		
Figure 3.10:	(a) black rod bar with double hex nut (b)	56	
	silver rod bar with long coupling length		
Figure 3.11:	Tensile tests of rod bars (a) black rod bar	56	
	(b) silver rod bar		
Figure 3.12:	(a) Cubes test (b) Slump test	58	
Figure 3.13:	(a) Experiment set-up for 4 point bending	59	
	test EN 408:1995. (b) Schematic diagram		
	for 4 point bending test		
Figure 3.14:	Solid Timber Beam	60	
Figure 3.15:	Threaded steel rod	61	
Figure 3.16:	Fabricated angle steel C Channel Used for	61	
	Beams' specimens		
Figure 3.17:	Hollow steel supports (a) front view (b) side	61	
	view (c) set-up		
Figure 3.18:	Preparing the Specimens to be stressed	62	
Figure 3.19:	The pair of C channel with upper plate to	65	
	fix the end of beams		

Figure 3.20:	The chair part which used at the end of	66	
	beam to transfer load from jack to end plate		
	of beam		
Figure 3.21:	The total components of post-tensioning	66	
	system		
Figure 3.22:	The dial gauge position in total system of	67	
	post-tensioning		
Figure 3.23:	(a) Deflection due post-tensioning force and	69	
	bending force. (b) bending moment diagram		
	for post-tensioning force and bending force		
Figure 3.24:	Post-tensioning force components	70	
Figure 3.25:	Flow chart for post-tensioning force	71	
Figure 3.26:	End plate used transfer load to beam and	72	
	screw for fixing plate on timber		
Figure 3.27:	The process of post-tensioning by bending	73	
	using universal testing machine		
Figure 3.28:	Fixing the threaded rod bar using nuts	74	
Figure 3.29:	Dials gauge using to record deflection and	74	
	deformation at rod bar		
Figure 3.30:	The process steps of post-tensioning by	75	
	bending a,b and c.		
Figure 3.31:	(a) Experiment set-up for push out test (b)	77	
	Push out test specimen plan view for single		
	timber		
Figure 3.32:	Loading regime as per (EN 26891) test	78	
	regime protocol		
Figure 3.33:	The arrangement of screw connector of PT-	82	
	TCC specimen 70 mm screw spacing		
	schematic drawing		
Figure 3.34:	Timber beam with screw connectors during	83	
	the post-tensioning process		

Figure 3.35:	Timber beam with screw connectors after	83	
	the post-tensioning process		
Figure 3.36:	Timber beam with screws top concrete	84	
	formwork		
Figure 3.37:	The concrete pouring of the PT-TCC	84	
	specimens		
Figure 3.38:	The PT-TCC specimens after pouring the	85	
	concrete		
Figure 4.1:	Four point bending test results for 5	89	
	specimens		
Figure 4.2:	Specimen failure type (tensile failure) under	89	
	4 point bending test (a) Tb_1 and (b) Tb_2		
Figure 4.3:	Compression failure types (a) split plus	90	
	shear failure (b) split failure		
Figure 4.4:	Black rod bar and silver rod bar test data	91	
Figure 4.5:	Correlation between deflection and residual	95	
	deflection for two types of rod bar (silver		
	colour with long coupling nut and black		
	colour with double hex nut)		
Figure 4.6:	Long coupling length nuts coupling to fix	96	
	ends		
Figure 4.7:	Correlation between deflection and residual	97	
	deflection for the silver rod bar, using the		
	coupling nut		
Figure 4.8:	Timber beam mid span vertical deflection	98	
	against strain comparison for specimen1		
	and 2		
Figure 4.9:	Experimental point load corresponding to	99	
	deflection at range (2-4 mm) for four		
	samples		
Figure 4.10:	PT estimation in three methods (rod strain.	101	

Figure 5.1:	Screw specimen during the test (left) and	104	
	after the test (right)		
Figure 5.2:	Condition of the screw after concrete is	105	
	removed		
Figure 5.3:	Failure types (a) tensile failure PT-B (3.84	108	
	mm) (b) compression failure PT-B (2.66		
	mm) (c) shear failure PT-S (2.86 mm)		
Figure 5.4:	Deflection and bending force for timber	109	
	beam for T1= 32. 46 kN and PT -S		
	(2.32mm)		
Figure 5.5:	Failure type is shear failure PT=2.105mm	109	
	(black rod). (universal testing machine		
	data).		
Figure 5.6:	The increasing factor of bending moment	112	
	(IF.B.M) for the groups of similar strength		
Figure 5.7:	Forced bending jacking method specimens'	113	
	results (IF.B.M).		
Figure 5.8:	Pre-stressing jacking method specimens'	114	
	results (IF.B.M).		
Figure 5.9:	Silver rod bar specimens' results	115	
	(IF.B.M).(the left sample using double hex		
	nuts and right specimens using coupling		
	nuts)		
Figure 5.10:	Black rod bar specimens' results (IF.B.M).	116	
Figure 5.11:	TCC specimen with 10 screws (a) during	119	
	the test (b) after the test		
Figure 5.12:	TCC1 specimen with 10 screws after the	119	
	test		
Figure 5.13:	TCC bending moment-deflection curves	120	
Figure 5.14	Concrete cracks propagating from the	122	

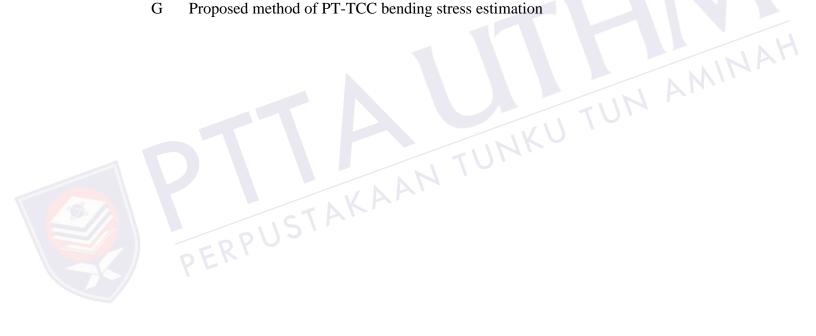

Figure 5.15:	Concrete cracks propagating from the bottom face near the load application then	122
	developing to sudden failure due to timber tensile crack propagation PT-TCC (2.15 mm)	
Figure 5.16:	Screws condition after test PT-TCC (2.15	123
	mm) 100 mm spacing	
Figure 5.17:	Screws condition after test PT-TCC (2.98	123
	mm) 70 mm spacing	
Figure 5.18:	The drop points of PT-TCC bending	124
	moment-deflection curves for 3 screw	
Figure 5.19:	The drop points of PT-TCC bending	125
	moment-deflection curves 10 screws	
Figure 5.20:	A comparison between PT-TCC and TCC	126
	curves for 3 and 10 screws	
Figure 6.1:	Rod bar strain against timber beam mid	134
	span deflection during the post-tensioning	
	process (specimen 1)	
Figure 6.2:	Rod bar strain against timber beam mid	135
	span deflection during the post-tensioning	
	process (specimen 2)	
Figure 6.3:	Timber beam mid span vertical deflection	135
	against the rod bar deformation, comparison	
	for specimens 1 & 2.	
Figure 6.4:	Rod bar modify strain against timber beam	137
	mid span deflection	
Figure 6.5:	Comparison between the PT timber bending	142
	moment calculated experimentally and	
	empirically using eq.12	

Figure 6.6:Comparison between the methods 1, 2, 3 of147of estimation bending stress

LIST OF APPENDICES

APPENDIX TITLE

- Calculation of Young's modulus of timber А
- В G35 concrete material requirement calculation
- С Determination of strength and stiffness of shear connector
- D Determination of degree of composite action
- Design of timber concrete composite (TCC) Ε
- Guide line for moment capacity for PT beams F
- Proposed method of PT-TCC bending stress estimation G

LIST OF SYMBOLS AND ABBREVIATIONS

Т	Kempas timber beam
PT	Post-tensioned
TCC	Timber Concrete Composite
PT-TCC	Post-tensioned timber concrete composite T-section beam
ULS	Ultimate Limit State
SLS	Serviceability Limit State
S	Silver color threaded rod bar
В	Black color threaded rod bar
PT-PJ	Post-tensioned timber beam using pre-stressing jacking method
PT-BJ	Post-tensioned timber beam using bending jacking method
LVL	Laminated veneer lumber
MOE	Laminated veneer lumber Modulus of elasticity
GLT	Glued Laminated Timber
γ-method	Gamma method (design method)
V _{0.4,mod}	Modified initial slip
Fm	Estimated peak load for push out test
DOE	Concrete trial mix concrete design
EIPE	Full composite action is calculated from gamma method and for non-
	composite action from Equation(EI = EItimber + EIconcrete)
F _{max}	Max load
LVDT	Linear Variable Differential Transducer
Γ	Is partial factor for material properties, also accounting for modal
	uncertainties and dimensional variations
В	Breadth of beam
Н	Depth of the beam
Z	Section modulus of beam about the y-y axis
$f_{ m v.k}$	Characteristic shear strength
$f_{\rm c.90.k}$	Characteristic bearing strength

REFERENCES

American Society for Testing and Materials (2015). Deformed and Plain Billet-Steel Bars for Concrete Reinforcement. (ASTM A615/A615M-15a)

Amlan K Sengupta & Devdas Menon (2012), "Prestressed Concrete Structures" Indian Institute of Technology Madras. Phd thesis.pp.17

Aydin, S., Yardimci, M. Y., and Ramyar, K. (2007). Mechanical properties of four timber species co mmonly used in Turkey. Turkish Journal of Engineering and Environmental Sciences, 31(1), pp.19-27.

Azlan, H. M., Ahmad, Z., Ibrahim, A., and Hassan, R. (2013). Behaviour of kempas timber beam strengthened with CFRP and steel plates under bending. In 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC). pp. 483-488.

Bondy, K. B. (2012). Two-way post-tensioned slabs with bonded tendons. PTI J.

Bohannan, B. (1962). Prestressed wood members. Forest Products Journal, 12(2), pp. 596-602.

Brady, J. F., Harte, A. M., and Arima, T. (2008). Prestressed FRP flexural strengthening of softwood glue-laminated timber beams. 10th World conference on timber engineering (WCTE). Galway Ireland: National University of Ireland Galway. pp. 2-5.

British DOE (department of environment) method (1988). Design of normal concrete mixes. chiswick highway London: BSI, 389.

British Standard (2009). Testing hardened concrete. Making and curing specimens for strength tests. (BS EN 12390-2)

British Standards Institution. (2010). Timber Structures: Structural Timber and Glued Laminated Timber: Determination of Some Physical and Mechanical Properties. (BS EN 408 2010).

British Standards Institution (2005). Timber Structures - Glued Laminated Timber And Glued Solid Timber – Requirements. BS EN 14080.

Brokāns, A. (2013). The effect of timber properties on the behaviour of bending elements under loading. Annual 19th International Scientific Conference Proceedings, (2), pp. 128.

Buchanan, A., Palermo, A., Carradine, D., and Pampanin, S. (2011). Post-tensioned timber frame buildings. *Structural Engineer*, 89(17), pp.24-30.

Conzett, J., and Mostafavi, M. (2006). *Structure as space: engineering and architecture in the works of Jürg Conzett and his partners*. London.Architectural Association.

Cvetković, R., and Stojić, D. (2003). Design methods of a timber-concrete T-crosssection. *Facta universitatis-series: Architecture and Civil Engineering*, *2*(*5*), pp.329-338.

Davies, M., and Fragiacomo, M. (2008). Long Term Behaviour of Laminated Veneer Lumber Members Prestressed with Unbonded Tendons.

De Luca, V., and Marano, C. (2012). Prestressed glulam timbers reinforced with steel bars. *Construction and Building Materials*, *30*, pp.206-217.

Devereux, C. P., Holden, T. J., Buchanan, A. H., and Pampanin, S. (2011). NMIT arts and media building-damage mitigation using post-tensioned timber walls. *Proceedings of the Ninth Pacific Conference on Earthquake Engineering*. Auckland, New Zealand. Building an Earthquake-Resilient Society.

Deam, B. L., Fragiacomo, M., and Gross, L. S. (2008). Experimental behavior of prestressed LVL-concrete composite beams. *Journal of structural engineering*, *134*(5), 801-809.

Dias, A. M. P. G. (2005). *Mechanical behaviour of timber-concrete connections* (Doctoral dissertation, PhD Thesis, Delft University of Technology, The Netherlands).

EN, B. (2012). 408: 2010+ A1: 2012. *Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties.* London: BSI.

EN 1992-1-2 (2004). Eurocode 2: Design of Concrete Structures - Part 1-2. 1st ed. Brussels: BSI.

EN 1995-1-2 (2004) (English): Eurocode 5: Design of timber structures - Part 1-2: General - Structural fire design [Authority: The European Union Per Regulation 305/2011.

European Co mmittee for Standardization (CEN) *Timber Structures - Joints Made* with Mechanical Fasteners - General Principles for the Determination of Strength and Deformation Characteristics. (CEN - EN 26891)

Estévez-Cimadevila, J., Suárez-Riestra, F., Otero-Chans, D., and Martín-Gutiérrez, E. (2018). Experimental Analysis of Pretensioned CLT-Glulam T-Section Beams. *Advances in Materials Science and Engineering*. Volume 2018, pp.2

Fragiacomo, M., and Lukaszewska, E. (2011). Development of prefabricated timberconcrete composite floor systems. *Proceedings of the Institution of Civil Engineers-Structures and Buildings*, 164(2), pp.117-129.

Frangi A & Fontana M (2003). Elasto-plastic model for timber–concrete composite beams with ductile connection. *IABSE Structural Engineering International 13(1)*: pp.47–57.

Gasparini, D. (2006). The Prestressing of Structures: 21 Historical Review. In *Proceedings of the Second International Congress on Construction History*, (2) pp. 1221-1232.

Gilfillan, J. R., Gilbert, S. G., and Patrick, G. R. H. (2003). The use of FRP composites in enhancing the structural behavior of timber beams. *Journal of reinforced plastics and composites*, 22(15), pp.1373-1388.

Granello, G., Giorgini, S., Palermo, A., Carradine, D., Pampanin, S., and Finch, R. (2017). Long-term behavior of LVL posttensioned timber beams. *Journal of Structural Engineering*, *143(12)*, pp. 158.

Granello, G., Leyder, C., Palermo, A., Frangi, A., and Pampanin, S. (2018). Design approach to predict post-tensioning losses in post-tensioned timber frames. *Journal of Structural Engineering*, *144*(8), pp.115.

He, G., Xie, L., Wang, X. A., Yi, J., Peng, L., Chen, Z. A and Crocetti, R. (2016). Shear behavior study on timber-concrete composite structures with bolts. *BioResources*, 11(4), 9205-9218.

ISO the International Organization for Standardization (1975) Wood Determination of density for physical and mechanical tests. (ISO 3131:1975 en)

Keenan, E., and Pinkerton, J. (1992). Some aspects of empowerment: A case study of work with disadvantaged youth. *SociaL work with groups*, *14*(3-4), 109-124.

Lantos, G. (1964). Reinforced and post-tensioned glue laminated beams under development at TRADA laboratories. *Civil Engineering (London)*, *59(690)*, pp. 86-87.

Lukaszewska, E., Johnsson, H., and Fragiacomo, M. (2008). Performance of connections for prefabricated timber–concrete composite floors. *Materials and structures*, *41*(9), pp.1533-1550.

Malaysian Standard: (2003). Code of practice for structural use of timber : part 2 : permissible stress design of solid timber (MS 544: Part 2)

Malaysian Standard: (2001). Code of practice for structural use of timber - Part 3: Permissible stress design of glued laminated timber. (MS 544: Part 3)

Malaysian Standard: (2006). Solid Timber Determination Of Moisture Content. (MS 837:2006)

Manaridis, A. (2010). *Evaluation of timber-concrete composite floors*. Lund University: Master thesis.

McConnell, E., McPolin, D., and Taylor, S. (2014). Post-tensioning of glulam timber with steel tendons. *Construction and Building Materials*, *73*, pp.426-433.

McConnell, E., McPolin, D., and Taylor, S. (2015). Post-tensioning glulam timber beams with basalt FRP tendons. *Proceedings of the Institution of Civil Engineers-Construction Materials*, *168*(5), 232-240.

Namrum, K. (2007). *The Strength Of Glulam Beam Made-Up Of Weaker Species As Inner Layers And Harder Species As Outer Layers*. Universiti Te kNologi Malaysia, unpublished.

Negro, J., Brunner, M., and Lehmann, M. (2008). Prestressing of Timber, Bonding of Timber. Core document of the cost action E34. Vienna: University of Natural Resourses and Applied Life Sciences.

Oliva, M. G., and Dimakis, A. (1988). Behavior of stress-laminated timber highway bridge. *Journal of Structural Engineering*, *114(8)*, pp.1850-1869.

Otero-Chans, D., Estévez-Cimadevila, J., Martín-Gutiérrez, E., and Pérez-Valcárcel, J. (2016). Application of a new system of self-tensioning to the design of large-span wood floor framings. *Journal of Structural Engineering*, *142*(6), pp.12.

Palermo, A., Giorgini, S., Stefano, P., and Buchanan, A. H. (2011). Potential of longitudinal post-tensioning for short-to-medium span timber bridges. *Structural Engineering International*, 21(3), pp.349-355.

Palermo, A., Pampanin, S., Carradine, D., Buchanan, A. H., Dallago, B. A., Dibenedetto, C. and Ronca, P. (2010). Enhanced performance of longitudinally post-tensioned long-span LVL beams. *WCTE 2010*, Riva del Grada Italy. The wood division society. pp. 1-10.

Palermo, A., Pampanin, S., Buchanan, A., and Newcombe, M. (2005). Seismic design of multi-storey buildings using laminated veneer lumber (LVL). NZSEE Conference. Canterbury University.

Priestley, M. N., Sritharan, S., Conley, J. R., and Pampanin, S. (1999). Preliminary results and conclusions from the PRESSS five-story precast concrete test building. *PCI journal*, *44*(*6*), pp.42-67.

Quenneville, P., and Van Dalen, K. (1996). Parameters affecting stress losses in stress-laminated timber bridge decks. *Proceedings of the International Wood*

Engineering Conference, New Orleans, Louisiana. Louisana State University,, USA. pp.2283.

Ritter, M. A., Geske, E. A., Mason, L., McCutcheon, W. J., Moody, R. C., and Wacker, J. (1990). Performance of stress-laminated bridges. *Wood Design Focus*, *1*(*3*), pp.12-16.

Sarti, F., Palermo, A., and Pampanin, S. (2012). Simplified design procedures for post-tensioned seismic resistant timber walls. *Proceedings of the 15th World Conference on Earthquake Engineering*, Lisbon, Portugal.

Sarisley Jr, E. F., and Accorsi, M. L. (1990). Prestress level in stress-laminated timber bridges. *Journal of Structural Engineering*, *116*(*11*), pp.3003-3019.

Steinberg, E., Selle, R., and Faust, T. (2003). Connectors for timber–lightweight concrete composite structures. *Journal of structural engineering*, *129(11)*, pp.1538-1545.

Taylor, R. J. (1988). Field applications of prestressed laminated wood bridge decks. *Canadian Journal of Civil Engineering*, *15*(*3*), pp.477-485.

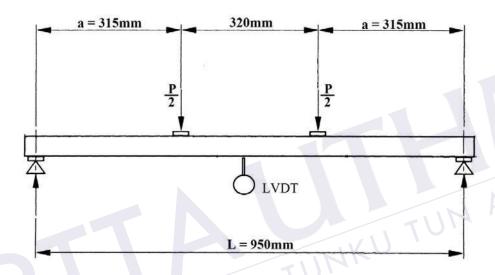
Triantafillou, T. C., and Deskovic, N. (1992). Prestressed FRP sheets as external reinforcement of wood members. *Journal of Structural Engineering*, *118(5)*, pp.1270-1284.

Van Beerschoten, W., Palermo, A., and Carradine, D. (2012). Gravity design of post-tensioned timber frames for multi-storey buildings. *Structures Congress 2012*, pp. 1733-1744.

Van Beerschoten, W. A. (2013). Structural performance of post-tensioned timber frames under gravity loading. Canterbury university. Ph.D. thesis.

Wanninger, F. (2015). Post-tensioned timber frame structures. ETH Zurich: Ph.D. Thesis.

Yeboah, D., Taylor, S., McPolin, D., and Gilfillan, R. (2013). Pull-out behaviour of axially loaded Basalt Fibre Reinforced Polymer (BFRP) rods bonded perpendicular to the grain of glulam elements. *Construction and Building Materials*, *38*, pp.962-969.


Yeoh, D. (2010). Behaviour and design of timber-concrete composite floor system. Canterbury university. Ph.D. thesis.

APPENDIX A

Calculation of Young's modulus of timber

The result of specimen Timber (T) had been used as an example to show the calculation of Young's modulus of timber and the test arrangement is depicted on the Figure below.

a=315 mm, L=950 mm, I= bh3/12 =2.43 x 106 mm⁴ Emg=

$$E_{m.g} = \frac{3al^2 - 4a^3}{2bh^3 \left(2\frac{w2 - w1}{F2 - F1} - \frac{6a}{5Gbh}\right)}$$

Where M bending moment. P maximum point load. Z section modulus= 54000 mm^3 . b width of cross section= 40 mm . h height of cross section = 90 mm . a distance between support and applied point load= 320 mm. $E_{m.g}$ = global modulus of elasticity F2-F1 = increment of load on the regression line with correlation coefficient of 0.99 (N)

W2-W1 = the increment of deflection corresponding to (*F2-F1*) (mm) G = shear modulus = 650 N/ mm2 according to BS EN 408 2010 clause 10.3 L= length of test sample =950 mm.

Single Timber	a(mm)	b(mm)	h^3 (mm)	Ι	L^2 (mm)	F2 (N)	F1 (N)	W2 (mm)	W1(mm)	Em,g N/ mm2
Sample 1	305	40	729000	2430000	902500	9738	6492	5.25	3.3	11686.9
Sample 2	305	40	729000	2430000	902500	9849	6566	5	3.2	12991.1
Sample 3	305	40	729000	2430000	902500	9375	6250	5	3.2	12267.7
Sample 4	305	40	729000	2430000	902500	8796	5864	4.6	3	13062.7
Sample 5	305	40	729000	2430000	902500	12661	6795	8	4	10509.8
Average										12103.6

Table (D) Calculation	Modulus	of Elasticity	for Single timber
rucie (D) curculation	modulub	or Braselery	for single uniour

APPENDIX B

APPENDIX B				
G35 concrete material requirement calculation				
Target characteristic strength of concrete: 35MPaDensity of concrete :2380kg/m3: 0.4Water/ cement ratio: 0.4Superplasticizer: 1 %Calculation for the production of 1m3 concrete				
Water/ cement ratio : 0.4				
Superplasticizer : 1 %				
Calculation for the production of 1m3 concrete				
Mass of 1m3 concrete = 2380kg				
Mass of cement $= 441 \text{kg}$				
Mass of water = mass of cement x w/c ratio				
= 441 x 0.4				
= 176.5 kg				
Mass of aggregate = mass of concrete - mass of cement - mass of water				
= 2380 - 441 - 176.5				
= 1762 kg				
Mass of fine aggregate $= 1762 \times 0.4$				
= 705kg				
Mass of coarse aggregate $= 1762 - 705$				
= 1057 kg				

Volume of concrete needed = Volume of [Specimen for Test A + Test B + 6 cubes]

$$= (8.32 + 62.4 + 20.25) \times 10^{6} = 0.091 \text{ mm}^{3}$$

to wastage,

Batching of concrete with volume of 0.091m3

Mass of cement required	= 441 x 0.091 = 40.13kg		
Mass of Fine aggregate required	= 705 x 0.091 = 64.15kg		
Mass of Coarse aggregate required	d = 1057 x 0.091 = 96.18kg		
Mass of water required	= 176 x 0.091 = 16.016kg		
10 % extra mass of the material provided considering loss due			

Mass of cement	= 40.13 x 1.1 = 44.14kg
Mass of Fine aggregate	= 64.15 x 1.1 = 70.56kg
Mass of coarse aggregate	= 96.18 x 1.1 = 105.79kg
Mass of water	= 16.016 x 1.1 = 17.62kg

Table (A) Concrete mix design (DOE) for 1 m^3

Cement	Fine aggregate	Coarse aggregate	Water
 441 kg	705 kg	1057 kg	176 kg
441/441=1	705/441=1.59	1057/441=2.39	176/441=0.4

APPENDIX C

<u>Determination of strength and stiffness of shear connector Strength of</u> <u>screw connector for single Timber</u>

For 2 screw connectors, Strength = $F_{max} = 13.42$ kN;

For 1 screw connector, Strength = $(1/2) \times (13.42) = 6.71 \text{ kN}$.

Stiffness of screw connector for single Timber

SLS - Serviceability Limit State (K_s)

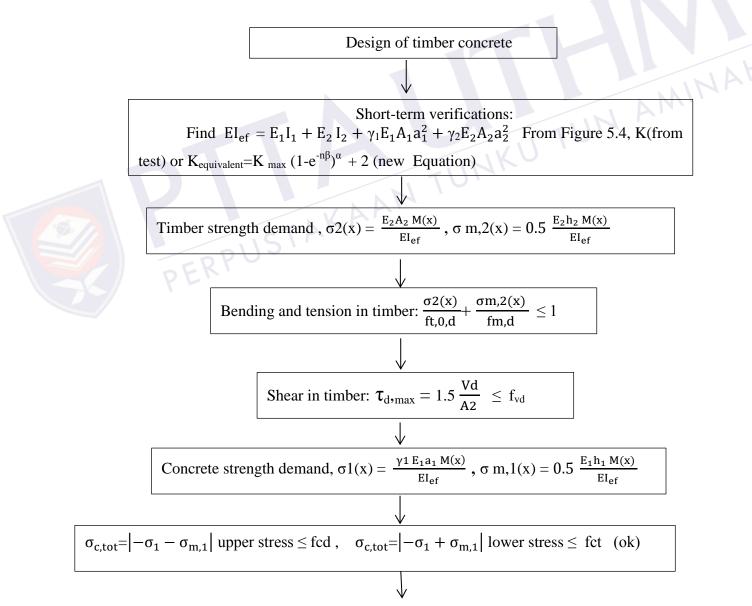
 $0.4 F_{max} = 0.4 x \ 13.42 = 5.37 \text{ kN}; \Delta_{0.4Fmax} = 1.75 \text{ mm}.$

 $\Delta_{0.4Fmax}$ mean the displacement at 40 % from F_{max}

 $K_{s} = \frac{0.4 \text{ Fmax}}{\Delta 0.4 \text{ Fmax}} = 3.11 \text{ kN/mm}$

ULS - Ultimate Limit State (K_u)

 $0.6 \text{ F}_{\text{max}} = 0.6 \text{ x } 13.42 = 8.05 \text{ kN}; \Delta_{0.6\text{Fmax}} = 3.66 \text{ mm}.$


 $\Delta_{0.6Fmax}$ mean the displacement at 60 % from F_{max}

$$Ku = \frac{0.6 \text{ Fmax}}{\Delta 0.6 \text{ Fmax}} = 2.737 \text{ kN/mm}$$

APPENDIX D

<u>Calculation the spacing design for single Kampas timber beam with</u> <u>length 1.2 m</u>

The design procedure of TCC deck was adopted from (CEN,1995). The workflow for design TCC deck as adopted in Figure 5.5. Flow diagram of the design process for prefabricated TCC

Connection strength demand,
$$F_{(x=0)} = \frac{\gamma_1 E_1 A_1 a_1 Smin}{EI_{ef}} V_{max} \le F_d$$

The process that used to determine the shear connectors spacing is the trial and error this due to the variables in design Equations is a dependent variables. For that it will start with low load and check the connector capacity then increase the load to estimate the highest load before connection failure. Here the calculation present the last load before failure.

The span length used is 1.2 m, the concrete width is 0.12 m, 0.04 is the timber width and 0.09 m is depth of timber and 0.065 m is depth of concrete

 $E_1 = 34$ GPa , $E_2 = 12.103$ GPa

 E_1 = Young's modulus of Elasticity of the concrete

 E_2 = Young's modulus of Elasticity of the timber

KAAN TUNKU TUN AMINA Ku = 2.737 kN/mm, fetched from screw type push out test result

The shear strength in screws = 6.71 KN

The load calculation

W = 1.35 G + 1.5 QG = dead load = 6.21 kN/mQ = Live load = 0.36 kN/m

W = 8.92 kN/m

 $M = W^*L^2/8 = 1.60 \text{ kN.m}$

Vd = WL/2 = 5.35 kN

 A_1 = area of concrete = 65* 120= 7800 mm², A_2 = area of timber = 3600 mm²

Max load (Rm) KN for Screw	Max load for single	Ks(Screw)	Ku (Screw)	Ass
KIN IOF Screw	Screw (Rm) KN	kN/ mm	kN/ mm	. um
13.42	6.71	3.11	2.737	-
				e

the spacing S=100 mm

$$\gamma_1 = \frac{1}{1 + \pi^2 E_1 A_1 \text{sef/Kl}^2}$$

$$\gamma_1 = \frac{1}{1 + 3.14^2 * 34000} = 0.015$$

a₁ distance

$$a_{1} = \frac{\gamma 2E_{2}A_{2}H}{\gamma 1E_{1}A_{1} + \gamma 2E_{2}A_{2}}$$

$$a_{1} = \frac{1*12103.6*3600*77.5}{0.015*34000*7800 + 1*12103.6*3600} = 71.26 \text{ mm}$$

$$a_{2} = \frac{\gamma 1E_{1}A_{1}H}{\gamma 1E_{1}A_{1} + \gamma 2E_{2}A_{2}}$$

$$\frac{0.015*34000*7800*77.5}{0.015*34000*7800 + 1*12103.6*3600} = 6.238 \text{ mm}$$

$$EI_{ef} = E_{1}I_{1} + E_{2}I_{2} + \gamma_{1}E_{1}A_{1}a_{1}^{2} + \gamma_{2}E_{2}A_{2}a_{2}^{2}$$

$$= 34000*18308333.33 + 12103.6*4860000 + 0.015*34000*7800*71.26 ^{2}$$

$$+1*12103.6*3600*6.238 ^{2} = 1.415E + 11 \text{ N/ mm}^{2}$$
Fn = 4.129 kN less than shear strength of screw = 6.71 kN, it is OK
Fn= Shear strength from Equation of design cod
The spacing S = 100 which was assumed it OK
However, took this value S=100 for TCC with 1200 mm length
APPENDIX E

TCC design according to EC5 for timber beam 1.2 m

APPENDIX E

The length of span is 1.2 m, 0.12 m width of concrete with 0.065 m depth, the length of timber 1.2 m, the cross section of unite timber 0.04 width of timber and 0.09 m depth of timber. L=1.2 m, h_1 (concrete)=0.065 m, h_2 (timber)=0.09 m, width (w) for concrete = 0.12m, w for timber=0.04 m Imposed load = 3 kN/m^2 Permanent load (self-weight) = 0.21 kN/mPermanent uniform load = 6 kN/mTotal permanent load, G = 0.21 + 6 = 6.21 kN/m Total imposed load, $Q = 3 \times 0.12 = 0.36$ kN/m ULS short-term load combinations, for uniformly distributed load, w = 1.35G + 1.5Q = 8.93 kN/m design bending moment, Md = wL2/8 = 1.61 kNmdesign shear force, Vd = wL/2 = 5.36 kN

Design data for connector:

The connection slip moduli and strength were determined by experimental push-out test

for screw of 68.7 (L) \times 5.47(d) where L and d as the length and diameter in mm, respectively.

For definition of connection spacing): Connection slip modulus for ULS, $K_u = 2.74$ kN/mm Connection slip modulus for SLS, Ks = 3.11 kN/ mm Characteristic strength of connection, Fk = 6.71 kN Maximum spacing of connection, smax = 100 mmMinimum spacing of connection, $s_{min} = 100 \text{ mm}$ Effective spacing of connection, seff = 0.75smin + 0.25smax = 100 mm

Timber Strength Capacity for Kempas timber

AMINA Young's modulus of Kempas, E2= 12103.6 MPa; mean value of timber bending stress fm =86.5 N/ mm2, γ m=1.3 is partial factor for material properties Kempas ;and kmod =0.8 is modification factor for medium term load duration. Pm timber density 850 kg/m3, (CEN,1995)

Timber bending charachteristic calculation:

 $fk = 60 \text{ N/mm}^2$ (Kempas timber D60 according MS 544: part 3, 2001)

All the factors used to determine the tensile, compressive, shear stresses are adopted according BS EN 384:2016+A1:2018

Timber design bending strength, fm,d= kmod \times fm,k/ γ m=0.8 \times (60) /1.3= 36.92 N/ mm^2

Timber characteristic tensile strength $f_{1,0,k} = 0.6x$ fmk = 0.6x (60) = 36 Timber design tensile strength, ft,0,d= kmod \times ft,0,k/ γ m=0.8 \times 36/1.3= 22.15 N/mm² Timber shear characteristic strength, $f_{v,k} = 4.8$ N/mm² (If $f_{m,k} \le 60$, the $f_{v,k} = 3+$ $0.03^* f_{m,k} = 4.8 \text{ N/mm}^2$

Timber shear design strength, fv,d=kmod ×fv,k/ym=0.8× 4.8/1.3 =2.95 N/ mm2 Timber compression parallel to grain characteristic strength $f_{c,0,k} = 4.3x f_{mk}^{0.5}$ $=4.3*60^{0.5}=33.31$ N/ mm²

Timber compression parallel to grain design strength, $f_{c,0,d} = k_{mod} \times f_{c,0,k} / \gamma_m = 0.8 \times 33.31 / 1.3 = 20.5 \text{ N/ mm}^2$

Concrete Strength Capacity for grade 35

Young's modulus of concrete, E1=31494 MPa Concrete characteristic compressive strength, fck = 35 N/ mm2 Concrete design compressive strength, fcd =fck / γ c=35/1.5 =23.33 N/ mm2 Concrete characteristic tensile strength, fctk= 2.2 N/ mm2 (EN 1992-1-1:2004, Table 3.1 section 3.1.3) Concrete design tensile strength, fctd=fctk/ γ c=2.2/1.5=1.47 N/ mm2 where γ c= 1.5 is partial factor for concrete at ultimate limit state(Eurocode, 2 Part 1– 1).

Connection Strength Capacity for Screw

Characteristic strength of connection, Fk=6.71 kNDesign strength of connection, $Fd=kmod \times Fk/\gamma m=0.8 \times 6.71 / 1.3 = 4.13 \text{ kN}$ where $\gamma m=1.3$ is partial factor for material properties TCC and kmod =0.8 is modification factor for permenant load duration and moisture content in Service Class 1 (Eurocode5, Part 1–1)

Verifications for Ultimate Limit State in the Short Term

This verification is carried out for the load condition with uniformly distributed imposed and permanent loads; w=1.35G+1.5Q= 8.93 kN/m. Bending Stiffness Properties for Ultimate Limit State Short-Term Verifications are as follows. Concrete ga mma coefficient, Area of concrete (A1)= 7800 mm² Area of Timber (A2)= 3600 mm² $E_1 = 31.494$ GPa , $E_2 = 12.103$ GPa $E_1 = Young's$ modulus of Elasticity of the concrete $E_2 = Young's$ modulus of Elasticity of the timber

$$\gamma 1 = \frac{1}{1 + \pi^2 E_1 A_1 \operatorname{sef}/\operatorname{Kl}^2}$$

$$\gamma 1 = \frac{1}{1 + 3.14^2 * 31494} \frac{1}{*7800 * 100/(2740 * 1200 * 1200)} = 0.015$$

$$\gamma 2 = 1$$

a_1 distance

$$a_1 = \frac{\gamma 2 E_2 A_2 H}{\gamma 1 E_1 A_1 + \gamma 2 E_2 A_2}$$

$$a_1 = \frac{1 * 12103.6 * 7800 * 77.5}{0.015 * 31494 * 7800 + 1 * 12103.6 * 3600} = 71.26 \text{ mm}$$

$$a_2 = \frac{\gamma 1 E_1 A_1 H}{\gamma 1 E_1 A_1 + \gamma 2 E_2 A_2}$$

$$\frac{0.015 * 31494 * 7800 * 77.5}{0.015 * 31494 * 7800 * 77.5} = 6.238 \text{ mm}$$

$$\frac{0.015*31494*7800*77.5}{0.015*31494*7800+1*12103.6*3600} = 6.238 \text{ mm}$$

$$EI_{ef} = E_1I_1 + E_2I_2 + \gamma_1E_1A_1a_1^2 + \gamma_2E_2A_2a_2^2$$

$$= 31494*18308333.33+12103.6*48600000+0.015*31494*7800*71.26 \wedge^2$$

$$+1*12103.6*3600*6.238 \wedge^2 = 1.415E+11 \text{ N/ mm}^2$$
where I₁=b₁h³₁/12 and I₂=b₂h³₂/12

Timber Strength Demand

Timber Strength Demand

Timber axial stress due to axial force

$$\sigma_{2}(x) = \frac{\frac{E_{2}a_{2} M(x)}{EI_{ef}}}{\frac{12103.6*6.24*1.61*1000000}{1.42E+12}} = 0.89 \text{ N/ mm}^{2}$$

Timber axial stress due to bending moment,

$$\sigma \text{ m}_{2}(x) = 0.5 \frac{E_{2}h_{2} M(x)}{EI_{ef}}$$
$$0.5 \frac{12103.6*90* 1.61*1000000}{1.42E+11} = 6.38 \text{ N/ mm}^{2}$$

Combined bending and tension ratio

$$\frac{\sigma^2(x)}{ft,0,d} + \frac{\sigma m,2(x)}{fm,d}$$
 less than one
$$\frac{0.89}{22.36} + \frac{6.38}{37.26} = 0.21$$
 less than one (1) is ok (satisfactory)

Timber shear stress, with the simplified and conservative assumption that only the timber part resists shear:

$$\tau d_{max} = 1.5 \frac{\text{Vd}}{\text{A2}} = 1.5 * \frac{5.36*1000}{3600} = 2.23 \text{ N/mm}^2 \text{ less than fvd} = 2.46 \text{ N/mm}^2$$

(Ok)

Concrete Strength Demand

Concrete axial stress due to axial force,

$$\sigma_1(x) = \frac{\gamma_1 E_1 a_1 M(x)}{E I_{ef}} = \frac{0.015 * 31494 * 71.26 * 1.61 * 1000000}{1.41E + 11} = 0.41 \text{ N/mm}^2$$

Concrete axial stress due to bending moment

 $\sigma m_{,1}(x) = 0.5 \frac{E_1 h_1 M(x)}{EI_{ef}} = 0.5 \frac{31494 * 65 * 1.61 * 1000000}{1.41E + 11} = 12.01 \text{ N/ mm}^2$

Concrete total upper fibre stress

$$\sigma_{c,tot} = |-\sigma_1 - \sigma_{m,1}| = |-0.41 - 12.01| = 12.42 \text{ N/ mm}^2 \text{ upper stress} \le \text{fcd } (23.33)$$

ok

Concrete total lower fibre stress

 $\sigma_{c,tot} = |-\sigma_1 + \sigma_{m,1}| = |-0.41 + 12.01| = 11.61 \text{ N/ mm}^2$ lower stress tension tensile stress \geq fct =1.46 not ok require tension reinforcement at bottom of concrete.

Connection Strength Demand

Shear force in connection at maximum shear,

$$F_{(x=0)} = \frac{\gamma 1 E_1 A_1 a_1 smin}{E I_{ef}} V_{max} = \frac{0.015 * 31494 * 7800 * 71.1 * 100}{1.40E + 11} * 5.36 * 1000$$

= 4.12 less than 4.13 it is ok

The ultimate limit state force is (ULS) = 8.93 KN/m = 10.716 kN

APPENDIX F

Guidelines for moment capacity for post-tensioned timber beam

 The timber beam bending capacity is calculated experimentally with COV % not exceeding 10 % (part one).

- 2- Identify the experimental correlation between the mid-span vertical deflection and the rod bar deformation in the term strain = coefficient x vertical deflection, $\epsilon = \text{coefficient } \mathbf{x} \Delta$.
- 3- Estimate the post-tensioning force through (PT= Ex ϵ x A) and replace strain ϵ by relation in the above point (2).
- 4- Determine the bending moment resulting from the post-tensioning process PT= Ex (coefficient $x \Delta$) x A x e (part two).
- 5- The total estimated bending moment is the sum of the two parts (1 and 4).
- 6- The total estimated bending moment can also be expressed by the Equation $PT = ((8EI x\Delta)/(e \times L^2)) + coefficient.$ This coefficient is calculated by the next point.
- 7- The coefficient is equal to the average value of difference between the theoretical PT value (8EI x Δ)/ (e×L²) and the experimental PT value, under the condition that (this average x 100/bending average value) is less than 10 JN AMINA %

APPENDIX G

Proposed empirical formula to predict moment strength in PT-TCC beams

A- Method 2

The control value present TCC10 from 4 point bending test data find 0.6Fmax and corresponding relative horizontal slip between timber and concrete 0.6H.

Then calculate the factor f_{TCC}

 $f_{TCC} = \frac{0.6 Fmax}{0.6 H} = \frac{26.43}{1.4} = 18.88$ For TCC10 specimen (control value)

In same manner calculate the factor for example the PT-TCC2.15 specimen

$$f_{PT-TCC\ 2.15} = \frac{0.6\ Fmax}{0.6\ H} = \frac{33.44}{1.19} = 28.13$$
 For PT-TCC2.15 specimen

The second step is to calculate the ratio for between $f_{PT-TCC\,2.15}$ and f_{TCC} and called F factor

$$F = \frac{f_{PT-TCC}}{f_{TCC}} = \frac{28.13}{18.88} = 1.49$$

Then Ku equivalent is equal

 $ku_{equivalent} = Rxku_{pushout-test} = 1.49 \text{ x } 2.74 = 4.09 \text{ kN/ mm}$

This value is used instead of normal Ku resulting from pushout test in the design of TCC to estimate bending stress for PT-TCC.

B- Method 3

The centroid of T-section Y is calculated by

 $Y = \frac{\sum AiYi}{\sum Ai} = \frac{120x65x \left(90 + \frac{65}{2}\right) + 90x40x \left(\frac{90}{2}\right)}{120x65 + 90x40} = 98.03 \text{ mm from bottom web}$

The moment area for T-section I_x is calculated by

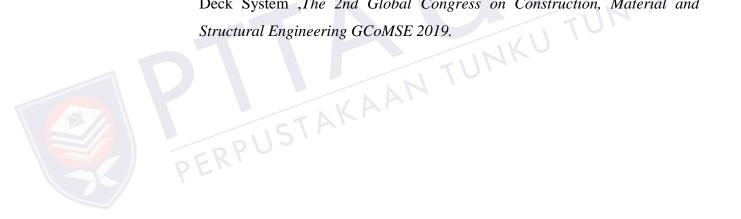
40 mm

$$I_{\text{total}} = \sum Ii$$

$$I_{\text{total}} = I_1 + I_2 + I_3 (Iz + A_3 d) = \frac{120X(155 - 98.03)^3}{3} + \frac{120X(98.03 - 90)^3}{3} + \frac{40X90^3}{12} + 40X90X(98.03 - \frac{90}{2}) = 19970592 \text{ mm}^4$$

$$Z = \frac{I}{Y} = \frac{19970592}{Y98.03} = 203726.8 \text{ mm}^3$$

$$120 \text{ mm}$$


$$I = \frac{120 \text{ mm}}{1}$$

$$I = \frac{1}{Y} = \frac{120 \text{ mm}}{1}$$

$$I = \frac{1}{Y} = \frac{1}{100 \text{ mm}}$$

List of publications

- Wissam, M., Yeoh, D., Jalal, M., Abd Ghafar, D., and Heng Boon, K. (2019). Kempas Timber Un-Bonded Post-Tensioning Solution New Approach. *International Journal of Civil Engineering and Technology*, 10(3).
- Wissm,M., Yeoh, D.,Jalal.,M, Abd Ghafar, D., and Heng Boon, K., Behaviour of Post-Tensioned Kempas Timber Beam with Two Tendon Types ,*The 2nd Global Congress on Construction, Material and Structural* Engineering GCoMSE 2019
- Jalal, M., Wissam, M., Abd Ghafar, D., Yeoh, D., and Heng Boon, K. (2019). Experimental Tests of Nail and Screw Connectors for Timber Concrete Composite Deck.
- Jalal,M, Abd Ghafar, D., Yeoh, D., Wissam.,M, and Heng Boon, K., Vibration Behaviour of Natural Timber and Timber Concrete Composite Deck System ,*The 2nd Global Congress on Construction, Material and Structural Engineering GCoMSE 2019.*

