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ABSTRACT 

 

Post-tensioning is a method of reinforcing (strengthening) concrete or other materials 

with high-strength steel strands or bars. The timber type that is used in all researches is 

the engineering timber products laminated veneer lumber (LVL) and glue-laminated 

wood (Glu-Lam), while avoiding using natural timber due to its properties’ variety. 

More recent improvement is using post-tensioning technique for the engineering timber 

products. The main material in this research is natural Kempas timber. The primary 

objective of this research is to develop of a method of timber beam post-tensioning and 

proposed empirical  Equation to predict the bending moment capacity for timber beam 

and timber concrete composite beam through the bending strength properties. The 

experimental program is divided into 3 major phases across the duration of this study. 

Phase A present post-tensioning method, this phase indicate two methods of post-

tensioning “forced bending jacking PT-B” and “pre-stressing jacking PT-J”. Phase B 

present timber bending performance in term of (strength and failure behavior), include 4 

point bending tests for timber beams and post-tensioning timber beams, the timber beam 

size (40  mm x90  mm x1200  mm) the tendon type is  threaded rod bar with two colors 

silver color (9.4 mm) and black color (8.85  mm) . Phase C involved post-tensioned 

timber concrete composite beam (the concrete layer is 65  mm) Bending Performance. 

From the test results for the two methods of pre-stressing it is clear that pre-stressing 

Jacking give higher residual deflection 98.2  % for silver color rod bar against black 

color with 88.8  % residual deflection. So this type of rod bar (silver color with long nut 

coupling) is the more efficient in use due to the high contact friction surface area for 

long coupling nut. The bending tests of post-tensioned beams show the range of bending 

strength capacity increasing 12  % to 46  %. There were three types of failure is tensile, 

compression and splitting shear failure depending on the timber quality (degree of 

natural effect). The PT-TCC give bending strength increment according to degree of 

composite action 500  mm, 100  mm and 70  mm screw spacing is 68  %, 85  % and 150  

% respectively. The empirical  Equation derived for bending moment capacity for post-

tensioning Kempas timber beam is basically depended on the experimental relation 

between vertical deflection and rod bar strain. The empirical  Equation shows 3.06  kN 
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constant difference for the theoretical  equation and the  equation form is PTempirical =

8EI∆

eL2 − 3.06. In the case of PT-TCC the proposed  equation depend on the concept of 

connector slip modulus. A three paths of estimation were discussed depend on push out 

test slip modulus. The gamma design method show that the slip modulus of pushout test 

gives a proper estimation in the case of PT-TCC specimens bending strength design. 
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ABSTRAK 

 

Post-tensioning adalah kaedah pengukuhan (menguatkan) konkrit atau bahan lain 

dengan helai atau bar keluli kekuatan tinggi. Jenis kayu yang digunakan dalam semua 

penyelidikan adalah produk kayu kejuruteraan kayu laminasi laminasi (LVL) dan kayu 

berlapis-laminasi (Glu-Lam), sambil mengelakkan menggunakan kayu semulajadi 

kerana pelbagai sifatnya. Penambahbaikan yang lebih baru menggunakan teknik pasca-

tegangan untuk produk kayu kejuruteraan. Bahan utama dalam kajian ini adalah kayu 

Kempas semula jadi. Objektif utama penyelidikan ini adalah untuk membangunkan satu 

kaedah rasuk balak kayu dan persamaan empirikal yang dicadangkan untuk meramalkan 

kapasiti momen lentur bagi rasuk balak kayu dan rasuk konkrit balak melalui sifat 

kekuatan lenturan. Program eksperimen dibahagikan kepada 3 fasa utama sepanjang 

tempoh kajian ini. Fasa A iaito kaedah pasca tegangan menuinjukkan dua kaedah 

"ketinggian terpaksa membongkok (PT-B) dan pra tekai abicu (PT-J). Tahap B, 

menunjukkan prestasi lenturan kayu dari segi (kekuatan dan kegagalan tingkah laku), 

termasuk 4 titik ujian lenturan untuk balak kayu dan bataiy bar pasca tegangan, saiz 

balak kayu (40 mm x 90 mm  x 1200 mm) tendon maralur dengan warma perak (9.4 

mm) dan warna hitam (8.85 mm). Fasa C melibatkan balak komposit konkrit pasir 

bertentangan (lapisan konkrit adalah 65 mm) prestasi lenturan. Dari hasil ujian untuk 

kedua-dua kaedah pra-menekankan, bahawa pra menekanan bicu memberikan pesongan 

sisa yang lebih tinggi 98.2 % untuk bar njukkan rod warna perak beterfens warna hitam 

dengan pesongan sisa 88.8 %. Oleh itu, bar rod jenis ini (warna perak dengan 

gandinganskru panjang) adalah lebih cekap digunakan kerana kawasan permukaan 

geseran tinggi untuk ikatan sku yang panjang. Ujian lenturan rasuk pasca-tegangan 

menunjukkan julat kapasiti kekuatan lenturan yang meningkat 12 % hingga 46 %. 

Terdapat tiga jenis kegagalan ialah tegangan, pemampatan dan pemisahan kegagalan 

ricih bergantung kepada kualiti kayu (darjah kesan semula jadi). PT-TCC memberikan 

kenaikan kekuatan lenturan mengikut tahap tindakan komposit 500 mm, 100 mm dan 70 

mm masing-masing adalah 68 %, 85 % dan 150 %. Persamaan empirical yang diperolehi 

untuk kapasiti momen lentur untuk balak kayu Kempas pasca-tegangan pada dasarnya 

bergantung pada hubungan eksperimen antara tegangan menegak dan tegangan bar. 
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Persamaan empirikal menunjukkan perbezaan persamaan 3.06  kN untuk persamaan 

teoretikal dan bentuk persamaan adalah PTempirical =
8EI∆

eL2
− 3.06. Dalam kes PT-TCC 

persamaan yang dicadangkan bergantung kepada konsep modulus slip penyambung. 

Tiga anggaran telah dibincangkan bergantung kepada modulus slip. Kaedah rekabentuk 

gamma menunjukkan bahawa ujian modulus slip memberikan anggaran yang tepat 

dalam kes reka bentuk kekuatan lenturan PT-TCC. 
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APPENDIX A 

 

Calculation  of  Young's  modulus  of   timber 

The result of specimen Timber (T) had been used as an example to show the 

calculation of Young's modulus of timber and the test arrangement is depicted on the 

Figure below. 

 

a=315  mm, L=950  mm, I= bh3/12 =2.43 x 106  mm
4
  Emg= 

 

𝐸𝑚.𝑔 =
3a𝑙2 −4𝑎3

2𝑏ℎ3(2
𝑤2−𝑤1

𝐹2−𝐹1
−

6𝑎

5𝐺𝑏ℎ
)
      

Where   M  bending moment. P maximum point load. Z section modulus= 

54000  mm
3
. b width of cross section= 40  mm . h  height of cross section = 90  mm . 

a   distance between support and applied point load= 320  mm. Em.g = global modulus 

of elasticity F2-F1 = increment of load on the regression line with correlation 

coefficient of 0.99 ( N) 

W2-W1 = the increment of deflection corresponding to (F2-F1) ( mm) G = shear 

modulus = 650 N/ mm2 according to BS EN 408 2010 clause 10.3 L= length of test 

sample =950  mm. 
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Table (D) Calculation Modulus of Elasticity for Single timber 

 

APPENDIX B 

G35 concrete material requirement calculation 

Target characteristic strength of concrete:   35MPa      Density of concrete : 

2380kg/m3 

Water/ cement ratio                : 0.4  

Superplasticizer                    : 1 % 

Calculation for the production of 1m3 concrete 

 Mass of 1m3 concrete               = 2380kg 

Mass of cement                          = 441kg 

Mass of water                           = mass of cement x w/c ratio 

                                                 = 441 x 0.4 

                                                 = 176.5 kg 

Mass of aggregate             = mass of concrete - mass of cement - mass of water 

                                         = 2380 - 441 - 176.5 

                                           = 1762 kg 

Mass of fine aggregate      = 1762 x 0.4 

                                             = 705kg  

Mass of coarse aggregate    = 1762 - 705 

                                                = 1057 kg 

Single 

Timber 

a( 

mm) 

b( 

mm) 

h^3 ( 

mm) 

I L^2 ( 

mm) 

F2 (N) F1 

(N) 

W2 ( 

mm) 

W1( 

mm) 

Em,g N/ 

mm2 

Sample 1 305 40 729000 2430000 902500 9738 6492 5.25 3.3 11686.9 

Sample 2 305 40 729000 2430000 902500 9849 6566 5 3.2 12991.1 

Sample 3 305 40 729000 2430000 902500 9375 6250 5 3.2 12267.7 

Sample 4 305 40 729000 2430000 902500 8796 5864 4.6 3 13062.7 

Sample 5 305 40 729000 2430000 902500 12661 6795 8 4 10509.8 

Average 12103.6 
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Volume of concrete needed   = Volume of [Specimen for Test A + Test B + 6 cubes] 

                                                 = (8.32 + 62.4 + 20.25) x 10
6
 = 0.091 mm

3
 

Batching of concrete with volume of 0.091m3 

Mass of cement required                  = 441 x 0.091 = 40.13kg  

Mass of Fine aggregate required     = 705 x 0.091 = 64.15kg   

Mass of Coarse aggregate required = 1057 x 0.091 = 96.18kg  

Mass of water required                    = 176 x 0.091 = 16.016kg 

10 % extra mass of the material provided considering loss due to wastage,  

Mass of cement                              = 40.13 x 1.1 = 44.14kg 

Mass of Fine aggregate                = 64.15 x 1.1 = 70.56kg  

Mass of coarse aggregate              = 96.18 x 1.1 = 105.79kg  

Mass of water                                = 16.016 x 1.1 = 17.62kg 

 

Table (A) Concrete mix design (DOE) for 1 m
3
 

Cement Fine aggregate Coarse 

aggregate 

Water 

441 kg 705 kg 1057 kg 176 kg 

441/441= 1 705/441=1.59 1057/441=2.39 176/441=0.4 

 

APPENDIX C 

Determination  of   strength   and  stiffness  of  shear  connector Strength of 

screw  connector  for  single Timber 

For 2 screw connectors, Strength = Fmax = 13.42 kN; 

For 1 screw connector, Strength = (1/2) x (13.42) = 6.71 kN. 

Stiffness of  screw  connector for  single Timber 

SLS - Serviceability Limit State (Ks) 

0.4 Fmax = 0.4 x 13.42 = 5.37 kN; ∆0.4Fmax = 1.75  mm. 

 ∆0.4Fmax  mean the displacement at 40 % from Fmax 

Ks =     
0.4 Fmax

∆0.4Fmax 
  =   3.11  kN/ mm 
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ULS - Ultimate Limit State (Ku) 

0.6 Fmax = 0.6 x 13.42 = 8.05 kN; ∆0.6Fmax = 3.66 mm. 

∆0.6Fmax  mean the displacement at 60 % from Fmax 

 𝐾𝑢 =
0.6 Fmax

∆0.6Fmax 
  =   2.737  kN/ mm 

APPENDIX D 

Calculation the spacing design for single Kampas timber beam with 

length 1.2 m 

The design procedure of TCC deck was adopted from (CEN,1995).The workflow for 

design TCC deck as adopted in Figure 5.5. Flow diagram of the design process for 

prefabricated TCC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Design of timber concrete 

composite (TCC)  

Short-term verifications: 

Find  EIef  = E1I1 + E2 I2 + γ1E1A1a1
2 + γ2E2A2a2

2   From Figure 5.4, K(from 

test) or Kequivalent=K max (1-e
-nβ

)
α 

 + 2 (new  Equation) 

Bending and tension in timber: 
σ2(x) 

ft,0,d 
+ 

σm,2(x) 

fm,d 
  ≤ 1 

 

 

Shear in timber: τd,max = 1.5 
Vd

A2 
   ≤  fvd 

 

Timber strength demand , σ2(x) =  
E2A2 M(x) 

EIef 
 , σ m,2(x) = 0.5 

E2h2 M(x) 

EIef 
 

 

 

σc,tot=|−σ1 − σm,1| upper stress ≤ fcd ,    σc,tot=|−σ1 + σm,1| lower stress ≤  fct   (ok) 

 

Concrete strength demand, σ1(x) =  
 γ1 E1a1 M(x)

EIef 
 , σ m,1(x) = 0.5 

E1h1 M(x) 

EIef 
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The process that used to determine the shear connectors spacing is the trial and error 

this due to the variables in design  Equations is a dependent variables. For that it will 

start with low load and check the connector capacity then increase the load to 

estimate the highest load before connection failure. Here the calculation present the 

last load before failure.  

The span length used is 1.2 m, the concrete width is 0.12 m , 0.04 is the  timber 

width and  0.09 m is depth of timber and 0.065 m is depth of concrete  

E1 = 34  GPa  ,E2 = 12.103 GPa  

E1= Young's modulus of Elasticity of the concrete 

E2= Young's modulus of Elasticity of the timber 

Ku =2.737  kN/ mm, fetched from screw type push out test result   

The shear strength in screws= 6.71  KN 

 

The load calculation 

W = 1.35 G+ 1.5 Q 

G= dead load = 6.21  kN/m 

Q= Live load= 0.36  kN/m 

W= 8.92  kN/m 

M= W*L
2
 /8 = 1.60  kN.m 

Vd = WL/2 = 5.35  kN   

A1= area of concrete = 65* 120= 7800  mm
2
, A2= area of timber = 3600  mm

2   

Ass

um

e 

the spacing S=100  mm 

γ1 = 
1

1+π2E1A1sef/Kl2 
  

γ1 = 
1

1+3.142∗34000 ∗7800∗100/(2740∗1200∗1200) 
 = 0.015 

γ2= 1 

Ku (Screw) 

 kN/ mm 

Ks(Screw) 

 kN/ mm 

Max load for single 

Screw (Rm)  KN 

Max load (Rm)  

KN for Screw 

2.737 3.11 6.71 13.42 

Connection strength demand, F(x=0)= 
 γ1 E1A1 a1 Smin

EIef 
 Vmax  ≤ Fd 
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a1 distance 

𝑎1 =
γ2E2A2H

γ1E1A1+ γ2E2A2
  

𝑎1 =
1∗12103.6∗3600∗77.5

0.015∗34000∗7800 + 1∗12103.6∗3600
 = 71.26  mm 

𝑎2 =
γ1E1A1H

γ1E1A1+ γ2E2A2
  

0.015∗34000∗7800∗77.5

0.015∗34000∗7800 + 1∗12103.6∗3600
  = 6.238  mm 

EIef  = E1I1 + E2 I2 + γ1E1A1a1
2 + γ2E2A2a2

2  

= 34000*18308333.33+12103.6*48600000+0.015*34000*7800*71.26 ^
2
 

+1*12103.6*3600*6.238 ^
2 

= 1.415E+11 N/ mm
2
 

Fn = 4.129  kN less than shear strength of screw = 6.71  kN, it is OK 

Fn= Shear strength from  Equation of design cod 

The spacing S = 100 which was assumed it OK  

However, took this value S=100 for TCC with 1200 mm length  

 

APPENDIX E 

TCC design according to EC5 for timber beam 1.2 m 

The length of span is 1.2 m, 0.12 m width of concrete  with 0.065 m depth, the length 

of timber 1.2 m , the cross section of unite timber 0.04 width of timber and  0.09 m 

depth of timber. 

L=1.2 m, h1(concrete)=0.065 m, h2(timber)=0.09 m, width (w) for concrete = 0.12m,       

w for timber=0.04 m 

Imposed load = 3  kN/m
2
 

Permanent load (self-weight) = 0.21  kN/m 

Permanent uniform load = 6  kN/m 

Total permanent load, G = 0.21 + 6 = 6.21  kN/m 

Total imposed load, Q = 3× 0.12 = 0.36   kN/m 

ULS short-term load combinations, 

for uniformly distributed load, w = 1.35G + 1.5Q = 8.93  kN/m 

design bending moment, Md = wL2/8 = 1.61  kNm 

design shear force, Vd = wL/2 = 5.36  kN 
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Design data for connector: 

 

The connection slip moduli and strength were determined by experimental push-out 

test 

for screw of 68.7 (L) × 5.47(d) where L and d as the  length and diameter in  mm, 

respectively. 

For definition of connection spacing): 

Connection slip modulus for ULS, Ku = 2.74   kN/ mm 

Connection slip modulus for SLS, Ks = 3.11   kN/ mm 

Characteristic strength of connection, Fk = 6.71   kN 

Maximum spacing of connection, smax = 100  mm 

Minimum spacing of connection, smin = 100  mm 

Effective spacing of connection, seff = 0.75smin + 0.25smax = 100  mm 

 

Timber Strength Capacity for Kempas timber  

 

Young’s modulus of Kempas, E2= 12103.6 MPa; mean value of timber bending 

stress fm =86.5 N/ mm2 , γm=1.3  is partial factor for material properties Kempas 

;and kmod =0.8  is modification factor for medium term load duration. Pm timber 

density 850 kg/m3 ,  (CEN,1995) 

Timber bending charachteristic calculation: 

fk = 60 N/ mm
2
    (Kempas timber D60 according MS 544: part 3, 2001) 

All the factors used to determine the tensile, compressive, shear stresses are adopted 

according BS EN 384:2016+A1:2018 

 

Timber design bending strength, fm,d= kmod ×fm,k/γm=0.8×(60) /1.3= 36.92  N/ 

mm
2
 

Timber characteristic tensile strength ft,0,k = 0.6x fmk = 0.6x (60) = 36  

Timber design tensile strength, ft,0,d= kmod ×ft,0,k/γm=0.8×36/1.3= 22.15 N/ mm
2
 

Timber shear characteristic strength, fv,k = 4.8  N/ mm
2 

(If  fm.k ≤ 60 , the  fv.k= 3+ 

0.03* fm.k =  4.8  N/ mm
2
  

Timber shear design strength, fv,d=kmod ×fv,k/γm=0.8× 4.8/1.3 =2.95 N/ mm2 

Timber compression parallel to grain characteristic strength fc,0,k = 4.3x fmk
0.5

 

=4.3*60
0.5

= 33.31 N/ mm
2
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Timber compression parallel to grain design strength,fc,0,d=kmod×fc,0,k/γm =0.8×33.31 

/1.3 =20.5 N/ mm
2 

 

Concrete Strength Capacity for grade 35 

 

Young’s modulus of concrete, E1=31494 MPa  

Concrete characteristic compressive strength, fck = 35 N/ mm2 

Concrete design compressive strength, fcd =fck /γc=35/1.5 =23.33  N/ mm2 

Concrete characteristic tensile strength, fctk= 2.2  N/ mm2  (EN 1992-1-1:2004, 

Table 3.1 section 3.1.3) 

Concrete design tensile strength, fctd=fctk/γc=2.2/1.5=1.47 N/ mm2 

where γc= 1.5 is partial factor for concrete at ultimate limit state(Eurocode, 2 Part 1–

1). 

 

Connection Strength Capacity for Screw  

 

Characteristic strength of connection, Fk=6.71  kN 

Design strength of connection, Fd=kmod ×Fk/γm=0.8×6.71 /1.3=4.13  kN 

where γm=1.3 is partial factor for material properties TCC and  kmod =0.8  is 

modification factor for permenant load duration and moisture content in Service 

Class 1 (Eurocode5, Part 1–1)  

 

Verifications for Ultimate Limit State in the Short Term 

 

This verification is carried out for the load condition with uniformly distributed 

imposed and permanent loads; w=1.35G+1.5Q= 8.93  kN/m. 

Bending Stiffness Properties for Ultimate Limit State Short-Term Verifications are as 

follows. Concrete ga mma coefficient, 

Area of concrete (A1)= 7800  mm
2
 

Area of Timber (A2)= 3600  mm
2
 

E1 = 31.494  GPa  ,E2 = 12.103 GPa  

E1= Young's modulus of Elasticity of the concrete 

E2= Young's modulus of Elasticity of the timber 
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𝛾1 =
1

1+π2E1A1sef/Kl2 
  

𝛾1 =
1

1+3.142∗31494 ∗7800∗100/(2740∗1200∗1200) 
 = 0.015 

γ2= 1 

a1 distance 

𝑎1 =
γ2E2A2H

γ1E1A1+ γ2E2A2
  

𝑎1 =
1∗12103.6∗7800∗77.5

0.015∗31494∗7800 + 1∗12103.6∗3600
 = 71.26  mm 

𝑎2 =
γ1E1A1H

γ1E1A1+ γ2E2A2
  

0.015∗31494∗7800∗77.5

0.015∗31494∗7800 + 1∗12103.6∗3600
  = 6.238  mm 

𝐸𝐼𝑒𝑓  = 𝐸1𝐼1 + 𝐸2 𝐼2 + γ1𝐸1𝐴1𝑎1
2 + γ2𝐸2𝐴2𝑎2

2  

= 31494*18308333.33+12103.6*48600000+0.015*31494*7800*71.26 ^
2
 

+1*12103.6*3600*6.238 ^
2 

= 1.415E+11 N/ mm
2
 

where I1=b1h
3

1/12 and I2=b2h
3
2/12 

 

Timber Strength Demand  

 

Timber axial stress due to axial force 

σ2(x) = 
E2a2 M(x) 

EIef 
 

               
12103.6∗6.24∗ 1.61∗1000000 

1.42𝐸+12
  =0.89 N/ mm

2
 

Timber axial stress due to bending moment, 

σ m,2(x) = 0.5 
E2h2 M(x) 

EIef 
 

            0.5 
12103.6∗90∗ 1.61∗1000000 

1.42𝐸+11
  = 6.38 N/ mm

2
 

Combined bending and tension ratio 

σ2(x) 

ft,0,d 
+ 

σm,2(x) 

fm,d 
  less than one 

0.89 

22.36 
+ 

6.38 

37.26 
 = 0.21 less than one (1) is ok (satisfactory) 
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Timber shear stress, with the simplified and conservative assumption that only the timber 

part resists shear: 

  𝜏𝑑𝑚𝑎𝑥 = 1.5
Vd

A2 
=   1.5 ∗

5.36∗1000

3600 
=2.23 N/ mm

2
 less than fvd =2.46 N/ mm

2
 

(Ok) 

 

Concrete Strength Demand  

 

Concrete axial stress due to axial force, 

σ1(x) =  
 γ1 E1a1 M(x) 

EIef 
=  

0.015∗31494∗71.26 ∗1.61∗1000000 

1.41𝐸+11
=  0.41 N/ mm

2 

Concrete axial stress due to bending moment 

σ m,1(x) = 0.5 
E1h1 M(x) 

EIef 
= 0.5 

31494∗ 65∗1.61∗1000000 

1.41𝐸+11
  = 12.01 N/ mm

2 

 

Concrete total upper fibre stress 

σc,tot=|−σ1 − σm,1|= |−0.41 − 12.01| =12.42 N/ mm
2
 upper stress ≤ fcd (23.33) 

ok 

Concrete total lower fibre stress 

σc,tot=|−σ1 + σm,1|= |−0.41 + 12.01|=  11.61 N/ mm
2
 lower stress tension tensile 

stress ≥ fct =1.46   not ok require tension reinforcement at bottom of concrete. 

 

Connection Strength Demand  

 

Shear force in connection at maximum shear, 

F(x=0)= 
 γ1 E1A1 a1 smin

EIef 
 Vmax = 

0.015∗31494∗7800 ∗71.1∗100

1.40𝐸+11
 ∗ 5.36 *1000                

= 4.12  less than 4.13 it is ok 

The ultimate limit state  force is (ULS) = 8.93  KN/m = 10.716  kN 

APPENDIX F 

Guidelines for moment capacity for post-tensioned timber beam 

1- The timber beam bending capacity is calculated experimentally with COV % 

not exceeding 10 % (part one).  
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2- Identify the experimental correlation between the mid-span vertical deflection 

and the rod bar deformation in the term strain = coefficient x vertical 

deflection, 𝜖 = coefficient x Δ.   

3- Estimate the post-tensioning force through (PT= Ex 𝜖x A) and replace strain 

𝜖 by relation in the above point (2). 

4-  Determine the bending moment resulting from the post-tensioning process 

PT= Ex (coefficient x Δ ) x A x e (part two). 

5- The total estimated bending moment is the sum of the two parts (1  and 4). 

6- The total estimated bending moment can also be expressed by the  Equation 

PT = ((8EI x∆)/ (e×L^2 )) + coefficient. This coefficient is calculated by the 

next point. 

7- The coefficient is equal to the average value of difference between the 

theoretical PT value (8EI x∆)/ (e×L^2 ) and the experimental PT value, under 

the condition that (this average x 100/bending average value) is less than 10 

% 

 

APPENDIX G 

Proposed empirical formula to predict moment strength in PT-TCC beams 

A- Method 2  

The control value present TCC10 from 4 point bending test data find 0.6Fmax  

and corresponding relative horizontal slip between timber and concrete o.6H. 

Then calculate the factor 𝑓𝑇𝐶𝐶  

𝑓𝑇𝐶𝐶  =
0.6 𝐹𝑚𝑎𝑥

0.6 𝐻
       =  

26.43

1.4
  = 18.88    For TCC10 specimen (control value) 

In same manner calculate the factor for example the PT-TCC2.15 specimen 

𝑓𝑃𝑇−𝑇𝐶𝐶 2.15 =
0.6 𝐹𝑚𝑎𝑥

0.6 𝐻
 =  

33.44

1.19
  = 28.13        For PT-TCC2.15 specimen 

The second step is to calculate the ratio for between 𝑓𝑃𝑇−𝑇𝐶𝐶 2.15   and 𝑓𝑇𝐶𝐶  and called 

𝐹 factor 

𝐹 =
𝑓𝑃𝑇−𝑇𝐶𝐶

𝑓𝑇𝐶𝐶
  =

28.13

18.88
 = 1.49  

Then Ku equivalent is equal  
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𝑘𝑢𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 𝑅𝑥𝑘𝑢𝑝𝑢𝑠ℎ𝑜𝑢𝑡−𝑡𝑒𝑠𝑡 = 1.49 x 2.74 = 4.09  kN/ mm 

This value is used instead of normal Ku resulting from pushout test in the design of 

TCC to estimate bending stress for PT-TCC. 

B- Method 3 

The centroid of T-section Y is calculated by 

Y= 
∑ 𝐴𝑖𝑌𝑖

∑ 𝐴𝑖
     =   

120𝑥65𝑥 (90+
65 

2
)+90𝑥40𝑥(

90

2
)

120𝑥65+90𝑥40
     = 98.03  mm from bottom web 

The moment area for T-section Ix is calculated by 

Itotal = ∑ 𝐼𝑖   

Itotal = 𝐼1 + 𝐼2 + 𝐼3 (𝐼𝑧 + 𝐴3𝑑) =   = 
120𝑋(155−98.03)3

3
 + 

120𝑋(98.03−90)3

3
 + 

40𝑋903

12
 +  

40𝑋90𝑋(98.03 −
90

2
)  = 19970592  mm4  

Z = 
𝐼

𝑌
   = 

19970592

𝑌98.03
  = 203726.8  mm3  
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