
 

 

DATA REDUNDANCY REDUCTION USING SENSITIVITY ANALYSIS 

METHOD FOR MACHINE-LEARNING-BASED BATTERY MANAGEMENT 

SYSTEM 

MUHAMMAD SYAFIQ ANWAR BIN MUSTAZA 

 

 

 

 

 

A thesis submitted in 

fulfillment of the requirement for the award of the 

Degree of Master of Electrical Engineering 

Faculty of Electrical and Electronic Engineering 

Universiti Tun Hussein Onn Malaysia 

JANUARY 2021 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



ii 
 

 

 

.............................................................. 

DR. MOHD AIFAA BIN MOHD ARIFF 

 

I hereby declare that the work in this thesis is my own except for quotations and 

summaries which have been duly acknowledged 

Student :        .............................................................. 

MUHAMMAD SYAFIQ ANWAR BIN 

MUSTAZA 

Date :        16 March 2021 

Supervisor :         

 

 

Co-Supervisor 

 

 :        ........ ...................................................... 

                   Co Supervisor :       .............................................................. 

        ASSOC. PROF. TS. DR. KOK BOON CHING 

PROF. MADYA TS. DR. KOK BOON  

CHING 

 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



iii 
 

I dedicate this thesis report to my beloved parents, supervisors, sisters, family, and 

friends, thank you. 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



iv 
 

ACKNOWLEDGEMENT 

First and foremost, I am glad to be able to finish my Master’s research on time. 

Although I faced many challenges, the completion of this research would not have 

been possible without the kind support and help from many individuals, and I would 

like to extend my sincere thanks to all of them. 

I am highly indebted to my supervisor, Dr. Mohd Aifaa bin Mohd Ariff, for 

his guidance and constant supervision and for also providing me the necessary 

information regarding the research, beginning from the submission of the project 

report until the completion of the research.  

Special thanks and my deepest gratitude also to my family. Words cannot 

express how grateful I am to my mother and father for all the sacrifices that they both 

have made for me.  

Besides that, I would like to thank all my friends who supported and 

encouraged me when I had a hard time. Your support kept me striving towards my 

goal. Last but not least, my thanks to those who were directly or indirectly involved 

in this research.  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



v 
 

ABSTRACT 

This thesis proposes a sensitivity analysis method to reduce the computational effort 

of machine-learning (ML) techniques in the battery management system (BMS). The 

novel approach analyzes the sensitivity of lithium-ion battery model parameters 

towards their discharge performances. The sensitivity analysis is based on the sum-

of-difference method to identify redundant model parameters that characterized the 

battery’s discharge performance. From the sensitivity analysis, it is found out that the 

current, discharge time from state-of-charge (SOC), and power discharge output 

show minimum influence towards the variation of battery parameters. Thus, this 

finding indicates that current, discharge time, and power were redundant and may be 

excluded in the formation of the training dataset. The newly discovered finding is 

applied to the ML-based BMS. In the development of the training dataset, a reduced-

sized dataset is formed by excluding current, discharge time, and power from the 

training dataset for the real-time battery-parameter monitoring in BMS. The newly 

formed reduced-sized dataset is applied to ML techniques: artificial neural network 

(ANN), deep learning (DL), and modified adaptive neuro-fuzzy inference system 

(MANFIS). Consequently, the training performances of all three ML techniques are 

observed, analyzed, and compared. The results demonstrate that the reduced-sized 

training dataset that is formed based on the sum-of-different method reduced the 

training time by up to 60.25% as compared with the full-sized dataset. Also, 

estimation accuracy is improved due to the improvement in training data bias. This 

result suggests that the proposed method significantly improved the training 

performance of the ML techniques in BMS application. The implementation of 

sensitivity analysis in the development of the training dataset for ML applications 

improved the performance of the real-time monitoring of lithium-ion battery 

parameters in advanced BMS applications. 
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ABSTRAK 

Tesis ini mencadangkan kaedah analisis kepekaan untuk mengurangkan usaha 

komputasi teknik pembelajaran mesin (ML) dalam aplikasi sistem pengurusan bateri 

(BMS). Pendekatan baru ini akan menganalisis kepekaan parameter model bateri 

litium terhadap prestasi nyahcasnya. Analisis kepekaan ini berdasarkan kaedah 

jumlah perbezaan untuk mengenal pasti parameter model berlebihan mengikut ciri-

ciri prestasi nyahcas bateri. Dari analisis kepekaan, didapati bahawa arus, tempoh 

masa nyahcas daripada keadaan nyahcas (SOC), dan kuasa keluaran menunjukkan 

pengaruh minimum terhadap variasi parameter bateri. Oleh itu, penemuan ini 

menunjukkan bahawa arus, masa nyahcas dan daya berlebihan akan dikecualikan 

dalam pembentukan set data latihan. Penemuan yang baru ditemui ini kemudian akan 

diterapkan pada BMS berasaskan ML. Dalam pengembangan set data latihan, set 

data ukuran lebih kecil dibentuk dengan mengasingkan data arus, masa nyahcas, dan 

kuasa daripada set data latihan untuk pemantauan parameter bateri masa nyata di 

BMS. Set data bersaiz kecil yang baru terbentuk digunakan untuk pelbagai jenis 

teknik ML: rangkaian saraf tiruan (ANN), pembelajaran mendalam (DL) dan sistem 

inferensi neuro-fuzzy adaptif yang diubah (MANFIS).   Hasil menunjukkan bahawa 

kumpulan data latihan bersaiz kecil yang dibentuk berdasarkan kaedah jumlah 

perbezaan bagi mengurangkan masa latihan hingga 60.25% dibandingkan dengan set 

data ukuran penuh. Tambahan pula, ketepatan anggaran juga dapat ditingkatkan 

kerana peningkatan bias data latihan. Hasil ini menunjukkan kaedah yang 

dicadangkan meningkatkan prestasi latihan teknik ML dalam aplikasi BMS dengan 

sangat ketara. Pelaksanaan analisis kepekaan dalam pengembangan set data latihan 

untuk aplikasi ML meningkatkan prestasi pemantauan masa nyata parameter bateri 

litium-ion dalam aplikasi BMS termaju. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 

Lithium-ion battery has a profound impact on modern industries and lies at the heart 

of many modern systems and devices. The battery continues to draw vast research 

attention as a promising energy storage system (ESS) technology due to its high 

energy density and high open-circuit voltage. ESS is a crucial technology in 

providing superior solutions in portable devices, transportation, and renewable 

technologies. Nevertheless, ESS is not merely a plug-and-play technology, as 

different system applications have different requirements in the power supply 

system.  

Therefore, many types of research have been conducted to investigate the 

requirement of ESS for renewable energy farming, vehicle electrification, and 

residential application [1]–[4]. All these researchers provide different configurations, 

topologies, and control schemes to deliver the performance demanded by the 

applications. In addition, the researchers in [5], [6] pointed out that battery lifespan 

eventually degrades over time. A degraded battery is difficult to recycle and requires 

expensive equipment [7]. Consequently, this predicament reduces the ability of ESS 

to be fully developed due to the risk of low investment. 

In the literature, a battery management system (BMS) is introduced to ensure 

that the lithium-ion battery delivers the required performance, whilst protecting and 

prolonging the lifespan of the battery. The controlling algorithms behind this 

technology extend from the simplest linear control to the application of machine-

learning (ML) methods, such as artificial intelligence (AI) [8]–[11]. The basic linear 

controller is sufficient for a simple application, such as battery pack chargers, 
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portable electronic devices, and renewable energy storage applications, while the 

machine-learning-based (ML-based) battery management system (BMS) provides an 

appropriate control for more complicated applications, such as electric vehicles, 

aerospace, and smart-grid power applications. Implementing an ML-based controller 

in the battery management system is known as an advanced battery management 

system. This control requires a comprehensive training dataset to provide the 

necessary control for the application. 

1.2 Problem statement 

An advanced BMS requires real-time information on the battery’s state and internal 

parameters to impose safer constraints on the battery’s operation. An ML application 

in advanced BMS estimates the real-time internal battery model parameters based on 

the battery’s discharge output performance. However, the problem is the battery 

manufacturers only provide new battery parameter information for the typical BMS 

applications. This parameter information is not valid for real-time advanced BMS 

applications as the battery parameters are changing over time. Therefore, it is crucial 

to analyze the discharge performance of the battery measurements towards the 

variation of the battery model parameters under the degraded condition. 

In order to represent the battery’s dynamics, ML methods are trained using 

the input-output training dataset. The development of the training dataset is crucial in 

any ML-based application. Conventionally, ML works on the assumption that the 

training performance increases with the number of training data. This assumption is 

true to a certain degree. Hence, the application of ML tends to include all operating 

scenarios, which results in a huge training dataset. However, it is often found out that 

there is a lot of redundant data in the training dataset. These redundant data degrade 

the training performance of the ML application, especially on the training time. In 

the real-time battery model parameter estimations using the ML technique, the 

battery model is represented by a series of complex mathematical equations, 

characterized by various parameters to yield several output variables.  

As a result, a huge training dataset is required to estimate the real-time 

battery model parameters accurately. As the battery degrades, these parameters 

change, and another set of a huge training dataset is required to represent this 
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operating scenario. Thus, the size of the training dataset increases exponentially as 

the battery degrades over time. It has been found out that not all measurements are 

sensitive towards the variation in the parameters as the battery degrades. Therefore, a 

sensitivity analysis is required to identify the redundant measurements in order to 

reduce the size of the training dataset systematically. The reduction of the size of the 

training dataset will improve ML training performance in estimating the real-time 

lithium-ion battery model parameters.  

1.3 Research objectives 

This research aims to achieve the following objectives: 

 

a) To analyze the discharge performance of the battery measurements towards 

the variation of the battery model parameters under degraded condition. 

 

b) To determine the redundant measurement in the training dataset based on the 

sensitivity analysis using the sum-of-difference method of the battery model 

parameters. 

 

c) To evaluate the performance of artificial ML techniques in the real-time 

battery model parameter identification application using the reduced training 

dataset. 

1.4 Research scopes 

This research is limited to the following scope: 

 

a) The lithium-ion battery was modelled using the modified Shepherd’s model. 

The battery simulation model was developed using the MATLAB Simulink 

software. 

 

b) This research considered only lithium-ion battery as the case study. The 

ratings for the voltage and current of the battery are using 3.6V and 3.25A, 
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respectively. A single cell of lithium-ion battery is considered because the 

investigation of battery degradation is normally conducted based on a single 

cell [12]. Battery degradation is normally different among the individual 

battery cell in real-time application. Different cell material resulted a different 

performance change. Hence, it is required to be tested in a single-cell 

condition for comprehensive investigation process. 

 

c) The constant current load was considered to discharge the lithium-ion battery 

because most electrical loads draw a constant current in practice. 

 

d) The battery discharge performance was simulated using the characteristics 

defined from the manufacturer’s datasheet. Then, the characteristic of the 

battery model was varied under 500 cycles of degraded condition. The battery 

discharge performance was analyzed from the voltage, current, temperature, 

discharge time, power, and energy of the battery. ML techniques would be 

used to estimate the internal battery model parameters. 

 

e) This study only considered the discharging process to simulate the discharge 

performance. This is because both processes of charging and discharging 

have similar performance characteristics [13]. The difference is only from the 

inverse discharge curve line produced. 

 

f) This research considered artificial neural network (ANN), deep learning (DL) 

and modified adaptive neuro-fuzzy inference system (MANFIS) as the ML 

techniques to estimate the internal battery parameters. These techniques are 

considered because the configuration is less complex, while the estimation 

accuracy is at a satisfactory level. 

1.5 Thesis organization 

This thesis is organized into five chapters. Following this introductory chapter, the 

remaining chapters are described briefly as follows: 
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Chapter 2 presents the related background of the ESS technology. The 

current status, prospect, possible challenges and solutions are briefly discussed in this 

chapter. Moreover, this chapter also discusses the sensitivity analysis approach for 

data-driven applications. The various purposes of this approach are concisely 

discussed in this chapter. 

Chapter 3 presents in-depth the proposed research methodology used in this 

work to reach the objectives. The battery modelling, sensitivity analysis process, and 

machine-learning implementations are elaborated thoroughly in this chapter. Also, 

the flowchart diagram of the methodology is presented in this chapter.  

Chapter 4 discusses the results and the performance of the proposed 

methodology in terms of accuracy and computation time. Moreover, the 

performances of the proposed method using various machine-learning algorithms 

were compared to show the superiority of the technique.  

Chapter 5 summarizes the main contributions and limitations of this study 

and provides some future insights from this research.  

  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter highlights the importance of the work presented in this thesis. In this 

chapter, a review of the ESS technology cements the foundation of this research. 

Then, the battery technology used in practice is discussed to stress the need for the 

BMS. Next, the evolution of the BMS is reviewed. The need for an advanced BMS is 

also discussed in this chapter. Afterwards, the sensitivity analysis methods available 

in the literature to identify the redundant data are reviewed. Finally, the research gap, 

which founded the base of this research, is summarized.  

2.2 A review on future ESS technology 

In the literature, several works have reported on the latest ESS technology 

development in various applications and with different focuses. In [14], the 

researchers discussed the present status of lithium-ion battery technology. The 

discussion focused on the electrochemical aspect and the potential materials to 

improve the energy storage capability and the power output of lithium-ion batteries. 

Meanwhile, the studies in [15] and [16] reported the technology development 

of the energy storage system for applications in transportation and main power grid. 

The studies focused on power converters and power storage technologies for various 

applications. The researchers in [17] discussed the ESS architectures utilized in 

practice, focusing on the development of control algorithms that optimize ESS 

utilization. Next, the maturity of storage energy technologies to facilitate the load 

demand for daily energy consumption was reviewed in  [18]. On the other hand, the 
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researchers in [19] reviewed the energy storage technology for hybrid electric vehicle 

(HEV) application. The report focused on the evaluation of the technology readiness 

of distinct components of the vehicle, especially on the electrical propulsion system. 

Figure 2.1 shows a typical block diagram of the energy storage system for electric 

vehicle application.  

 

Energy storage system 

(ESS)

Power converter

(inverter)

VAC

VDC

Supercapacitor 

storage system

Battery storage 

system

AC input (plug-in)

Battery 
charging and 
management 

system

Control 
unit

Transmission

Power converter 

(rectifier)

VDCVDC

VDC

VDC

VAC

Electric

Motor

Feedback

 

Figure 2.1: Block diagram of the energy storage system for electric vehicle 

application 

From the aforementioned applications, the energy storage technology has a 

tremendous impact on electrical utility development, especially in renewable energy 

(RE) integration with the conventional power network. Figure 2.2 shows a typical 

block diagram of the residential RE system integration with the electrical grid 

system. The system consists of several sub-systems that are vital to ensure the 

continuity of electricity supply to residential customers [20]. It is well noted that RE 

is not always available to customers due to its intermittency nature. Thus, the RE 

resources are regulated to charge the ESS when the energy is available. Thus, the 
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