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ABSTRACT 

In the era of globalization, heat is a no doubt to be found in nearly all devices and 

applications of energy. However, that lost heat is actually representing a substantial 

portion of energy losses that need to be recovered. The recovery of lost heat is a 

crucial step in reducing our energy requirements. Therefore, the needs for high-

performance thermoelectric (TE) materials to convert heat into electricity and vice 

versa is become compelling. Nowadays, the leading TE materials are Bi2Te3-based 

alloys, PbTe, PbSe, SiGe, Mg2X (X = Si, Ge, Sn), skutterudite, and half-Heusler 

alloys. However, there are some problems arise since most of these rare earth alloy-

based TE materials, such as Bi2Te3 and PbTe, suffer from thermal and chemical 

instabilities. Besides, it is also high toxicity, relatively low availability and high cost. 

On the other hand, transition metal oxide materials have received attention such as 

TE materials as they are cost-effective, environmentally friendly, and available over 

a range of compositions. Titanium Dioxide (TiO2) is among the most widely used 

transition metal oxides, which takes advantage of its versatility. In this project, a 

novel and facile method of low temperature hydrothermal method was implemented 

for the growth of TiO2 nanostructures on porous silicon by using Titanium (IV) 

Butoxide (TBOT) and Hydrochloric acid (HCL) electrolytes. As a substrate, porous 

silicon samples were fabricated by electrochemical-etching (ECE) process which 

helps in providing large internal surface that can induce large absorption of TiO2 

nanostructures. Optimization of etching time and current density supplied during the 

ECE process can alter the morphological properties of the porous silicon sample 

produced. Next, variation in reaction times during hydrothermal process is also 

studied since it can affect both the growth pattern and coverage area of TiO2 

nanostructures on the porous silicon substrate. Finally, Hall Effect measurement was 

conducted to calculate the electrical conductivity, carrier concentration and mobility 

of the TiO2 materials on the porous silicon sample produced. In conclusion, there is a 

possibility for porous silicon with a high porosity to be a good adhesive template for 

the growth of TiO2 nanostructures to be contributed as TE materials. 

 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



vi 

 

ABSTRAK 

 

 

Dalam era globalisasi, haba tidak diragui ditemui dalam hampir semua peranti dan 

aplikasi tenaga. Walau bagaimanapun, haba yang hilang itu sebenarnya mewakili 

sebahagian besar kerugian tenaga yang perlu pulih. Pemulihan haba yang hilang 

adalah langkah penting dalam mengurangkan keperluan tenaga kita. Oleh itu, 

keperluan untuk bahan termoelektrik (TE) berprestasi tinggi untuk menukarkan haba 

menjadi elektrik dan sebaliknya menjadi menarik. Pada masa kini, bahan TE 

terkemuka adalah aloi. Walau bagaimanapun, terdapat beberapa masalah yang timbul 

kerana kebanyakan bahan-bahan TE berasaskan aloi nadir bumi ini, seperti Bi2Te3 

dan PbTe, mengalami ketidakstabilan terma dan kimia. Selain itu, ia juga merupakan 

ketoksikan yang tinggi, ketersediaan yang agak rendah dan kos yang tinggi. 

Sebaliknya, bahan-bahan logam oksida peralihan telah mendapat perhatian seperti 

bahan TE kerana ia kos efektif, mesra alam, dan tersedia di atas pelbagai komposisi. 

Titanium Dioxide (TiO2) adalah antara oksida logam peralihan yang paling banyak 

digunakan, yang mengambil kesempatan daripada serba boleh. Dalam projek ini, satu 

kaedah hidroterma suhu rendah dan mudah digunakan untuk pertumbuhan struktur 

nano TiO2 pada silikon berliang dengan menggunakan elektrolit asid Titanium 

(Butoxide) (TBOT) dan asid hidroklorik (HCL). Sebagai substrat, sampel silikon 

berliang dihasilkan oleh proses electrochemical-etching (ECE) yang membantu 

dalam menyediakan permukaan dalaman yang besar yang boleh menyebabkan 

penyerapan besar nanostruktur TiO2. Pengoptimuman masa etsa dan kepadatan 

semasa yang dibekalkan semasa proses ECE dapat mengubah sifat morfologi sampel 

silikon berliang yang dihasilkan. Seterusnya, variasi dalam masa reaksi semasa 

proses hidroterma juga dikaji kerana ia boleh menjejaskan kedua-dua corak 

pertumbuhan dan kawasan perlindungan TiO2 struktur nanos pada substrat silikon 

berliang. Akhirnya, pengukuran Hall Effect telah dijalankan untuk mengira 

kekonduksian elektrik, kepekatan carrier dan mobilitas bahan TiO2 pada sampel 

silikon berliang yang dihasilkan. Kesimpulannya, ada kemungkinan silikon berpori 

dengan keliangan tinggi menjadi templat pelekat yang baik agar pertumbuhan 

struktur nano TiO2 dapat disumbangkan sebagai bahan TE. 
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CHAPTER 1.  CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Direct conversion of heat into electricity through advanced thermoelectric (TE) 

materials has been one of the most attractive solutions to overcome waste heat 

issues. Heat is found in nearly all applications of energy, and lost heat represents a 

substantial portion of energy losses. Therefore, thermoelectric oxides, which are 

naturally abundant, nontoxic and low-cost elements, are introduced in order to 

recover the problem of heat being wasted.  

1.2 Research background 

With an abundant amount of heat being lost as waste heat, the needs for high-

performance thermoelectric materials is becoming compelling. Thermoelectric 

materials can convert heat into electricity directly and vice versa. In recent years, 

great progress has been made in improving their dimensionless figure of merit 

(ZT), which determines the conversion efficiency of TE devices.  

ZT is related to three ―interlocked‖ factors—Seebeck coefficient, electrical 

conductivity and thermal conductivity [1]. Generally, the concept of increasing 

electrical properties but decreasing thermal conductivity is of great importance for 

thermoelectric materials. In this project, titanium dioxide (TiO2) is studied to 

investigate its potential as a thermoelectric material. Moreover, TiO2 is less 

expensive, chemically stable and non-toxic material.  
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TiO2 is an important n-type semiconductor with a wide band gap of 3.02 eV and 

3.20 eV for rutile and anatase phases, respectively. Rutile, anatase and brookite are 

the three phases of TiO2 semiconductor [2]. An experiment is conducted by 

growing TiO2 nanostructures on a porous silicon (pSi) substrate by the low-

temperature hydrothermal method. Generally, a high surface area of silicon 

nanostructures is formed by the corrosion process of silicon crystallite. By 

manipulating the parameters, this corrosion process is able to control the size of 

pores, as well as the thickness and porosity of the porous silicon. It has the ability 

to combine silicon-specific advantages such as abundance and process-ability with 

a simple and scalable fabrication process since the porous silicon is a different form 

of nanostructured silicon [3].  

A previous study has shown that the investigation and introduction of porous 

silicon began at Bell Laboratories by Arthur Uhlir Jr. and Ingeborg Uhlir with their 

work on silicon (Si) and germanium (Ge) in the 1950s [4]. In recent years, the study 

of nanostructured silicon as one of the thermoelectric materials has been conducted 

by many researchers all over the world. The focus is on the rare characteristics of 

porous silicon since there is a possibility of this material to be used in many 

applications. Therefore, in this research, the growing of TiO2 nanostructures on a 

porous silicon substrate is fabricated in order to study its electrical conductivity. 

1.3 Problem statement 

By harvesting and converting waste heat into electricity, global climate warming 

problems are assumed to be solved with TE power generation technology. More 

than 60% of the energy produced in the U.S. is never utilized, most of it in the form 

of waste heat [5]. The recovery of lost heat is a crucial step in reducing our energy 

usage. Nowadays, Bi2Te3-based alloys, PbTe, PbSe, SiGe, Mg2X (X = Si, Ge, Sn), 

skutterudite, clathrate, Zintl and half-Heusler alloys are known as TE materials. 

However, most rare earth alloy-based thermoelectric materials, such as Bi2Te3 and 

PbTe, suffer from chemical and thermal instabilities and are expensive, high in 

toxicity as well as low in their availability [1].  
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In addition, their limitations in large-scale commercial applications could be the 

consequences of their toxic and rare compounds. Moreover, problems faced by the 

manufacturers in converting the materials for engineering devices have limited the 

materials‘ use in the thermoelectric field. Therefore, nowadays, transition metal 

oxides are abundantly studied by researchers all over the world regarding the 

materials‘ possible contribution as thermoelectric materials. Being environmentally 

friendly, cost-effective and high availability are the reasons for the studies. Some 

oxide elements such as cobalt, zinc rhodium, titanium, copper, manganese, 

molybdenum, tungsten and vanadium offer a wide range of electronic properties 

ranging from conducting, semiconducting as well as insulating [6]. TiO2 is among 

the most intensively studied and the most widely used transition metal oxides, 

which takes advantage of its versatility. Anatase, rutile and brookite are three most 

common polymorphs of TiO2. Of these, rutile is a stable phase under ambient 

conditions, while both brookite and anatase are metastable [7].  

1.4 Research objectives 

Regarding the problems stated above, TiO2 is considered as one of the potential TE 

materials. The study in this project is more focused on the electrical properties of 

the sample. Therefore, the growth of TiO2 nanostructures on a porous silicon 

substrate is fabricated based on the three objectives as stated below: 

i. To fabricate a porous silicon thin film by electrochemical etching (ECE) 

process and characterise the properties of the thin film.  

ii. To fabricate rutile-phased TiO2 nanostructures on the porous silicon thin 

film by a low-temperature hydrothermal method and characterise the 

properties of the thin film. 

iii. To calculate the electrical conductivity of the TiO2 nanostructures on porous 

silicon by Hall effect measurement. 
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1.5 Scope and limitation 

i. In this project, an electrochemical etching process is introduced to produce a 

porous silicon thin film. The ECE process is conducted in a standard room-

temperature condition of 27 ºC as a fixed variable with a constant volume of 

electrolyte consisting of 3 ml hydrofluoric acid (HF) and 5 ml ethanol 

(C2H5OH). 

ii. The first set of experiment is to study the effects of different etching times 

during the ECE process of between 3 to 40 minutes with a constant 10 

mA/cm
2
 of current density supplied.  

iii. The second set of experiment is to study the effects of different current 

densities supplied during the ECE process ranging from 10 mA/cm
2
 to 30 

mA/cm
2
 with a constant etching time optimized from the first experiment. 

iv. The optimal surface area of porous silicon thin film produced will be used 

to grow rutile-phased TiO2 nanostructures by a low-temperature 

hydrothermal method at 150 ºC. 

v. In addition, the electrolyte is synthesized with the volume ratio of 80:80 ml 

of hydrochloric acid (HCL) and deionized water (DI), respectively. A 

previous study has shown that the ratio leads to surface area improvement 

for the formation of TiO2 nanostructures. 

vi. The reaction time of the hydrothermal process is varied at 3, 10 and 20 

hours to study the formation of the TiO2 nanostructures. The large and 

rough surface areas of TiO2 nanostructures contribute to the high efficiency 

of photo scattering and the improvement of light absorption. 
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1.6 Result contributions 

TiO2 has great potential to be a high-performance oxide TE material. The study on 

the electrical conductivity of TiO2 nanostructures grown on porous silicon could 

contribute to the application in TE devices. Additional insight is also gained 

through the knowledge of carrier concentrations and mobility in the material. In the 

future, researchers possibly could study the strategy of reducing thermal 

conductivity and finding the Seebeck coefficient of TiO2. Moreover, in the 

thermoelectric field, the figure of merit of new materials is based on the electrical 

conductivity [8]–[12], thermoelectric power [13], [14] and thermal conductivity [8], 

[9], [15] of the sample. In addition, for the substrate, the porous silicon has special 

properties of a controllable size of the pores as well as a high surface area, which 

has inspired the studies on its applications in various disciplines [16]. 
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CHAPTER 2.  CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter presents the current state of knowledge about the fabrication of porous 

silicon and the growth of TiO2 nanostructures on porous silicon surfaces. Also 

presented are discussions on porous silicon‘s characteristics and properties since it 

has benefits in thermoelectric applications. In addition, TiO2 nanostructures are 

reviewed, including their properties and applications. Furthermore, this chapter 

describes the methodology used to produce the sample. Last but not least, the 

working principles of Field-Emission Scanning Electron Microscopy (FESEM), 

Raman spectroscopy, Atomic Force Microscopy (AFM) and Fluorometer are also 

discussed. 

2.2 Semiconductor’s properties 

Various important properties of nanostructured materials are discussed when 

considering the behavior of electrons within an energy band. In research, the basic 

concept of band diagram is required to be clearly understood, including the detailed 

explanations about the direct or indirect band gap, band gap energy, holes and 

excitons [16], [17]. Table 2.1 shows a brief explanation and the differences between 

both types of band gap [18]. There are two types of band gap in semiconductors, 

which are direct and indirect band gaps. Both types of band gap are different in 

their characteristics and their electron and hole behaviors. 
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Table 2:1 Comparison of direct and indirect band gaps 

 

Types of 

Band Gap 

Direct Band Gap Indirect Band Gap 

 

Concept 

The lowest energy of the 

conduction band and the 

highest of valence band occur 

at the same value of 

momentum as shown in 

Figure 2.1(a). 

The lowest energy of the 

conduction band and the highest 

of valence band occur at a 

different value of momentum as 

shown in Figure 2.1(b). 

 

 

 

 

Energy 

Two conditions occur during 

the process: 

1) Enough energy is supplied 

from photons (light energy) 

for electrons to climb to the 

conduction band from the 

valence band. 

2) Photons are emitted (no 

phonons involved) during the 

movement of electrons from 

the valence band to the 

conduction band. Very 

efficient electron transfer 

since the direct band gap 

requires less energy. 

By the law of conservation of 

momentum, the momentum of 

conduction band cannot be 

directly changed to the 

momentum of valence band. The 

recombination process in these 

semiconductors occurs via a 

recombination centre and an 

energy level within the band 

gap. Less efficient electron 

transfer since the indirect band 

gap requires high energy. 
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Holes and 

electrons 

The electron-hole pairs can 

recombine directly and emit a 

photon. 

The electron-hole pairs‘ 

recombination process takes 

place indirectly at the 

recombination centre and results 

in photon emission. 

 

Examples 

Gallium arsenide (GaAs) is 

an example of III-V 

compound semiconductor 

with a direct band gap. It is 

very useful in optoelectronic 

applications. 

Silicon and germanium are 

examples of indirect band gap 

semiconductors. They have very 

limited usage in optoelectronics 

applications. 

 

 

 

Figure 2.1: The illustration of band diagrams:  

(a) Direct band gap and (b) Indirect band gap 

 

(a) (b) 
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