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ABSTRACT

In this thesis, several harvested fishery models using various types of harvesting

strategies including the common harvesting, independent harvesting and nonlinear

Michaelis-Menten harvesting functions are presented and analyzed. Besides that,

most of the models are taking the existence of a toxicant into consideration, either in

an anthropogenic or a self-produced form. In order to account for the intraguild

predation interaction that occurs in marine ecosystems, three species fishery models

are also studied by modeling the carrying capacities of both intraguild prey and

predator fish as time-dependent variables. The idea of variable carrying capacity

tends to describe the fish population dynamics in a varying environment by assuming

their growth to be dependent on the environmental resource availability. In the

context of resource management, an optimal harvesting policy is derived for the

proposed models that aims to attain an optimal and sustainable yield of harvesting

fisheries. Recent studies reveal that the study of harvesting alone is not sufficient to

provide qualitative insights into the intrinsic behaviors of marine fish populations

subject to harvesting. In fact, some of the important elements such as the presence of

toxicants and intraguild prey-predation, as well as the interplay of the population

with surrounding environment, are often neglected in most of the current studies.

Therefore, the main contribution of this thesis is to generate insights into the

dynamical behaviors of fishery models that account for the combination of the

existence of harvesting, toxicant, as well as intraguild predation interaction. The

dynamical properties discussed in this thesis give better understanding of the

maximum thresholds of harvesting before the fish populations are driven to

extinction. This thesis serves as a platform to investigate the optimal tradeoff of

harvesting fisheries.
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ABSTRAK

Dalam tesis ini, beberapa model perikanan yang menggunakan pelbagai jenis strategi

penuaian termasuk penuaian bersifat umum, bebas dan ``Michaelis-Menten" telah

dibentang dan dianalisis. Selain itu, kebanyakan model mengambil kira kewujudan

bahan toksik, sama ada dalam bentuk antropogenik atau yang dihasilkan sendiri.

Dalam usaha untuk mengambil kira interaksi rantaian makanan pemangsa yang

berlaku dalam ekosistem marin, model melibatkan tiga spesies ikan telah dikaji

dengan memodelkan kapasiti tampungan mangsa dan pemangsa sebagai

pembolehubah bergantung pada masa. Idea pembolehubah kapasiti tampungan

cenderung untuk menggambarkan dinamik populasi ikan dalam persekitaran yang

berbeza-beza dengan menganggap pertumbuhan mereka adalah bergantung pada

ketersediaan sumber di sekelilingnya. Dalam konteks pengurusan sumber, dasar

penuaian optimum diperolehi daripada model yang dicadangkan bertujuan untuk

mendapatkan hasil penuaian perikanan yang optimum dan mapan. Kajian baru-baru

ini mendedahkan bahawa kajian yang melibatkan penuaian sahaja tidak mencukupi

untuk memberi pandangan kualitatif ke atas tingkah laku intrinsik populasi ikan

marin yang tertakluk kepada proses penuaian. Malah, beberapa elemen yang penting

seperti kewujudan bahan toksik dan rantaian makanan pemangsa, serta interaksi

antara populasi dengan persekitarannya, sering diabaikan dalam kebanyakan kajian

semasa. Oleh itu, sumbangan utama tesis ini adalah untuk menjana pandangan ke

atas tingkah laku dinamik model perikanan yang menyumbang kepada gabungan

kewujudan penuaian, toksik dan juga interaksi rantaian makanan pemangsa. Ciri-ciri

dinamik yang dibincangkan dalam tesis ini memberi pemahaman tentang ambang

penuaian maksimum agar populasi ikan yang dituai tersebut tidak ke arah kepupusan.

Tesis ini berfungsi sebagai platform untuk menyiasat optimum ``tradeoff" untuk

menuai sumber perikanan.
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CHAPTER 1

INTRODUCTION

In this chapter, there are six sections explaining the rationales of this research. Section

1.1 provides the background of the research while Section 1.2 discusses the statement

of the problem. The research objectives are presented in Section 1.3. Section 1.4

explains the scope of the study and Section 1.5 highlights the significance of the study.

Finally, Section 1.6 presents the overview of this thesis.

1.1 Research background

Fishery resources from the seas and oceans are undoubtedly a vital source of animal

protein to human being. In 2016, approximately 87% of the total fish caught are

used for the purpose of human consumption while the other 13% are used for non-

consumption purposes (FAO, 2016). The rising demand for seafood provokes the

process of exploitation of fisheries, causing the severe depletion or eventual extinction

of some marine species such as Pacific Tuna (Burgess et al., 2017) and Snapper

(Guardia et al., 2018). Generally, there are two types of over-fishing in fishery

science: recruitment over-fishing and growth over-fishing (Hernandez et al., 2016).

Recruitment over-fishing refers to the situation when an adult fish population is

harvested beyond the level that it can be replenished again while growth over-fishing

is the premature harvesting on the juvenile fish population. In fact, neither over-fishing

nor under-fishing is rational as both of them bring about some adverse impacts to

fishery conservation (Zhou et al., 2015). This is because over-fishing can cause a

severe decline in fish population density but under-fishing can pose a loss to human
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society. Thus, implementation of a balanced harvesting strategy is essential to prevent

over-exploitation of fishery resources and simultaneously ensure the continuous flow

of benefits to human society.

Besides the issue of over-exploited fisheries, concerns are mounting about

the presence of toxicants in aquatic environment. A handful of fishery studies,

with the supports of laboratory data has been done to study the human exposure

to aquatic toxicant - methylmercury, through the consumption of seafood (Li et al.,

2016b; Schartup et al., 2018; Sunderland et al., 2018). From their research,

methylmercury is an organic form of mercury released into aquatic environment

through human activities. This anthropogenic toxicant is the only form of mercury

that can bioaccumulate and biomagnify in marine food webs especially in the

tissues of predatory fish species such as shark, cod, tuna, salmon and swordfish.

Continuous human exposure to this environmental toxicant through ingestion is known

to have some detrimental effects on neurodevelopment and cardiovascular health.

Furthermore, it is reported in the research of Schartup et al. (2019) that overfishing

has a close relationship with the toxicant concentration in marine fish species. This

is because the over-exploitation of fisheries can alter the structure of marine food

webs, causing the dietary shifts in predatory fish. For instance, the methylmercury

concentration in Atlantic cod was lower in 1970s as a consequence of the over-

harvesting of herring fish that led to the dietary shifts of Atlantic cod to feed on

Clupeidae fish.

Fluctuations of the number of marine fish species due to the presence of

harvesting activities and toxicants can definitely pose some undesirable effects on the

entire aquatic ecosystem. Therefore, there is a substantial growth of global concerns

on the analysis of fish population models in order to examine the dynamical behaviors

among fish with the goal to return the number of fish to its satisfactory extent. In

order to delve into the fish population ecology, the interaction between the fish species

with each other as well as their interaction with surrounding environment are some of

the underlying concepts. Prey-predation is a predominant interaction that affects fish

population dynamics (Whipple et al., 2000). Therefore, prey-predator fishery models
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3

are greatly studied by applied mathematicians and ecologists. The studies on prey-

predator fishery models are still an on-going process as they exhibit a wide range of

interesting dynamics such as steady-states, periodic orbits, bistability and chaos.

Intraguild predation is an interaction when both competition and predation

occur simultaneously or when a predator competes with its prey to share the same

resource (Holt and Polis, 1997). Intraguild predation can be found in marine

ecosystems such as Atlantic capelin (Yurkowski et al., 2016), anchovy (Bachiller et al.,

2015) and jellyfish (Meyer et al., 2016). It plays an important role in sustaining a

balanced marine ecosystem and it might cause a failure in understanding the interplay

between fish population dynamics and harvesting if intraguild predation is not taken

into account (Irigoien and Roos, 2011). On the other hand, in modeling an intraguild

fishery model, treating the environmental carrying capacity as a constant is not

often realistic as the population growth and decay of fisheries are greatly altered

by the changes in the surrounding environment including the resource availability

(Safuan et al., 2013). Hence, modeling an intraguild fishery model incorporating a

variable carrying capacity provides a thorough understanding on the links between fish

population dynamics and a changing environment.

Although developing more realistic fishery models remains the principal aim

among applied mathematicians, studying the proposed models from the bioeconomic

perspectives can supplement the studies on optimal management of fishery resources.

The derivation of optimal harvesting policy in a commercial fishery helps to determine

or decide the optimal tradeoff between economic output, environmental protection and

resource sustainability (Belkhodja et al., 2018). In other words, by optimal harvesting

policy, the optimal harvesting rate that provides maximum economic profit while not

triggering the extinction of any fish species can be determined. A common practice

in studying the optimal harvesting policy of commercial fisheries is by applying the

Pontryagin Maximum Principle (Jana et al., 2016; Zhao et al., 2017; Bayon et al.,

2019).
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1.2 Problem statement

In recent years, the excessive and unsustainable exploitation of fishery resources has

led to a global issue that the number of fish declines severely. Furthermore, the

presence of aquatic toxicants is deteriorating the aquatic environment. Without a

rational approach to cope with the issues of over-exploitation and pollution, many

drastic problems might appear that can probably affect the daily life of human being.

The problems include the global price rise of fish market, extinction of some rare fish

species and even the explosion in the entire marine ecosystems.

Most of the fishery models do not account for the combination of the existence

of harvesting, toxicant and intraguild predation. Therefore, the motivation of this

research stems from the problem of modeling a more realistic harvested fishery

system by taking into account the presence of toxicants as well as intraguild predation

interaction. Besides that, this research aims to investigate the dynamics of both

two species and three species fishery systems when they are subjected to linear and

nonlinear harvesting strategies. The reason is that although harvesting on population

models are studied extensively, there is limited literature focusing on the independent

and nonlinear harvesting strategies on three species fishery models. Finally, from the

economic perspective, it is found that there is limited literature discussing the optimal

harvesting policy for intraguild models using Pontryagin Maximum Principle. Thus,

in this thesis, the optimal harvesting policies of the proposed models are considered

mathematically to study the optimal harvest rate of fisheries with a bid to alleviate the

problem of over-harvesting.

1.3 Research objectives

The main objectives of this research are to:

1. investigate the dynamics of harvested prey-predator fishery models in the

presence of a toxicant with common and independent harvesting strategies;
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2. develop intraguild prey-predator fishery models with linear and nonlinear

harvesting through variable carrying capacity;

3. analyze the impacts of harvesting on prey-predator fishery models using

bifurcation analysis;

4. derive the optimal harvesting policies for harvested and toxicated prey-predator

fishery models with linear and nonlinear harvesting.

1.4 Scope of study

For this research, the scope is limited to two dimensional prey-predator and three

dimensional intraguild prey-predator fishery models, modeling through ordinary

differential equations. The models are formulated in such a way that the functional

response of prey-predation obeys a linear function. Moreover, the presence of a

toxicant in the fishery models is modeled through an implicit approach. The proposed

models are discussed and studied in terms of stability, bifurcation and bioeconomic

analysis. In most of the models studied in this research, harvesting parameter is treated

as the primary bifurcation parameter to examine the long-time behaviors. The optimal

harvesting policies with independent harvesting and nonlinear harvesting strategies are

studied based on Pontryagain Maximum Principle.

1.5 Significance of study

This research presents six mathematical models to study the fish population dynamics

affected by harvesting activities in the presence of a toxicant. Several harvesting

strategies such as common, independent and nonlinear harvesting strategies are

taken into consideration. The mathematical and bifurcation results are ecologically

meaningful to generate insights into the persistence and extinction behaviors of

fish population in real life. The existence of some interesting bifurcations such as

transcritical, Hopf and bistability helps to describe the destabilization scenarios in

marine ecosystems due to over-harvesting. Most of the intraguild prey-predator models
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developed by applied mathematicians aim to study the impacts of resource enrichment

instead of harvesting on the population dynamics. Thus, the intraguild fishery models

studied in this research would provide initial guidelines to understand how the prey

fish, predator fish and common resource populations vary when there exist some

harvesting activities. The optimal harvesting policies derived for the three species

fishery models could garner an interest in determining the ideal harvesting rate from

both mathematical, biological and economic viewpoints to overcome the problem of

over-fishing.

1.6 Overview of thesis

The main aim of this thesis is to develop and study fish population models subject

to different types of harvesting strategies. The presence of some anthropogenic

and self-producing toxicants, as well as the intraguild predation interaction is taken

into consideration. This thesis consists of six chapters, including this introductory

chapter. The next chapter, Chapter 2 introduces the discovery and evolutionary

studies of prey-predator models. Some extensions on prey-predator models such

as harvesting, toxicants and intraguild prey-predation are also discussed. Chapter 3

presents the mathematical methods that are utilized to analyze the proposed models in

this thesis. Chapter 4 introduces and analyzes four toxicated fishery models where two

of them are with common harvesting strategy while the other two are with independent

harvesting strategy. Chapter 5 presents three species intraguild fishery models with

linear harvesting and nonlinear harvesting, respectively. Lastly, Chapter 6 is about

the concluding remarks by summarizing all the main results and recommendations for

future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter highlights some of the existing literature as an overview to the studies of

fishery models. The chapter consists of four sections, starting with a brief introduction

of prey-predator models in Section 2.1. Section 2.2 emphasizes the commercial

harvesting activities on fishery resource. Section 2.3 explains the influences of

toxicants on fish population dynamics while Section 2.4 focuses on the intraguild

predation in fishery models. Lastly, a conclusion summarizing this chapter is presented

in Section 2.5.

2.1 Prey-predator models

Prey-predator models can be considered as the building blocks of ecosystems to study

the interaction between two or more species in nature. The study of prey-predator

models is a research area of particular historical and contemporary interest to both

ecological theorists and experimentalists. The pioneering work on prey-predator

theory was done by Lotka (1925) where he proposed the first model of prey-predator

interaction by incorporating the concept of mass action. The proposed model is given

as
dX

dt
= a0X − b0XY,

dY

dt
= c0XY − d0Y,

(2.1)

where X and Y are prey and predator biomass densities respectively. Parameters a0

and d0 denote the rates of change of prey and predator respectively, in the absence

of the other species while b0 and c0 indicate the rates of change of prey and predator
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