DYNAMICS AND OPTIMAL HARVESTING OF PREY-PREDATOR FISHERY MODELS IN THE PRESENCE OF A TOXICANT USING PONTRYAGIN MAXIMUM PRINCIPLE

ANG TAU KEONG

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Science

Faculty of Applied Sciences and Technology
Universiti Tun Hussein Onn Malaysia

SEPTEMBER 2020
This work is humbly dedicated to all of my valuable treasures in life:

My beloved parents and family.

Thanks for your endless support!
ACKNOWLEDGEMENT

First and foremost, I would like to thank my main research supervisor, Dr. Hamizah binti Mohd Safuan for her uncommon patience, helpful supervision and invaluable guidance. This thesis would not have been possible without her constructive advice on how to deal with the process of model formulation, mathematical analysis and simulation.

Furthermore, I extend my sincere thanks to my co-supervisor, Associate Professor Dr. Kavikumar S/O Jacob for his insightful suggestions, continuous encouragement and constant support throughout my Ph.D. journey.

I would also like to appreciate the helps from Professor Harvinder Sidhu, Dr. Zlatko Jovanoski and Dr. Isaac Towers. Their valuable suggestions and kind criticism have been helping me during the preparation of a research paper.

My deepest gratitude goes to my beloved parents and family members, for their constant love and support during my journey as a Ph.D. researcher. Not to forget, I thank my colleague, Chan Sze Qi who has given me the generous support and encouragement in these years.

Last but not least, I would like to acknowledge my institution, Universiti Tun Hussein Onn Malaysia for providing financial assistance and facilities to pursue this postgraduate program.
ABSTRACT

In this thesis, several harvested fishery models using various types of harvesting strategies including the common harvesting, independent harvesting and nonlinear Michaelis-Menten harvesting functions are presented and analyzed. Besides that, most of the models are taking the existence of a toxicant into consideration, either in an anthropogenic or a self-produced form. In order to account for the intraguild predation interaction that occurs in marine ecosystems, three species fishery models are also studied by modeling the carrying capacities of both intraguild prey and predator fish as time-dependent variables. The idea of variable carrying capacity tends to describe the fish population dynamics in a varying environment by assuming their growth to be dependent on the environmental resource availability. In the context of resource management, an optimal harvesting policy is derived for the proposed models that aims to attain an optimal and sustainable yield of harvesting fisheries. Recent studies reveal that the study of harvesting alone is not sufficient to provide qualitative insights into the intrinsic behaviors of marine fish populations subject to harvesting. In fact, some of the important elements such as the presence of toxicants and intraguild prey-predation, as well as the interplay of the population with surrounding environment, are often neglected in most of the current studies. Therefore, the main contribution of this thesis is to generate insights into the dynamical behaviors of fishery models that account for the combination of the existence of harvesting, toxicant, as well as intraguild predation interaction. The dynamical properties discussed in this thesis give better understanding of the maximum thresholds of harvesting before the fish populations are driven to extinction. This thesis serves as a platform to investigate the optimal tradeoff of harvesting fisheries.
ABSTRAK

CONTENTS

TITLE i
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF SYMBOLS AND ABBREVIATIONS xv
LIST OF PUBLICATIONS xviii

CHAPTER 1 INTRODUCTION 1
1.1 Research background 1
1.2 Problem statement 4
1.3 Research objectives 4
1.4 Scope of study 5
1.5 Significance of study 5
1.6 Overview of thesis 6
CHAPTER 2 LITERATURE REVIEW 7
 2.1 Prey-predator models 7
 2.2 Harvesting in fishery models 11
 2.3 Toxicants in fishery models 17
 2.4 Intraguild predation in fishery models 21
 2.5 Conclusion 25

CHAPTER 3 MATHEMATICAL METHODS 26
 3.1 Non-dimensionalization 26
 3.2 Stability analysis 27
 3.2.1 Local stability 27
 3.2.2 Global stability 28
 3.3 Bifurcation analysis 30
 3.3.1 Transcritical bifurcation 31
 3.3.2 Saddle-node bifurcation 31
 3.3.3 Hopf bifurcation 32
 3.3.4 Bistability 33
 3.4 Bioeconomic analysis 34
 3.4.1 Bionomic equilibrium 34
 3.4.2 Optimal harvesting policy 35
 3.5 Conclusion 37

CHAPTER 4 HARVESTING IN TWO SPECIES PREY-
 PREDATOR FISHERY MODELS USING
 COMMON AND INDEPENDENT HARVESTING
 STRATEGIES 38
 4.1 Common harvesting strategy 38
 4.1.1 Anthropogenic toxicant in fishery
 model 39
4.1.2 Self-producing toxicant in fishery model 47

4.2 Independent harvesting strategy 57

4.2.1 Anthropogenic toxicant in fishery model 58

4.2.2 Self-producing toxicant in fishery model 78

4.3 Conclusion 91

CHAPTER 5 HARVESTING IN THREE SPECIES
INTRAGUILD PREY-PREDATOR FISHERY MODELS USING LINEAR AND NONLINEAR HARVESTING STRATEGIES 92

5.1 Linear harvesting 92

5.2 Nonlinear harvesting 114

5.3 Conclusion 134

CHAPTER 6 CONCLUDING REMARKS AND RECOMMENDATION 136

6.1 Conclusion 136

6.2 Future work 138

REFERENCES 141

VITA 156
LIST OF TABLES

4.1 Parameter conditions that are needed to be satisfied when performing bifurcation analysis on fishery model (4.2) 42
4.2 Parameter conditions that are needed to be satisfied when performing bifurcation analysis on fishery model (4.7) 50
4.3 Parameter conditions that are needed to be satisfied when performing bifurcation analysis on fishery model (4.11) 63
4.4 Existence of bionomic equilibrium for Cases I, II and III of fishery system (4.10) in the presence of toxicant 72
4.5 Existence of bionomic equilibrium for Cases I, II and III of fishery system (4.10) in the absence of toxicant 72
4.6 Parameter conditions that are needed to be satisfied when performing bifurcation analysis on fishery model (4.60) 82
4.7 Existence of bionomic equilibrium for Cases I, II and III of fishery system (4.59) in the presence of toxicant 89
4.8 Existence of bionomic equilibrium for Cases I, II and III of fishery system (4.59) in the absence of toxicant 90
5.1 Parameter conditions that are needed to be satisfied when performing bifurcation analysis on fishery model (5.2) 100
5.2 Existence of bionomic equilibrium solutions for Cases I and II of fishery system (5.1) 108
5.3 Optimal equilibrium solutions of fishery system (5.52) subject to different values of ̃ 133
LIST OF FIGURES

2.1 Phase plane of model (2.1) at $a_0 = 0.5$, $b_0 = 0.2$, $c_0 = 0.1$, $d_0 = 0.1$ 8

2.2 Phase plane of model (2.2) at $a_0 = 0.5$, $b_0 = 0.2$, $c_0 = 0.1$, $d_0 = 0.1$, $K_1 = 1$ 9

2.3 Phase plane of model (2.3) at $a_0 = 0.5$, $b_0 = 0.2$, $d_0 = 0.1$, $e_0 = 0.1$, $K_1 = 1$ 9

3.1 Example of transcritical bifurcation (solid lines depict stable steady-states and dotted lines depict unstable steady-states) 31

3.2 Example of saddle-node bifurcation (solid line depicts stable steady-state and dotted line depicts unstable steady-states) 32

3.3 Example of Hopf bifurcation (solid line depicts stable steady-state; dotted line depicts unstable steady-state and closed circles depict stable periodic) 33

3.4 A bifurcation diagram exhibiting bistable behavior (solid lines depict stable steady-states and dotted line depicts unstable steady-state) 34

4.1 Steady-state diagrams of model (4.2) with respect to the harvesting parameter, ρ for (a) prey, x and (b) predator, y, respectively 43
4.2 Time plots of model (4.2) with initial conditions of
\((x_0, y_0) = (2.5, 1)\) at (a) \(\rho = 0.2\) and (b) \(\rho = 3\), respectively

4.3 Steady-state diagrams of model (4.2) with respect to the
toxicant parameter, \(\delta\) for (a) prey, \(x\) and (b) predator, \(y\), respectively

4.4 Time plots of model (4.2) with initial conditions of
\((x_0, y_0) = (2.5, 1)\) at (a) \(\delta = 0.1\) and (b) \(\delta = 3.2\), respectively

4.5 Steady-state diagrams of model (4.7) with respect to the
harvesting parameter, \(\beta\) for (a) prey, \(x\) and (b) predator, \(y\), respectively

4.6 Time plots of model (4.7) with initial conditions of
\((x_0, y_0) = (1.2, 1)\) at (a) \(\beta = 0.1\), (b) \(\beta = 0.95\) and (c) \(\beta = 1.8\), respectively

4.7 Steady-state diagrams of model (4.7) with respect to the
harvesting parameter, \(\rho\) for (a) prey, \(x\) and (b) predator, \(y\), respectively

4.8 Time plots of model (4.7) with initial conditions of
\((x_0, y_0) = (1.2, 1)\) at (a) \(\rho = 0.2\) and (b) \(\rho = 2.6\), respectively

4.9 Steady-state diagrams of model (4.11) with respect to the
harvesting parameter, \(\bar{\beta}\) for (a) prey, \(x\) and (b) predator, \(y\), respectively

4.10 Time plots of model (4.11) with initial conditions of
\((x_0, y_0) = (0.2, 0.1)\) at (a) \(\bar{\beta} = 0.97\) and (b) \(\bar{\beta} = 0.98\), respectively
4.11 Steady-state diagrams of model (4.11) with respect to the harvesting parameter, $\tilde{\rho}$ for (a) prey, x and (b) predator, y, respectively

4.12 Time plots of model (4.11) with initial conditions of $(x_0, y_0) = (0.2, 0.1)$ at (a) $\tilde{\rho} = 0.6$ and (b) $\tilde{\rho} = 0.8$, respectively

4.13 Steady-state diagrams of model (4.60) with respect to the harvesting parameter, $\tilde{\beta}$ for (a) prey, x and (b) predator, y, respectively

4.14 Time plots of model (4.60) with initial conditions of $(x_0, y_0) = (0.3, 0.1)$ at (a) $\tilde{\beta} = 0.5$ and (b) $\tilde{\beta} = 0.7$, respectively

4.15 Steady-state diagrams of model (4.60) with respect to the harvesting parameter, $\bar{\rho}$ for (a) prey, x and (b) predator, y, respectively

4.16 Time plots of model (4.60) with initial conditions of $(x_0, y_0) = (0.3, 0.1)$ at (a) $\bar{\rho} = 0.6$, (b) $\bar{\rho} = 0.8$ and (c) $\bar{\rho} = 2$, respectively

5.1 Hopf locus of model (5.2) for varying $\tilde{\beta}$ and $\bar{\theta}$

5.2 Steady-state diagrams of model (5.2) with respect to the harvesting parameter, $\tilde{\beta}$ for (a) intraguild prey, x, (b) intraguild predator, y and (c) resource, z, respectively

5.3 Time plots of model (5.2) with initial conditions of $(x_0, y_0, z_0) = (0.2, 0.1, 0.3)$ at $\tilde{\beta} = 0.2$, $\bar{\theta} = 0.65$ for (a) intraguild prey, x, (b) intraguild predator, y, (c) resource, z, respectively. (d) Corresponding phase portrait
5.4 Time plots of model (5.2) with initial conditions of
\[(x_0, y_0, z_0) = (0.2, 0.1, 0.3)\] at \(\bar{\rho} = 0.2, \bar{\vartheta} = 3.5\) for (a) intraguild prey, \(x\), (b) intraguild predator, \(y\), (c) resource, \(z\), respectively. (d) Corresponding phase portrait

5.5 Bionomic equilibrium solution curve for Case III of fishery model (5.1)

5.6 Hopf locus of model (5.53) for varying \(\rho\) and \(\chi\)

5.7 Steady-state diagrams of model (5.53) with respect to the harvesting parameter, \(\rho\) for (a) intraguild prey, \(x\), (b) intraguild predator, \(y\) and (c) resource, \(z\), respectively

5.8 Phase portraits of model (5.53) with two initial conditions
of \((x_0, y_0, z_0) = (0.2, 0.1, 0.2)\) and \((x_0, y_0, z_0) = (0.4, 0.3, 0.7)\) at (a) \(\dot{\rho} = 0.03\), (b) \(\dot{\rho} = 0.15\), (c) \(\dot{\rho} = 0.21\) and (d) \(\dot{\rho} = 0.22\), respectively

5.9 Time plots of model (5.53) at (a) \(\dot{\rho} = 0.03\) with \((x_0, y_0, z_0) = (0.4, 0.3, 0.7)\) (b) \(\dot{\rho} = 0.03\) with \((x_0, y_0, z_0) = (0.2, 0.1, 0.2)\), (c) \(\dot{\rho} = 0.15\) with \((x_0, y_0, z_0) = (0.4, 0.3, 0.7)\) and (d) \(\dot{\rho} = 0.15\) with \((x_0, y_0, z_0) = (0.2, 0.1, 0.2)\), respectively. Figures 5.10a and 5.10b are corresponding to Figure 5.9a while Figures 5.10c and 5.10d are corresponding to Figure 5.9b

5.10 Time plots of model (5.53) at (a) \(\dot{\rho} = 0.21\) with
\[(x_0, y_0, z_0) = (0.4, 0.3, 0.7), (b) \dot{\rho} = 0.21\) with \((x_0, y_0, z_0) = (0.2, 0.1, 0.2), (c) \dot{\rho} = 0.22\) with \((x_0, y_0, z_0) = (0.4, 0.3, 0.7)\) and (d) \(\dot{\rho} = 0.22\) with \((x_0, y_0, z_0) = (0.2, 0.1, 0.2)\), respectively. Figures 5.11a and 5.11b are corresponding to Figure 5.9c while Figures 5.11c and 5.11d are corresponding to Figure 5.9d
LIST OF SYMBOLS AND ABBREVIATIONS

- Rate of change of prey fish due to prey-predation
- Coefficient of increase of prey in the absence of other species
- Coefficient of toxicity on prey fish
- Coefficient of decrease of prey due to interaction
- Rate of change of predator fish due to prey-predation
- Coefficient of increase of predator due to interaction
- Constant harvesting cost per unit effort of prey fish
- Constant harvesting cost per unit effort of predator fish
- Coefficient of toxicity on predator fish
- Coefficient of decrease of predator in the absence of other species
- Positive constants
- Combined harvesting effort
- Distinct harvesting effort applied on prey fish
- Distinct harvesting effort applied on predator fish
- Density of prey required to maintain a single predator
- Variable functions
- Growth rate of biotic resource
- Hamiltonian function
- Harvesting regime of prey fish
H_2 - Harvesting regime of predator fish

h_1 - Constant harvesting rate of prey fish

h_2 - Constant harvesting rate of predator fish

J - Jacobian matrix

K_1 - Environmental carrying capacity of prey fish

K_2 - Environmental carrying capacity of predator fish

m - Accessibility of prey fish towards biotic resource

n - Accessibility of predator fish towards biotic resource

P_1, P_2, P_3, P_4 - Equilibrium points

q_1 - Catchability coefficient of prey fish

q_2 - Catchability coefficient of predator fish

r_1 - Growth rate of prey fish

r_2 - Growth rate of predator fish

s_1 - Constant selling price of prey fish

s_2 - Constant selling price of predator fish

t - Time

u - Consumption rate of resource by prey fish

V - Lyapunov function

v - Consumption rate of resource by predator fish

X, x - Prey biomass densities

Y, y - Predator biomass densities

Z, z - Resource biomass densities
α, ρ, γ, η

\hat{η}, \theta, \bar{\theta}, \mu - Dimensionless parameters

ν, ξ, σ, τ, χ

ω

β, \bar{β} - Dimensionless harvesting parameters of prey fish

δ, \bar{δ}, \bar{δ}, \bar{δ} - Dimensionless toxicant parameters of prey fish

\hat{δ} - Annual fishery discounting factor

ε, \bar{ε}, \bar{ε} - Dimensionless toxicant parameters of predator fish

λ - Eigenvalue

λ_1, λ_2, λ_3 - Adjoint variables

π - Economic rent

ρ, \bar{ρ}, \dot{ρ} - Dimensionless harvesting parameters of predator fish

ψ, \psi_1, \psi_2 - Switching functions

φ - Dulac function

BTP - Biotechnical productivity

HB - Hopf bifurcation

TB - Transcritical bifurcation
LIST OF PUBLICATIONS

Journal:

Book Chapter:

CHAPTER 1

INTRODUCTION

In this chapter, there are six sections explaining the rationales of this research. Section 1.1 provides the background of the research while Section 1.2 discusses the statement of the problem. The research objectives are presented in Section 1.3. Section 1.4 explains the scope of the study and Section 1.5 highlights the significance of the study. Finally, Section 1.6 presents the overview of this thesis.

1.1 Research background

Fishery resources from the seas and oceans are undoubtedly a vital source of animal protein to human being. In 2016, approximately 87% of the total fish caught are used for the purpose of human consumption while the other 13% are used for non-consumption purposes (FAO, 2016). The rising demand for seafood provokes the process of exploitation of fisheries, causing the severe depletion or eventual extinction of some marine species such as Pacific Tuna (Burgess et al., 2017) and Snapper (Guardia et al., 2018). Generally, there are two types of over-fishing in fishery science: recruitment over-fishing and growth over-fishing (Hernandez et al., 2016). Recruitment over-fishing refers to the situation when an adult fish population is harvested beyond the level that it can be replenished again while growth over-fishing is the premature harvesting on the juvenile fish population. In fact, neither over-fishing nor under-fishing is rational as both of them bring about some adverse impacts to fishery conservation (Zhou et al., 2015). This is because over-fishing can cause a severe decline in fish population density but under-fishing can pose a loss to human
society. Thus, implementation of a balanced harvesting strategy is essential to prevent over-exploitation of fishery resources and simultaneously ensure the continuous flow of benefits to human society.

Besides the issue of over-exploited fisheries, concerns are mounting about the presence of toxicants in aquatic environment. A handful of fishery studies, with the supports of laboratory data has been done to study the human exposure to aquatic toxicant - methylmercury, through the consumption of seafood (Li et al., 2016b; Schartup et al., 2018; Sunderland et al., 2018). From their research, methylmercury is an organic form of mercury released into aquatic environment through human activities. This anthropogenic toxicant is the only form of mercury that can bioaccumulate and biomagnify in marine food webs especially in the tissues of predatory fish species such as shark, cod, tuna, salmon and swordfish. Continuous human exposure to this environmental toxicant through ingestion is known to have some detrimental effects on neurodevelopment and cardiovascular health. Furthermore, it is reported in the research of Schartup et al. (2019) that overfishing has a close relationship with the toxicant concentration in marine fish species. This is because the over-exploitation of fisheries can alter the structure of marine food webs, causing the dietary shifts in predatory fish. For instance, the methylmercury concentration in Atlantic cod was lower in 1970s as a consequence of the over-harvesting of herring fish that led to the dietary shifts of Atlantic cod to feed on Clupeidae fish.

Fluctuations of the number of marine fish species due to the presence of harvesting activities and toxicants can definitely pose some undesirable effects on the entire aquatic ecosystem. Therefore, there is a substantial growth of global concerns on the analysis of fish population models in order to examine the dynamical behaviors among fish with the goal to return the number of fish to its satisfactory extent. In order to delve into the fish population ecology, the interaction between the fish species with each other as well as their interaction with surrounding environment are some of the underlying concepts. Prey-predation is a predominant interaction that affects fish population dynamics (Whipple et al., 2000). Therefore, prey-predator fishery models
are greatly studied by applied mathematicians and ecologists. The studies on prey-predator fishery models are still an on-going process as they exhibit a wide range of interesting dynamics such as steady-states, periodic orbits, bistability and chaos.

Intraguild predation is an interaction when both competition and predation occur simultaneously or when a predator competes with its prey to share the same resource (Holt and Polis, 1997). Intraguild predation can be found in marine ecosystems such as Atlantic capelin (Yurkowski et al., 2016), anchovy (Bachiller et al., 2015) and jellyfish (Meyer et al., 2016). It plays an important role in sustaining a balanced marine ecosystem and it might cause a failure in understanding the interplay between fish population dynamics and harvesting if intraguild predation is not taken into account (Irigoien and Roos, 2011). On the other hand, in modeling an intraguild fishery model, treating the environmental carrying capacity as a constant is not often realistic as the population growth and decay of fisheries are greatly altered by the changes in the surrounding environment including the resource availability (Safuan et al., 2013). Hence, modeling an intraguild fishery model incorporating a variable carrying capacity provides a thorough understanding on the links between fish population dynamics and a changing environment.

Although developing more realistic fishery models remains the principal aim among applied mathematicians, studying the proposed models from the bioeconomic perspectives can supplement the studies on optimal management of fishery resources. The derivation of optimal harvesting policy in a commercial fishery helps to determine or decide the optimal tradeoff between economic output, environmental protection and resource sustainability (Belkhodja et al., 2018). In other words, by optimal harvesting policy, the optimal harvesting rate that provides maximum economic profit while not triggering the extinction of any fish species can be determined. A common practice in studying the optimal harvesting policy of commercial fisheries is by applying the Pontryagin Maximum Principle (Jana et al., 2016; Zhao et al., 2017; Bayon et al., 2019).
1.2 Problem statement

In recent years, the excessive and unsustainable exploitation of fishery resources has led to a global issue that the number of fish declines severely. Furthermore, the presence of aquatic toxicants is deteriorating the aquatic environment. Without a rational approach to cope with the issues of over-exploitation and pollution, many drastic problems might appear that can probably affect the daily life of human being. The problems include the global price rise of fish market, extinction of some rare fish species and even the explosion in the entire marine ecosystems.

Most of the fishery models do not account for the combination of the existence of harvesting, toxicant and intraguild predation. Therefore, the motivation of this research stems from the problem of modeling a more realistic harvested fishery system by taking into account the presence of toxicants as well as intraguild predation interaction. Besides that, this research aims to investigate the dynamics of both two species and three species fishery systems when they are subjected to linear and nonlinear harvesting strategies. The reason is that although harvesting on population models are studied extensively, there is limited literature focusing on the independent and nonlinear harvesting strategies on three species fishery models. Finally, from the economic perspective, it is found that there is limited literature discussing the optimal harvesting policy for intraguild models using Pontryagin Maximum Principle. Thus, in this thesis, the optimal harvesting policies of the proposed models are considered mathematically to study the optimal harvest rate of fisheries with a bid to alleviate the problem of over-harvesting.

1.3 Research objectives

The main objectives of this research are to:

1. investigate the dynamics of harvested prey-predator fishery models in the presence of a toxicant with common and independent harvesting strategies;
2. develop intraguild prey-predator fishery models with linear and nonlinear harvesting through variable carrying capacity;
3. analyze the impacts of harvesting on prey-predator fishery models using bifurcation analysis;
4. derive the optimal harvesting policies for harvested and toxicated prey-predator fishery models with linear and nonlinear harvesting.

1.4 Scope of study

For this research, the scope is limited to two dimensional prey-predator and three dimensional intraguild prey-predator fishery models, modeling through ordinary differential equations. The models are formulated in such a way that the functional response of prey-predation obeys a linear function. Moreover, the presence of a toxicant in the fishery models is modeled through an implicit approach. The proposed models are discussed and studied in terms of stability, bifurcation and bioeconomic analysis. In most of the models studied in this research, harvesting parameter is treated as the primary bifurcation parameter to examine the long-time behaviors. The optimal harvesting policies with independent harvesting and nonlinear harvesting strategies are studied based on Pontryagin Maximum Principle.

1.5 Significance of study

This research presents six mathematical models to study the fish population dynamics affected by harvesting activities in the presence of a toxicant. Several harvesting strategies such as common, independent and nonlinear harvesting strategies are taken into consideration. The mathematical and bifurcation results are ecologically meaningful to generate insights into the persistence and extinction behaviors of fish population in real life. The existence of some interesting bifurcations such as transcritical, Hopf and bistability helps to describe the destabilization scenarios in marine ecosystems due to over-harvesting. Most of the intraguild prey-predator models
developed by applied mathematicians aim to study the impacts of resource enrichment instead of harvesting on the population dynamics. Thus, the intraguild fishery models studied in this research would provide initial guidelines to understand how the prey fish, predator fish and common resource populations vary when there exist some harvesting activities. The optimal harvesting policies derived for the three species fishery models could garner an interest in determining the ideal harvesting rate from both mathematical, biological and economic viewpoints to overcome the problem of over-fishing.

1.6 Overview of thesis

The main aim of this thesis is to develop and study fish population models subject to different types of harvesting strategies. The presence of some anthropogenic and self-producing toxicants, as well as the intraguild predation interaction is taken into consideration. This thesis consists of six chapters, including this introductory chapter. The next chapter, Chapter 2 introduces the discovery and evolutionary studies of prey-predator models. Some extensions on prey-predator models such as harvesting, toxicants and intraguild prey-predation are also discussed. Chapter 3 presents the mathematical methods that are utilized to analyze the proposed models in this thesis. Chapter 4 introduces and analyzes four toxicated fishery models where two of them are with common harvesting strategy while the other two are with independent harvesting strategy. Chapter 5 presents three species intraguild fishery models with linear harvesting and nonlinear harvesting, respectively. Lastly, Chapter 6 is about the concluding remarks by summarizing all the main results and recommendations for future work.
CHAPTER 2

LITERATURE REVIEW

This chapter highlights some of the existing literature as an overview to the studies of fishery models. The chapter consists of four sections, starting with a brief introduction of prey-predator models in Section 2.1. Section 2.2 emphasizes the commercial harvesting activities on fishery resource. Section 2.3 explains the influences of toxicants on fish population dynamics while Section 2.4 focuses on the intraguild predation in fishery models. Lastly, a conclusion summarizing this chapter is presented in Section 2.5.

2.1 Prey-predator models

Prey-predator models can be considered as the building blocks of ecosystems to study the interaction between two or more species in nature. The study of prey-predator models is a research area of particular historical and contemporary interest to both ecological theorists and experimentalists. The pioneering work on prey-predator theory was done by Lotka (1925) where he proposed the first model of prey-predator interaction by incorporating the concept of mass action. The proposed model is given as

\[
\begin{align*}
\frac{dX}{dt} &= a_0 X - b_0 XY, \\
\frac{dY}{dt} &= c_0 XY - d_0 Y,
\end{align*}
\]

where \(X\) and \(Y\) are prey and predator biomass densities respectively. Parameters \(a_0\) and \(d_0\) denote the rates of change of prey and predator respectively, in the absence of the other species while \(b_0\) and \(c_0\) indicate the rates of change of prey and predator
REFERENCES

Chess, D. W., Gibson, F., Scholz, A. T. and White, R. J. (1993). The introduction of lahontan cutthroat trout into a previously fishless lake: Feeding habits and

188–200.

