UTHM Institutional Repository

Caputo-fabrizio time fractional derivative applied to Viscoelastic MHD fluid flow in the porous medium

Salah, Uddin and Mohamad, M. and Mohamad, M. A. H. and Sufahani, Suliadi Firdaus and Kamardan, MGhazali and Obaid Ullah, Mehmood and Wahid, Fazli and Roslan, R. (2018) Caputo-fabrizio time fractional derivative applied to Viscoelastic MHD fluid flow in the porous medium. International Journal of Engineering & Technology, 7. pp. 533-537. ISSN 2227524X

[img]
Preview
PDF
J7809_f93303fe2b3f812e66549f9ecec2c15a_DONE.pdf

Download (579kB)

Abstract

In this paper the laminar fluid flow in the axially symmetric porous cylindrical channel subjected to the magnetic field was studied. Fluid model was non-Newtonian and visco elastic. The effects of magnetic field and pressure gradient on the fluid velocity were studied by using a new trend of fractional derivative without singular kernel. The governing equations consisted of fractional partial differential equations based on the Caputo-Fabrizio new time-fractional derivatives NFDt. Velocity profiles for various fractional parameter a, Hartmann number, permeability parameter and elasticity were reported. The fluid velocity inside the cylindrical artery decreased with respect to Hartmann number, permeability parameter and elasticity. The results obtained from the fractional derivative model are significantly different from those of the ordinary model.

Item Type: Article
Uncontrolled Keywords: Laminar flow; porosity; hartmann number.
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Applied Science and Technology > Department of Mathematics and Statistic
Depositing User: Mr Abdul Rahim Mat Radzuan
Date Deposited: 31 Oct 2019 02:39
Last Modified: 31 Oct 2019 02:39
URI: http://eprints.uthm.edu.my/id/eprint/11834
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year