PROPERTIES AND PERFORMANCE OF HIGH STRENGTH FIBRE REINFORCED CONCRETE BY USING STEEL AND POLYPROPYLENE FIBRES

WAN AMIZAH WAN JUSOH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

School of Civil Engineering
Faculty of Engineering
Universiti Teknologi Malaysia

JANUARY 2019
DEDICATION

Alhamdulillah, praise to Allah for giving me the strength and opportunity to complete this study.

I dedicate this Ph.D thesis to my beloved husband, Syed Mohd Fareed Bin Syed Zin and my gorgeous sons and daughter, Syed Hafiz Arsyad, Syed Danish Ammar and Sharifah Alya Maisarah. Thank you for the love, sacrifice and always being there for me through happiness and sadness.

To my beloved mom, Zainab@ Rahmah Bt Mahmood and siblings

Thank you for your prayers, helps, loves and encouragement.

To my beloved dad, Allahyarham Wan Jusoh Bin Wan Hamat,

I really miss you.

Al-Fatihah
ACKNOWLEDGEMENT

Special thanks to my main supervisor, Assoc. Prof Dr. Izni Syahrizal bin Ibrahim and Co-Supervisor, Assoc. Prof. Dr. Abdul Rahman bin Mohd Sam, who have given me the opportunity to learn a great deal of knowledge, endless guidance, advice, critics, knowledge and friendship given. I believed their continued support has brought me here.

Next, my sincere gratitude goes to Universiti Tun Hussein Onn Malaysia (UTHM) and Ministry of Education (MOE) and for funding my PhD study, Universiti Teknologi Malaysia (UTM) as my Research University and all colleagues who have always provided me their support.

I indebted my appreciation to “Structure and Materials Laboratory” staff, Faculty of Civil Engineering, UTM. Thank you for the support and friendship showered upon me throughout the experimental periods. Also, to supplier of steel fibre and polypropylene fibre (Oriental Housetop Sdn. Bhd), thank you for the cooperation supply the materials.

Finally, I would like to thank my lovely husband, Syed Mohd Fareed Bin Syed Zin for his unconditional support and assistance in various occasions. All you kindness will not be forgotten.
ABSTRACT

Many reinforced concrete structures suffer severe degradation due to the effect from freezing and thawing, shrinkage and expansion, aggressive environment, earthquake and drastic increase of live loads. The most common sign of deterioration in concrete is cracking. Plain or unreinforced concrete is characterised by its low tensile strength, low strain capacities and brittle in nature. The tensile strength of plain concrete is considered lost once cracking occurred. Discrete short fibre reinforcement is being considered to be used for structural applications since it can reduce cracking phenomena, improve ductility and failure mode, and to some extent improve the durability of reinforced concrete. Fibre added in concrete has also been found to be effective in controlling cracks due to plastic and drying shrinkage. Shrinkage in concrete is greatly influenced by the surrounding environment and types of fibre included. Therefore, the aim of this research is to investigate the engineering and shrinkage properties of reinforced concrete containing a combination of steel and polypropylene fibres under different exposure conditions. In this study, the physical and engineering properties of fibre reinforced concrete (FRC) are investigated by using steel fibre (SF) type hooked end and polypropylene fibre (PPF) type virgin fibrillated. The objectives of the study are to assess the effect of hybrid fibres on its engineering properties, shrinkage properties under the influence of tropical climate and finally the structural performance of the FRC beams. Laboratory testing program is first conducted to determine the physical properties of the fibres. Then, the fibre reinforced concrete were tested to determine the engineering properties include compressive strength, tensile splitting strength, flexural strength, toughness, Modulus of Elasticity and shrinkage. The desired optimum mix is evaluated by the volume fractions (Vf) of 0.5%, 1.0% and 1.5%, and the combination of SF 100% + PPF 0%, SF 75% + PPF 25%, SF 50% + PPF 50%, SF 25% + PPF 75%, SF 0% + PPF 100%. The engineering properties and structural performance are then determined based on the optimum percentage using high strength concrete grade C60 to simulate concrete strength of sample manufactured at the factory. Test on the efficiency of fibres in limiting the shrinkage deformation for indoor and outdoor exposure are performed. The results indicated that the best combination of fibres is for concrete containing SF 75% + PPF 25%. The combination of SF and PPF fibres in concrete is able to enhance the engineering properties and controlling the growth of cracks in concrete. The results also indicated that concrete with both SF and PPF produced higher tensile and flexural strengths as compared with the control by 77% and 170%, respectively. The variation in relative humidity and temperature was found to have small effect on the drying shrinkage of the FRC. Results for the FRC beam test show that the percentage proportion of SF 75% + PPF 25% give the best flexural performance compared to other beams. Thus, the use of hybrid fibres, SF 75% + PPF 25%, was found to enhance the performance of either plain concrete or reinforced concrete.
ABSTRAK

Banyak struktur konkrit bertetulang mengalami kemerosotan teruk akibat kesan pembekuan dan pencairan, pengecutan dan pengembangan, persekitaran yang agresif, gempa bumi dan peningkatan beban hidup yang drastik. Tanda kemerosotan yang paling biasa dalam konkrit ialah keretakan. Konkrit atau konkrit tidak bertetulang mempunyai sifat kekuatan tegangan yang rendah, kapasiti keterikan yang rendah dan rapuh. Kekuatan tegangan konkrit hilang apabila keretakan berlaku. Penggunaan gentian pendek kini diambilkira untuk aplikasi struktur kerana ia dapat mengurangkan fenomena keretakan, meningkatkan tahap kemuluran dan mod kegagalan, dan meningkatkan ketahanlaksanaan konkrit bertetulang. Gentian yang ditambah dalam konkrit juga didapati berkesan dalam mengawal retakan akibat pengecutan plastik dan pengecutan pengeriningan. Pengecutan konkrit banyak dipengaruhi oleh persekitaran dan jenis gentian yang digunakan. Oleh itu, kajian ini bertujuan untuk menentukan sifat kejuruteraan dan pengecutan konkrit bertetulang gentian yang mengandungi gabungan gentian keluli dan polipropilena di bawah dedahan yang berbeza. Dalam kajian ini, ciri-ciri fizikal dan kejuruteraan konkrit bertetulang gentian (FRC) telah dikaji dengan menggunakan gentian keluli (SF) hujung bercangkuk dan polipropilena (PPF). Objektif kajian adalah untuk menilai kesan gentian hybrid terhadap ciri-ciri kejuruteraan, pengecutan di bawah pengaruh iklim tropika dan prestasi struktur rasuk konkrit bertetulang gentian. Ujian maklumat telah dijalankan terlebih dahulu untuk menentukan sifat fizikal gentian tersebut. Seterusnya ujikaji dijalankan untuk menilai ciri kejuruteraan konkrit bertetulang gentian yang mengandungi gabungan gentian keluli dan polipropilena di bawah dedahan yang berbeza. Dalam ujian ini, campuran optimum yang diingini telah dinilai menggunakan pecahan isipadu (Vf) 0.5%, 1.0% dan 1.5%, dan kombinasi SF 100% + PPF 0%, SF 75% + PPF 25%, SF 50% + PPF 50%, SF 25% + PPF 75%, SF 0% + PPF 100%. Ciri-ciri kejuruteraan dan prestasi struktur telah ditentukan berdasarkan peratusan optimum menggunakan konkrit bertetulang gentian yang berbeza tinggi C60 bagi mengambilkira kekuatan sampel konkrit yang dibuat di kilang. Ujian untuk membandingkan kecekapan gentian dalam menghadkan ubah bentuk pengecutan dalam dan luaran telah dilakukan. Hasil kajian menunjukkan bahwa gabungan terbaik gentian adalah konkrit yang mengandungi SF 75% + gentian PPF 25%. Gabungan gentian SF dan gentian PPF dalam konkrit dapat meningkatkan ciri-ciri kejuruteraan konkrit dan mengawal keretakan dalam konkrit. Hasil kajian juga menunjukkan bahawa konkrit dengan gentian SF dan PPF menghasilkan kekuatan tegangan dan lenturan yang lebih tinggi berbanding kawalan masing-masing sebanyak 77% dan 170%. Perubahan dalam kelembapan relatif dan suhu didapati mempunyai kesan yang kecil terhadap tahap pengecutan konkrit bertetulang gentian. Keputusan untuk rasuk konkrit bertetulang gentian menunjukkan peratusan SF 75% + PPF 25% menghasilkan prestasi lenturan yang lebih baik berbanding dengan yang lain. Oleh itu, penggunaan gentian hibrid SF 75% + PPF 25% didapati meningkatkan prestasi konkrit, samada konkrit biasa atau konkrit bertetulang.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of the Problem

1.2 Problem Statement

1.3 Research Aims and Objectives

1.4 Research Questions

1.5 Scope of the Study

1.6 Significance of the Study

1.7 Thesis Outlines

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

2.2 General Review on Fibre

2.3 Fibre Classifications

2.3.1 Steel Fibre

2.3.2 Polypropylene Fibre

2.4 Orientation and Distribution of Fibre

2.5 Mechanics of Crack Formation and Propagation
2.6 Steel, Polypropylene and Hybrid Reinforced Composite Concrete 27
 2.6.1 Steel Fibre Reinforced Concrete (SFRC) 27
 2.6.2 Polypropylene Fibre Reinforced Concrete (PPFRC) 31
 2.6.3 Hybrid Steel-Polypropylene Fibre Reinforced Concrete 33

2.7 Shrinkage of Concrete 44
 2.7.1 Drying shrinkage 45
 2.7.2 Plastic Shrinkage 47
 2.7.3 Autogenous Shrinkage 48
 2.7.4 Carbonation Shrinkage 48
 2.7.5 Thermal Shrinkage 48
 2.7.6 Expansion in Concrete 49

2.8 Factor influencing shrinkage 50

2.9 Models for Shrinkage of Concrete 56
 2.9.1 Eurocode 2 56
 2.9.2 Shrinkage Prediction by ACI 209R-92 58

2.10 Benefit of FRC Beam. 59

2.11 Load-Deflection 62

2.12 Strain Diagram and Neutral Axis 63

2.13 Summary 64

CHAPTER 3 RESEARCH METHODOLOGY 65

3.1 Introduction 65

3.2 Frameworks of Research 66

3.3 Determination of Physical Properties of SF and PPF 68
 3.3.1 Fibre Density 69

3.4 Determination of Engineering Properties of Fibre Reinforced Concrete (FRC) 71
 3.4.1 Mix Proportion of Concrete 71

3.5 Mix Design 72

3.6 Mixing Procedure 76
3.6.1 Mixing Procedure of Concrete Mix without Fibres and With SF – PPF. 76
3.6.2 Specimen Details and Preparation 79
3.7 Experimental Procedure 82
3.8 Test on Fresh Concrete 82
3.8.1 Workability Test 83
3.9 Test on Hardened Concrete 84
3.9.1 Compressive Strength Test 84
3.9.2 Flexural Test 86
3.9.3 Splitting Tensile Test 87
3.9.4 Flexural Toughness Test and Post cracking of Fibre Reinforced Concrete (FRC). 88
 3.9.4.1 Sample Preparation 88
 3.9.4.2 Test Set-Up of Flexural Toughness Test 90
3.9.5 Modified Compression Test 92
3.9.6 Modulus of Elasticity and Poisson’s Ratio 93
3.9.7 Expansion and Drying Shrinkage Tests 95
3.10 Structural Performance of Fibre Reinforced Composite Concrete 97
3.10.1 Fibre Reinforced Composite Concrete Beams 97
3.10.2 Concrete Mix Design 100
3.10.3 Formwork and Reinforcement 100
3.10.4 Concrete Preparation 102
3.10.5 Curing of the Beams 102
3.10.6 Drying Shrinkage Test Setup for the Beam 103
3.10.7 Flexural Test of Beams Set-Up 104
3.10.8 Cracks Measurement and Failure Mode Observation 107
3.11 Summary 108

CHAPTER 4 RESULT AND DISCUSSIONS ON OPTIMIZATION OF STEEL – POLYPROPYLENE FIBRE REINFORCED COMPOSITE CONCRETE 109
4.1 Introduction 109
4.2 Experimental Results and Discussion
4.3 Characterization of Physical Properties of Steel Fibre and Polypropylene Fibre
 4.3.1 Density Test
4.4 FRC Containing Different Combination of SF and PPF
 4.4.1 Slump
 4.4.2 Compressive Strength
 4.4.3 Flexural Strength
 4.4.4 Splitting Tensile Strength
 4.4.5 Modulus of Elasticity and
 4.4.6 Flexural Toughness
4.5 Justification concrete C30 to C60
4.6 Summary

CHAPTER 5 RESULT AND DISCUSSIONS ON THE ENGINEERING PROPERTIES OF HIGH STRENGTH FIBRE REINFORCED CONCRETE (FRC)

5.1 Introduction
5.2 Fresh State of FRC
 5.2.1 Workability
5.3 Hardened State Properties of FRC
 5.3.1 Compressive Strength
 5.3.2 Tensile Splitting Strength Test Results
 5.3.3 Flexural Strength Test Results
 5.3.4 Discussion on Fibre Reinforced Concrete (FRC) with Various Fibre Mix Proportion
 5.3.5 Compressive Strength Relationship between Cube and Cylinder Strength
 5.3.6 Relationship of Compressive and the Tensile Strength
 5.3.7 Modulus of Elasticity
 5.3.8 Poisson’s Ratio
 5.3.9 Flexural Toughness
 5.3.10 Crack Mouth Opening Displacement Results
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Advantages of FRC compared with reinforced concrete (Wafa, 1990)</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Classification of fibre (Sarbin, (2014)</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Physical and mechanical properties of common fibres (Bentur and Mindess, 1990)</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Properties of different types of Polypropylene fibres (Saketh et al., 2017)</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Previous works conducted for SFRC with different volume fraction (%)</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>History of hybrid fibre reinforced concrete</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Physical/mechanical properties of combined FRC by previous researchers</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Summary by previous researchers regarding the optimization FRC at various volume fraction and fibre mix proportions</td>
<td>40</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Influencing factors of shrinkage</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Summary literature by previous researches from the literature on the mechanical properties and shrinkage</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Concrete mix material composition for 1 m³</td>
<td>73</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Range of acceptable proportion for normal weight concrete (ACI 544.3R-93, 1998)</td>
<td>74</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Properties of SF (Oriental Housetop, 2013)</td>
<td>75</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Properties of PPF (Oriental Housetop, 2013)</td>
<td>75</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Number of specimens for the optimization study for concrete grade C30</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Number of specimens for the study on the properties of FRC for concrete grade C60</td>
<td>82</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Detailed parameter of the tested beam</td>
<td>98</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Concrete mix composition for the full – scale beam</td>
<td>100</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Coefficient of variation for average density of fibres</td>
<td>113</td>
</tr>
</tbody>
</table>
Table 4.2 Concrete slump test results 115
Table 4.3 Concrete density test results at 28 Days (N/mm2) 115
Table 4.4 Average cube compressive strength test results for all batches 118
Table 4.5 Average cylinder compressive strength, f_{cy} at 28 Days for all batches 122
Table 4.6 Average flexural strength test results for all batches 128
Table 4.7 Average splitting tensile strength test results for all batches 132
Table 4.8 Summary of Modulus of Elasticity test results for all batches 137
Table 4.9 Poisson’s Ratio of FRC and Mode of Failure 139
Table 4.10 Flexural toughness at δ_2 and δ_3 144
Table 4.11 Modified compressive strength test results at 28 days 150
Table 4.12 Summary on optimum volume fraction and percentage of fibre mix proportion 155
Table 5.1 Results from the concrete slump test 157
Table 5.2 Cube Compressive strength test results 160
Table 5.3 Tensile splitting strength test results 163
Table 5.4 Flexural strength test results at 28 days 167
Table 5.5 Summary of the cube and cylinder compressive strength, ratio cylinder-to-cube, tensile strength and flexural strength 171
Table 5.6 Relationship of Compressive and the Tensile Strength 173
Table 5.7 Modulus of Elasticity test results 174
Table 5.8 Poisson’s Ratio of HyFRCC 175
Table 5.9 Toughness value at δ_2 and δ_3 180
Table 5.10 Calculated CMOD 184
Table 5.11 Calculated Residual strength 184
Table 5.12 Modified Compressive Strength of Concrete 186
Table 6.1 Detailed description of the tested beams 189
Table 6.2 Visual observation cracking for all beam specimens 191
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Expansion and shrinkage of concrete prisms</td>
<td>197</td>
</tr>
<tr>
<td>6.4</td>
<td>Drying shrinkage for RC beams</td>
<td>201</td>
</tr>
<tr>
<td>6.5</td>
<td>Ultimate load results for all beam specimens</td>
<td>208</td>
</tr>
<tr>
<td>6.6</td>
<td>Detail cracking behaviour for all beam specimens.</td>
<td>218</td>
</tr>
<tr>
<td>6.7</td>
<td>The difference between the laboratory and theoretical neutral axis of beams</td>
<td>221</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>(a) Cracking on the concrete slab surface (b), (c), (d), (e) Cracking development at the bottom surface of the concrete slabs.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Famous structures built by FRC system (Kaur and Talwar 2017)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Effect of fibres on the structural behaviour (Lofgren, 2005)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Example of commercially available fibres (a) steel fibre, (b) polypropylene fibre, (c) kenaf fibre and (d) glass fibre (Sarbini, 2014)</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Types of steel fibre available in the market (a) Hooked end, (b) Straight, (c) Crimped, (d) Corrugated (Sarbini 2014)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Types of polypropylene fibre (a) Fibrillated (b) Straight</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Schematic representation of different fibre composites (a) unidirectional continuous; (b) bi-directional continuous; (c) discontinuous with biased 1-D fibre orientation; (d) discontinuous with biased 2-D fibre orientation; (e) discontinuous with plane-random orientation; (f) discontinuous with random fibre orientation; (g) particulate composite (particle suspension); and (h) fibre-reinforced and particulate composite (e.g. fibre-reinforced concrete) (Lofgren, 2005).</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Schematic description of the crack opening relationship for the plain concrete and fibre reinforced concrete (FRC) (Lofgren, 2005)</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Stress – strain curves for SFRC (Moghimi, 2014)</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Fresh concrete mix showing fibre concentration and balling effect (Awal, et al, 2014)</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Effect on the content of rectangular polypropylene fibres on the deflection curve under flexural loading (Yurtseven, 2004).</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Action of hybrid fibre with different size (a) first phase and (b) second phase of loading (Pakravan et al, 2017)</td>
<td>35</td>
</tr>
</tbody>
</table>
Figure 2.12 A close observation to the bridges (a) Steel fibres; (b) Polypropylene fibres; (c) Steel and Polypropylene fibres (Huang et al., 2015).

Figure 2.13 The influence of water/cement ratio and aggregate content on drying shrinkage (ACI 224, 2008)

Figure 2.14 Typical effect of water content of concrete on drying shrinkage (ACI 224, 2008)

Figure 2.15 Moisture movement in concrete when it dries from age t and re-saturated at age t (Neville and Brooks, 2010)

Figure 2.16 Experimental moment versus deflection relationship for FRC beams (Abid and Franzen 2011)

Figure 2.17 Load-Deflection curves for plain concrete and steel fibre concrete (Juli, 2012).

Figure 2.18 Comparison of typical stress-strain responses in tension of fibre reinforced concrete and conventional RC (Hameed, et al. 2013)

Figure 3.1 Research frameworks

Figure 3.2 Hooked end steel fibre

Figure 3.3 Fibrillated polypropylene fibre

Figure 3.4 Density test apparatus

Figure 3.5 Materials for concrete (a) coarse aggregate; (b) fine aggregate; (c) cement and (d) water

Figure 3.6 Rotary Drum mixer used in during the mixing process

Figure 3.7 Fresh fibre reinforced concrete mixture

Figure 3.8 Specimen mould preparation before concrete casting

Figure 3.9 Identification of the specimen

Figure 3.10 Test Procedure for workability test

Figure 3.11 Placement and vibrating process of fresh concrete in the mould specimens

Figure 3.12 Cube compression test set-up

Figure 3.13 Flexural strength test set-up

Figure 3.14 Splitting tensile test set-up

Figure 3.15 Preparation of the notch on the prism for toughness test setup
Figure 3.16 Flexural Toughness test setup
Figure 3.17 Configuration of flexural toughness test with the third point load arrangement (BS14651: 2005)
Figure 3.18 Data logger TDS-303
Figure 3.19 Modified compression test setup
Figure 3.20 Modulus of Elasticity test set up
Figure 3.21 Expansion test specimens
Figure 3.22 Shrinkage test specimens
Figure 3.23 (a) Mechanical Extensometer and (b) Reference Bar
Figure 3.24 Identification of the beam
Figure 3.25 Detailed dimension of the beam for flexural test
Figure 3.26 Reinforcement cage positioned in the formwork
Figure 3.27 The fresh concretes is poured into the formwork
Figure 3.28 Shrinkage test of the beam specimens at outdoor exposure
Figure 3.29 Shrinkage test RC beams specimens at indoor exposure
Figure 3.30 Flexural beam test setup
Figure 3.31 DEMEC discs location on the side surface of the beam
Figure 3.32 Arrangement of Demec discs on the beam
Figure 3.33 Crack observation
Figure 3.34 Measurement for crack spacing
Figure 4.1 Density of steel fibre
Figure 4.2 Density of polypropylene fibre
Figure 4.3 Relationship between concrete slump and fibre mix proportion for the different V_f
Figure 4.4 Average cube compressive strength relationship for different fibre mix proportion and volume fraction
Figure 4.5 Percentage different in compressive strength for all batches over plain concrete at 7 days
Figure 4.6 Percentage different in compressive strength for all batches over plain concrete at 28 days
Figure 4.7 Average cylinder compressive strength relationship for different fibre mix proportion and volume fraction
Figure 4.8 Percentage increase and decrease in compressive strength over plain concrete at 28 days 123
Figure 4.9 Failure mode for the cube specimen for $V_f = 0.5\%$ 125
Figure 4.10 Failure mode for the cube specimen for $V_f = 1.0\%$ 125
Figure 4.11 Failure mode for the cube specimen for $V_f = 1.5\%$ 125
Figure 4.12 Failure mode for the control cylinder specimen. 126
Figure 4.13 Failure mode for the cylinder specimens for $V_f = 0.5\%$. 126
Figure 4.14 Failure mode for the cylinder specimens for $V_f = 1.0\%$. 126
Figure 4.15 Failure mode for the cylinder specimens for $V_f = 1.5\%$. 126
Figure 4.16 Flexural strength relationship for different fibre mix proportion and volume fraction 129
Figure 4.17 Percentage difference in flexural strength for all batches to that of plain concrete at 28 days 129
Figure 4.18 Failure mode of prism specimens for $V_f = 0.5\%$ 130
Figure 4.19 Failure mode of prism specimens for $V_f = 1.0\%$ 130
Figure 4.20 Failure mode of prism specimens for $V_f = 1.5\%$ 130
Figure 4.21 Splitting tensile strength relationship for different fibre mix proportion and volume fraction 133
Figure 4.22 Percentage increase and decrease in splitting tensile strength for all batches to that of plain concrete at 28 days 133
Figure 4.23 Failure modes of the cylinder specimens at $V_f = 0.5\%$ 135
Figure 4.24 Failure modes of the cylinder specimens at $V_f = 1.0$ 135
Figure 4.25 Failure modes of the cylinder specimens at $V_f = 1.5\%$ 135
Figure 4.26 Modulus of Elasticity obtained from the three-cycle load 136
Figure 4.27 Modulus of Elasticity relationship with different fibre mix proportion and volume fraction 138
Figure 4.28 Determination of the Poisson’s ratio from the stress – strain relationship 140
Figure 4.29 Failure mode of cylinder specimens for the control (plain concrete) 141
Figure 4.30 Failure mode of cylinder specimens at $V_f = 0.5\%$ 141
Figure 4.31 Failure mode of the cylinder specimens at $V_f = 1.0\%$ 141
Figure 4.32 Failure modes of the cylinder specimens at $V_f = 1.5\%$ 141
Figure 4.33 Area under graph of the load – deflection relationship in (RILEM TC 162-TDF, 2002)

Figure 4.34 Relationship between applied load and mid-span deflection for $V_f = 0.5\%$

Figure 4.35 Relationship between applied load and mid-span deflection for $V_f = 1.0\%$

Figure 4.36 Relationship between applied load and mid-span deflection for $V_f = 1.5\%$

Figure 4.37 Fibre embedded length on shorter side (Sarbiini, 2014)

Figure 4.38 Energy absorption and increment ratio of the toughness for prism (150 × 150 × 550) mm

Figure 4.39 Failure modes of the prism for $V_f = 0.5\%$

Figure 4.40 Failure modes of the prism for $V_f = 1.0\%$

Figure 4.41 Failure modes of the prism for $V_f = 1.5\%$

Figure 4.42 Percentage increase in modified compressive strength of FRC over the cube strength

Figure 4.43 Previous work present the concrete grade strength combined 75% SF + 25% PPF

Figure 5.1 Relationship between concrete slump and volume fraction

Figure 5.2 Relationship between compressive strength and fibre mix proportions

Figure 5.3 Mode of failure of the cube specimens

Figure 5.4 Relationship between tensile splitting strength and fibre mix proportions

Figure 5.5 Mode of failure of the cylinder specimens

Figure 5.6 Distribution of fibres in the combined SF–PPF against the control specimens

Figure 5.7 Relationship between flexural strength and fibre mix proportions

Figure 5.8 Mode of failure of the prism specimens

Figure 5.9 Cube to cylinder compressive strength

Figure 5.10 Ratio of cylinder-to-cube compressive strength relationship

Figure 5.11 Relationship between the Modulus of Elasticity and fibre mix proportion SF–PPF
Figure 5.12 Stress–Strain for control curve for Modulus of Elasticity test

Figure 5.13 Stress–Strain for 75% SF curve for Modulus of Elasticity test

Figure 5.14 Stress–Strain for 75% SF + 25% PPF curve for Modulus of Elasticity test

Figure 5.15 Stress–Strain for 25% PPF curve for Modulus of Elasticity test

Figure 5.16 Pattern of failure in Plain Concrete and SF-PPF Fibre Reinforced Composites Concrete after Modulus of Elasticity test.

Figure 5.17 Area under the load-deflection curve (RILEM TC 162-TDF, 2002)

Figure 5.18 Load Deflection for all specimens

Figure 5.19 Energy absorption and percentage increment of the flexural toughness

Figure 5.20 Failure mode of the prism specimens after the flexural toughness test

Figure 5.21 CMOD-flexural strength relationships

Figure 5.22 CMOD-Residual strength relationships

Figure 5.23 Relationship between modified compressive strength and fibre mix proportion of FRC

Figure 6.1 Degree of hydration rate of concrete grade C60

Figure 6.2 Close-up crack line on one of the beam specimens

Figure 6.3 Hairline crack appeared from the hydration process

Figure 6.4 Temperature and RH relationships of the test surrounding

Figure 6.5 Expansion and drying shrinkage relationships for all prism specimens

Figure 6.6 Drying shrinkage for RC beams at indoor exposure

Figure 6.7 Drying shrinkage for RC beams at outdoor exposure

Figure 6.8 Drying shrinkage strain for all specimens at 180 days

Figure 6.9 Shrinkage for FRC grade C60 corresponding to RH under indoor exposure

Figure 6.10 Shrinkage for FRC grade C60 with corresponding to RH under outdoor exposure
Figure 6.11	C60 concrete tested indoor	206
Figure 6.12	C60 concrete tested outdoor	206
Figure 6.13	Ultimate loading capacity comparison for all beam specimens	209
Figure 6.14	Load–Deflection relationship for all beams (indoor)	212
Figure 6.15	Load–Deflection relationship for all beams (outdoor)	212
Figure 6.16	Load-Concrete Compressive Strain under Indoor Exposure	213
Figure 6.17	Load-Concrete Compressive Strain under Outdoor Exposure	214
Figure 6.18	Load versus Strain Curve (Control)	215
Figure 6.19	Load versus Strain Curve (75% SF)	215
Figure 6.20	Load versus Strain Curve (75% SF + 25% PPF)	216
Figure 6.21	Load versus Strain Curve (25% PPF)	216
Figure 6.22	Failure mode of the beam	219
Figure 6.23	Crushing of concrete at the top surface of the beam at failure (a) Control, (b) 75% SF, (c) 75% SF + 25% PPF, (d) 25% PPF	220
Figure 6.24	Depth of neutral axis for B2CO-(I)	222
Figure 6.25	Depth of neutral axis for B375SF-(I)	222
Figure 6.26	Depth of neutral axis for B675SF25PPF-(I)	223
Figure 6.27	Depth of neutral axis for B825PPF-(I)	223
Figure 6.28	Depth of neutral axis for B1CO-(O)	224
Figure 6.29	Depth of neutral axis for B475SF-(O)	224
Figure 6.30	Depth of neutral axis for B575SF25PPF-(O)	225
Figure 6.31	Depth of neutral axis for B725PPF-(O)	225
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>Avg</td>
<td>Average</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>BSI</td>
<td>British Standard Institution</td>
</tr>
<tr>
<td>CMOD</td>
<td>Crack-mouth opening displacement</td>
</tr>
<tr>
<td>DoE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>EN</td>
<td>European Standard</td>
</tr>
<tr>
<td>FRC</td>
<td>Fibre reinforced concrete</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland cement</td>
</tr>
<tr>
<td>PPF</td>
<td>Polypropylene fibres</td>
</tr>
<tr>
<td>RILEM</td>
<td>International Union of Laboratories and Experts in Construction Materials, Systems and Structures</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SF</td>
<td>Steel fibres</td>
</tr>
<tr>
<td>v</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>Avg</td>
<td>Average</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>BSI</td>
<td>British Standard Institution</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Width of specimen</td>
</tr>
<tr>
<td>C</td>
<td>Celcius</td>
</tr>
<tr>
<td>$D_{i,j}^*$</td>
<td>Toughness value</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus value</td>
</tr>
<tr>
<td>f_{ct}</td>
<td>Tensile strength</td>
</tr>
<tr>
<td>f_{cu}</td>
<td>Compressive strength of cube</td>
</tr>
<tr>
<td>f_{cy}</td>
<td>Compressive strength of cylinder</td>
</tr>
<tr>
<td>F_j</td>
<td>Load of CMOD</td>
</tr>
<tr>
<td>$f_{R,j}$</td>
<td>residual flexural tensile strength</td>
</tr>
<tr>
<td>f_i</td>
<td>Flexural strength</td>
</tr>
<tr>
<td>F_i</td>
<td>Flexural load</td>
</tr>
<tr>
<td>h_{sp}</td>
<td>Distance between the top of the notch and the top of the specimen</td>
</tr>
<tr>
<td>V_f</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>l</td>
<td>Length of span</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>δ</td>
<td>Deflection</td>
</tr>
<tr>
<td>σ</td>
<td>Stress</td>
</tr>
<tr>
<td>ϵ</td>
<td>Strain</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

One of the main challenges for civil engineers is to deliver sustainable, environmentally friendly and financially feasible structures. Valuable findings from on-going research can help in determining new materials to fulfil this purpose. In relation to that, Fibre Reinforced Concrete (FRC) can be considered as one of the promising materials for structural applications in the current construction industry (Bakis et al., 2002). The utilization of fibres in construction can be traced back to many centuries ago. In ancient Egypt, straws or horsehair were added into mud bricks, whereas straw mats were used as reinforcements in early Chinese and Japanese housing constructions (Victor, 2002). Since 1960’s, numerous efforts have been made by scientists and engineers to develop a reliable concrete composite which has progressively led to the development of FRC (Funke et al., 2014). The FRC has undergone through accelerated pace of development during the past four decades. In recent years, FRC has been exploited extensively for both structural and non-structural engineering applications in view of its superior properties such as tensile strength and durability as compared with conventional concrete.

Plain or unreinforced concrete can be characterised as having low tensile strength, low strain capacities and very brittle (low ductility). Plain concrete normally has a random distribution of fine and coarse aggregate particles throughout the cement matrix (Banthia and Nandakumar, 2003; Bazant, 2001; Chanh, 2004; Chen, 1995). It normally goes through a quasi-brittle failure whereby the nearly complete loss of loading capacity once failure was initiated. As a result, these characteristics limit the application of plain concrete in construction industry. These limitations can be overcome by the inclusion of small amount of randomly distributed short fibres. Short
REFERENCES

for Determination of Compressive Strength Using Portions of Beams Broken in Flexure (Equivalent Cube Method). United Kingdom: BSi

British Standards Institution BS EN 206 (2013): Concrete Specification, Performance, Production and Conformity. United Kingdom. BSi

Dawood, E.T. and Ramli, M., (2011). High strength characteristics of cement mortar

Haque, M.N., (1996). Strength development and drying shrinkage of high-strength

Leung, H.Y., (2004). Flexural capacity of concrete beams reinforced with steel and

Materials. 83,150–158.

Sideris, K.K., Manita, P. and Sideris, K., (2004). Estimation of ultimate modulus of

Yew, M.K. *et al.*, (2015). Influence of different types of polypropylene fibre on the

