DEVELOPING A FRAMEWORK OF NON-FATAL OCCUPATIONAL INJURY SURVEILLANCE FOR RISK CONTROL IN PALM OIL MILLS

RUMAIZAH BINTI RUSLAN

UNIVERSITI TUN HUSSEIN ONN MALAYSIA
I hereby declare that the work in this thesis is my own work except for the quotations and summaries which have been duly acknowledged.

Student: RUMAIZHAH BINTI RUSLAN

Date: 27/5/2018

Supervisor: ASSOC. PROF. DR. ISHAK BIN BABA
DEVELOPING A FRAMEWORK OF NON-FATAL OCCUPATIONAL INJURY SURVEILLANCE FOR RISK CONTROL IN PALM OIL MILLS

RUMAIZAH BINTI RUSLAN

A thesis submitted in fulfilment of the requirement for the award of the Doctor of Philosophy in Engineering Technology

Faculty of Engineering Technology
Universiti Tun Hussein Onn Malaysia

MAY 2018
I hereby declare that the work in this thesis is my own work except for the quotations and summaries which have been duly acknowledged.

Student: ...

RUMAIZAH BINTI RUSLAN

Date: ...

Supervisor: ...

ASSOC. PROF. DR. ISHAK BIN BABA
For my late father, who will always be my foremost inspiration.
I am using this opportunity to express my gratitude to everyone who supported me throughout the research years. I am thankful for their aspiring guidance, invaluably constructive criticism and friendly advice during the research work.

I would like to thank my supervisor, Assoc. Prof. Dr. Ishak bin Baba for his guidance and constant supervision as well as for providing necessary information regarding the research project and in completing the research.

I am sincerely grateful to my dearest husband and my understanding daughter for their sacrifices and unconditional love, for they always there through thick and thin. To my lovely mother and all family members for their support and tolerance with me throughout this years. May Allah bless all of you in this life and in the hereafter.

I would express my gratitude towards the management of participated palm oil mills that responded and cooperated for the research-purpose. They had continuously provided the information as well as other relevant support during this study.

I would also like to acknowledge Universiti Tun Hussein Onn Malaysia for the financial support through the Multidisciplinary Research Grant (MDR), Vot No. U099.

To all my friends, especially those who are in the same boat. No words can express my gratitude, thank you for the support. Last but not least, thank you Allah for the priceless lessons that I learned in hard way throughout this journey. Thank you for your mercy upon me.
ABSTRACT

Non-fatal occupational injury (NFOI) and its risk factors have become a current global concern. The need of research towards the relationship between occupational injury and its risk factor is essential, to fulfil the purpose and setting the priority of implementing safety preventive approaches at workplace. This research intended to develop a framework of NFOI surveillance by using epidemiological data, noise exposure data and NFOI data among palm oil mills’ workers. A total of 420 respondents who assigned in operation and processing areas (OP) (n=333) and general or office workers (n=87) had voluntary participated in this research. A questionnaire session with respondents was held to obtain epidemiological data and NFOI information via validated questionnaire. Noise hazard monitoring was executed by using Sound Level Meter (SLM) for environmental noise monitoring and Personal Sound Dosimeter for personal noise monitoring. Gathered data were analysed in quantitative method by using statistical software IBM SPSS Statistic version 21 and a risk matrix table for injury risk rating evaluation. It was discovered that high noise exposure level (≥ 85 dB[A]) was significantly associated with non-fatal occupational injury among OP workers (φ=0.123, p<0.05) with OR=1.87 (95% CI, 1.080-3.235, p<0.05). Risk rating for reported NFOI was at moderate level, with minor cuts and scratches were the dominant type of injury (42.6%). Analysis of logistic regression indicated that working in shift, not wearing protective gloves, health problems such as shortness of breath and ringing in ears, and excessive noise level (≥ 85 dB[A]) were the risk factors of NFOI in palm oil mills among OP workers. A framework of non-fatal injury surveillance in palm oil mills was developed based on the findings with integration of risk management process and injury prevention principles. This framework is anticipated to help the management in decision making for preventive actions and early detection of occupational health effects among workers.
ABSTRAK

Kecederaan pekerjaan yang tidak membawa maut dan faktor risikonya menjadi kebimbangan serantau masakini. Keperluan untuk mengkaji perhubungan di antara kecederaan pekerjaan dan faktor risikonya adalah penting, dalam memenuhi tujuan dan memberi keutamaan dalam pelaksanaan keselamatan dan langkah pencegahan di tempat kerja. Kajian ini bertujuan untuk membina rangkakerja pengawasan kecederaan pekerjaan yang tidak membawa maut dengan menggunakan data epidemiologi, data pendedahan bunyi hingar dan data kecederaan pekerjaan yang tidak membawa maut di kalangan pekerja kilang sawit. Seramai 420 responden, iaitu pekerja yang ditugaskan di kawasan operasi dan pemprosesan (OP) (n=333) dan pekerja biasa atau pejabat (n=87) telah terlibat secara sukarela dalam kajian ini. Sesi soal-selidik bersama responden telah dijalankan untuk mendapatkan data epidemiologi dan maklumat kecederaan pekerjaan yang tidak membawa maut melalui borang soal-selidik yang telah disahkan. Pengukuran hazard bunyi hingar telah dilaksanakan dengan menggunakan Sound Level Meter (SLM) bagi pemantauan bunyi hingar persekitaran dan Personal Sound Dosimeter bagi pemantauan bunyi hingar perseorangan. Data yang diperolehi telah dianalisis melalui kaedah kuantitatif dengan menggunakan perisian statistik IBM SPSS Statistic versi 21 dan jadual risiko matrik bagi penilaian kadar risiko kecederaan. Pendedahan yang tinggi terhadap bunyi hingar (≥ 85 dB[A]) didapati mempunyai hubungan yang signifikan dengan kecederaan pekerjaan yang tidak membawa maut di kalangan pekerja OP (φ=0.123, p<0.05) dengan OR=1.87 (95% CI, 1.080-3.235, p<0.05). Kadar risiko kecederaan di tempat kerja telah direkodkan pada tahap sederhana, dengan kecederaan ringan dan calar adalah jenis kecederaan yang paling dominan (42.6%). Analisis regresi logistik menyatakan bahawa bekerja syif, tidak memakai sarung tangan keselamatan, masalah kesihatan seperti sesak nafas dan telinga berdengung, dan tahap bunyi hingar yang berlebihan (≥ 85 dB[A]) adalah faktor risiko kepada kecederaan pekerjaan yang tidak membawa maut di kalangan pekerja OP kilang sawit. Rangkakerja pengawasan kecederaan
pekerjaan yang tidak membawa maut di kilang sawit telah dibangunkan berpandukan hasil dapatan dengan menggabungkan proses pengurusan risiko dan prinsip-prinsip pencegahan kecederaan. Rangkakerja ini mampu membantu pihak pengurusan dalam membuat keputusan bagi tindakan pencegahan dan pengesanan awal kesan kesihatan pekerjaan di kalangan pekerja.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of research | 1 |
1.2 Background of problem | 9 |
1.3 Statement of problem | 14 |
1.4 Conceptual framework of research | 14 |
1.5 Objectives of research | 17 |
1.6 Hypotheses of research | 18 |
1.7 Scope of research | 18 |
1.8 Significance of research | 19 |
CHAPTER 2 LITERATURE REVIEW

2.1 Malaysia’s commodity agriculture of oil palm
2.1.1 Composition of oil palm
2.1.2 Uses of palm oil and products
2.1.3 Major activities in palm oil industry
2.1.4 Process flow in palm oil mills, workstation and workers’ job description
2.1.5 Research diversity in palm oil industry
2.1.6 Authority legislations in palm oil industry
2.2 Hazard and risk leading to occupational injuries and illness
2.2.1 Hazard at the workplace
2.2.2 Occupational injuries in agriculture sector and its impacts
2.2.3 Hazard, injury or illnesses, accident at palm oil mill
2.3 Workplace noise exposure as physical hazard
2.3.1 Sound and the level of sounds
2.3.2 Anatomy of the ear
2.3.3 The adverse health effect of excessive noise
2.3.4 Law and regulations related to noise exposure
2.3.5 Risk of workplace injury when exposed to noise hazards
2.4 Risk factors related to occupational injuries
2.4.1 Determination of risk factors or variables
2.5 Risk management and public health approach 61
2.5.1 Risk management 62
2.5.2 Public health approach 65
2.6 Occupational injury surveillance 66
2.7 Theoretical framework 67
2.8 Summary 68

CHAPTER 3 METHODOLOGY 70
3.1 Research design 70
3.1.1 Sampling location 70
3.1.2 Population 71
3.1.3 Sampling frame 71
3.1.4 Sampling technique 73
3.1.5 Sample size 74
3.1.6 Sampling unit and respondent 76
3.2 Phases of data collection 76
3.2.1 Phase 1: Method development and preparation 77
3.2.2 Phase 2: Field-work 79
3.2.3 Phase 3: Data analysis 80
3.2.4 Phase 4: Validation of the framework development 80
3.3 Instrumentation and methods 80
3.3.1 Noise exposure assessment 82
3.3.2 Questionnaire 85
3.3.3 The risk assessment matrix 86
3.3.4 The development process of non-fatal occupational injury (NFOI) surveillance framework 86
CHAPTER 4 PILOT STUDY

4.1 Introduction

4.1.1 Importance of pilot study

4.2 Background information of respondents

4.3 Hazard perception, training and PPE usage

4.4 Lifestyle and prevalence of health problems

4.5 Injury information

4.6 Highest ranking of workplace hazard and injury occurrences

4.7 Noise monitoring for environmental and personal exposure by workstations

4.8 Discussions

4.9 Summary

CHAPTER 5 RESULT & DISCUSSIONS

5.1 Introduction

5.1.1 Data of socio-demographic and work profile

5.1.2 Data of safe hazard perception and safe work behaviour

5.1.3 Data of health status and lifestyle

5.2 Evaluation of noise hazard and non-fatal occupational injury (NFOI) risk among palm oil mill workers

5.2.1 Noise exposure level in palm oil mills
5.2.2 Noise exposure level at selected workstations 116
5.2.3 Frequency analysis 121
5.2.4 Analysis of non-fatal occupational injury (NFOI) among palm oil mill workers 122
5.2.5 Association between noise exposure level and NFOI incidence 124
5.3 Risk factors that influenced non-fatal occupational injury (NFOI) among palm oil mills workers 126
5.3.1 Factors associated with NFOI among palm oil mills workers 127
5.3.2 Factors influence NFOI in palm oil mills 128
5.4 Pattern of non-fatal occupational injuries (NFOI) in palm oil mills 131
5.5 Assessment on risk rating of non-fatal occupational injury (NFOI) in palm oil mills 135
5.6 Discussions 146
5.6.1 Noise exposure levels and non-fatal occupational injury (NFOI) among palm oil mill’s workers 147
5.6.2 Risk factors influenced non-fatal occupational injury (NFOI) among palm oil mills’ workers 150
5.6.3 Framework of non-fatal occupational injury (NFOI) surveillance 151
5.7 Summary 152
CHAPTER 6 FRAMEWORK OF NON-FATAL OCCUPATIONAL INJURY

(NFOI) SURVEILLANCE FOR PALM OIL MILLS 153

6.1 Development of non-fatal occupational injury surveillance’s framework in palm oil mills 153

6.2 Step 1: Establishing context 156

6.3 Step 2: Identification of hazard 156

6.3.1 Determination of hazards in palm oil mills 156

6.4 Step 3: Assessment of risk and risk factors 158

6.5 Step 4: Control of risk and preventive measures 159

6.6 Step 5: Reporting the risk and risk communication 162

6.7 Step 6: Continuous monitoring and review 164

6.8 The NFOI surveillance framework 164

6.8.1 The non-fatal occupational injury (NFOI) surveillance form 165

6.8.2 The application of NFOI surveillance form 168

6.9 Summary 171

CHAPTER 7 CONCLUSION & RECOMMENDATION 172

7.1 Conclusion 172

7.2 Recommendation 173

7.2.1 Risk control actions 174

7.2.2 Suggestion for future research 176

REFERENCES 177

APPENDICES 200

VITA 275
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Accidents reported and investigated by DOSH for agriculture sector</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Number of accidents reported by DOSH and SOCSO</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Oil palm cultivation areas in Malaysia from 2011 until 2015</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>The total operating mills, Fresh Fruit Bunches (FFB) capacity, production of Crude Palm Oil (CPO) and Crude Palm Kernel Oil (CPKO) by years since 2012 until 2015</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Case of accidents reported in palm oil mills</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Summary of past literature on occupational safety and health issues in Malaysia’s palm oil plantation and palm oil mill</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>Number of palm oil mills, its capacity and Fresh Fruit Bunch (FFB) processed for 2013 and 2014</td>
<td>19</td>
</tr>
<tr>
<td>1.8</td>
<td>Terms and definitions used in this research</td>
<td>22</td>
</tr>
<tr>
<td>1.9</td>
<td>Categories of epidemiological data</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Products from palm oil, its properties and uses</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Job description according to the workstation</td>
<td>36</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of past literature on occupational safety and health issues in Malaysia’s palm oil plantation and palm oil mill</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Hazard at workplace and its health effects by referring to past literature review</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Common sound levels in decibel units</td>
<td>48</td>
</tr>
</tbody>
</table>
2.6 The Permissible Exposure Levels
2.7 Categories of risk factors and its explanation
2.8 Risk factors contributed to occupational injuries in agricultural workplace from year 2007 until 2014
2.9 List of common techniques for risk assessment
2.10 Risk control category and examples of controls
3.1 List of participated palm oil mills in Southern Peninsular Malaysia
3.2 Parameter tested, assessment tools and instrumentation used, its method and quality control
3.3 The hybridized approach of risk management and public health to injury prevention adopted in the research
3.4 Statistical analysis tests according to research objectives
4.1 Reliability analysis of the questionnaire
4.2 Socio-demographic and employment information
4.3 Multiple answers of worker’s perception of workplace hazard
4.4 Training and Personal Protective Equipment (PPE) usage while working
4.5 Health problems reported by respondents
4.6 Socio-demographic of injured workers and characteristics of injuries
4.7 Number of injured workers based on workstations
4.8 Environmental noise and personal noise level based on workstations
5.1 Analysis of Chi-Square test among palm oil mills workers
5.2 Analysis of Mann Whitney-U test among palm oil mills workers
5.3 Perceived hazards at palm oil mill
5.4 Training and safety practice on PPE usage of palm oil mills workers
5.5 Health problems reported by palm oil mills workers
5.6 Lifestyle information among palm oil mills workers
5.7 Noise exposure level based on AL and PEL standard among palm oil mills workers
5.8 Environmental noise level, noise sources and type of noise
5.9 Personal noise exposure among workers in workstation (n=22)
5.10 Non-fatal occupational injury reported by workers in palm oil mills
5.11 Prevalence analysis of injury incident among OP workers
5.12 NFOI incidence among OP and Off. workers in palm oil mills workers
5.13 Magnitude of the effect size for Cramer's V/phi test and T-test
5.14 Association of NFOI and noise exposure level among workers
5.15 Odds ratio of noise exposure level to occupational injury among workers in palm oil mills
5.16 Association between risk factors and noise exposure level using Phi (φ) test among OP workers of palm oil mill
5.17 Binary logistic regression model on factors associated with workplace injuries among palm oil mills workers
5.18 Socio-demographic, working profile and health problems of injured workers in palm oil mills
5.19 Descriptive analysis of injury attribution
5.20 Risk matrix table for non-fatal occupational injury amongst palm oil mill workers
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.21</td>
<td>Risk assessment matrix of reported NFOI for palm oil mills in the Southern Peninsular Malaysia</td>
<td>139</td>
</tr>
<tr>
<td>5.22</td>
<td>The risk priority, risk indicator and control actions</td>
<td>142</td>
</tr>
<tr>
<td>5.23</td>
<td>Summary of the risk rating and risk conclusion</td>
<td>143</td>
</tr>
<tr>
<td>5.24</td>
<td>The recommended risk control based on directive approach and detective approach</td>
<td>146</td>
</tr>
<tr>
<td>5.25</td>
<td>The summary of the research’s hypotheses</td>
<td>152</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1.1 Statistic of industrial accidents reported for year 2012 until 2015 3
1.2 The framework of palm oil industry sustainability 7
1.3 Numbers of active workers from year 2011 until 2015 9
1.4 The Bird Accident Ratio Triangle, 1969 11
1.5 Injury Triangle 15
1.6 Adaptation of the classic epidemiologic triad into the current research of non-fatal occupational injury among workers in palm oil mills 16
1.7 Conceptual framework of the research 17
2.1 Palm oil production by countries by the year 2016 28
2.2 Oil palm’s composition 30
2.3 Flowchart process of major activities in palm oil industry 34
2.4 Flowchart process of fresh fruit bunches (FFBs) with categories of basic work process in palm oil mill 36
2.5 Anatomy of the ear 51
2.6 Types of risk control 68
2.7 Theoretical framework of the research 72
3.1 Distribution of palm oil mills by states in Peninsular Malaysia 71
3.2 Southern Peninsular Malaysia’s map consists of Johor, Melaka and Negeri Sembilan 72
3.3 The process flow of research data collection 77
3.4 Phase 1 of data collection

3.5 Noise monitoring instrumentation

3.6 Sound Level Meter ISO-TECH SLM-1352N

3.7 Personal Sound Dosimeter-1355

3.8 Participated respondents equipped with noise dosimeter

3.9 QUEST Technologies QC 10 Calibrator

3.10 The first series of industrial meeting

3.11 The second series of industrial meeting

3.12 The process flow of industrial meeting session

4.1 The usage of gloves (PPE) by boilerman on duty

4.2 Distribution of self-perceived hazards at workplace

5.1 Environmental noise level with PEL and AL indication (FMA, 1967) for each workstation

5.2 The level of personal noise based on workstations in palm oil mills

5.3 The frequency analysis of noise in engine room

5.4 Distribution of type of NFOI among OP workers in palm oil mills

5.5 Body part effect based on self-reported NFOI among OP workers

5.6 Priority of necessary actions to effectively manage workplace hazards

5.7 The appropriate risk control labelled based on the reported NFOI among palm oil mill workers

5.8 The common hierarchy of risk control with remarks of risk control category

6.1 The framework development of NFOI surveillance for palm oil mills

6.2 Steps involved in the identification of hazard

6.3 Hazard and risk assessment involved in the development of framework

6.4 Risk prioritization based on research findings
6.5 The framework of NFOI surveillance

6.6 The non-fatal occupational injury (NFOI) surveillance form based on the developed framework

6.7 The additional data incorporated in the developed NFOI surveillance form

6.8 The HIRARC form with embedded linkage of NFOI Surveillance form using existing data from palm oil mill

6.9 The example of NFOI surveillance form based on actual reported injuries
LIST OF SYMBOLS AND ABBREVIATIONS

ILO - International Labour Organization
US - United States
BLS - Bureau of Labor Statistic
SOSCO - Social Security Organization
DOSH - Department of Safety and Health
GDP - Gross Domestic Product
EPU - Economic Planning Unit
MPOC - Malaysia Palm Oil Council
MPOB - Malaysia Palm Oil Board
FFB - Fresh Fruit Bunches
CPO - Crude Palm Oil
CPKO - Crude Palm Kernel Oil
RSPO - Roundtable for Sustainable Palm Oil
DOSM - Department of Statistic Malaysia
OSHMS - Occupational Safety & Health Management System
ILO-OSH - International Labour Organization-Occupational Safety & Health
BS: OHSAS - British Standard: Occupational Health & Safety Assessment Series
NKEA - National Key Economics Areas
ETP - Economic Transformation Programme
H_a - Alternative Hypothesis
MPOA - Malaysian Palm Oil Association
PKO - Palm kernel oil
R&D - Research & Development
FFA - Free Fatty Acids
EFB - Empty fruit bunches
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>POME</td>
<td>Palm Oil Mill Effluent</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operation Procedure</td>
</tr>
<tr>
<td>HIRARC</td>
<td>Hazard Identification, Risk Assessment & Risk Control</td>
</tr>
<tr>
<td>WoS</td>
<td>Web of Science</td>
</tr>
<tr>
<td>sAA</td>
<td>salivary Alpha Amylase</td>
</tr>
<tr>
<td>WBGT</td>
<td>Wet Bulb Globe Thermometer</td>
</tr>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>DALY</td>
<td>Disability Adjusted Life Year</td>
</tr>
<tr>
<td>NFOI</td>
<td>Non-Fatal Occupational Injury</td>
</tr>
<tr>
<td>FMA</td>
<td>Factories and Machinery Act</td>
</tr>
<tr>
<td>MPOA</td>
<td>Malaysia Palm Oil Association</td>
</tr>
<tr>
<td>RBD</td>
<td>Refined, Bleached and Deodorised</td>
</tr>
<tr>
<td>PKE</td>
<td>Palm Kernel Expeller</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty Fruit Bunch</td>
</tr>
<tr>
<td>OER</td>
<td>Oil Extraction Rate</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>dB[A]</td>
<td>A-weighted decibel</td>
</tr>
<tr>
<td>EASHW</td>
<td>European Agency for Safety and Health at Work</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Act</td>
</tr>
<tr>
<td>US OSHA</td>
<td>United States of Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>CMID</td>
<td>Core Minimal Injury Dataset</td>
</tr>
<tr>
<td>OCID</td>
<td>Optional Core Injury Dataset</td>
</tr>
<tr>
<td>L_i</td>
<td>Likelihood</td>
</tr>
<tr>
<td>O_i</td>
<td>Outcome</td>
</tr>
<tr>
<td>HAZOP</td>
<td>Hazard and Operability study</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Modes Effects Analysis</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths, Weaknesses, Opportunities and Threats</td>
</tr>
<tr>
<td>PESTLE</td>
<td>Political, Economic, Social, Technological, Legal and Environmental</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation of Standardization</td>
</tr>
<tr>
<td>OP</td>
<td>Operational & Processing worker</td>
</tr>
<tr>
<td>Off.</td>
<td>General or Office worker</td>
</tr>
</tbody>
</table>

Department of Occupational Safety and Health Malaysia (DOSH), (2016). Statistic of Department: Occupational Accidents by Sector For the Category of NPD, PD and Death Until December 2015 (Investigated). Putrajaya (Malaysia): DOSH.

Department of Occupational Safety and Health Malaysia (DOSH), (2010). *Malaysia Safety and Health Profile*. Putrajaya (Malaysia): DOSH.

Malaysia Palm Oil Council (MPOC), 2013. Malaysia Palm Oil Industry. Retrieved

MPOC, 2012, retrieved from http://www.mpoc.org.my/Palm_Oil_and_Palm_Kernel_Oil_Applications.aspx; on 1 July 2017

