EVALUATION OF ANTI-TUBERCULOSIS POTENTIALS OF SELECTED MEDICINAL PLANTS IN ENDAU ROMPIN, JOHOR, MALAYSIA

SHUAIBU BABAJI SANUSI

A thesis submitted in fulfilment of the requirement for the award of the Doctor of Philosophy in Science

Faculty of Applied Sciences and Technology
Universiti Tun Hussein Onn Malaysia

JUNE, 2018
DEDICATION

The thesis is first and foremost dedicated to Almighty Allah for seeing me through. Then to my parents Alhaji Sanusi B. Mohammad and Hajiya Binta Sanusi for their unwavering support, advice, encouragement and prayers which guided me towards this achievement, I am very proud of them and may Almighty Allah (S.W.T) reward them abundantly. The thesis is also dedicated to my wife, children, siblings, uncles and aunties for their prayers and support.
ACKNOWLEDGEMENT

All praises and gratitude be to Allah the most exalted for all his favors. Alhamdulillahi rabbil aalamin. I am much indebted to my supervisor, Associate Prof. Dr. Mohd Fadzelly Abu Bakar for his patience, guidance, encouragement, diligence, commitment and constructive criticism during the duration of my study. I also owe special thanks to my Co-supervisors, Prof. Emeritus Datin Dr. Maryati binti Mohamed and Dr. Siti Fatimah Binti Sabran for their guidance and positive observation throughout my study.

Special thanks to Mr Azizul Isha from Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM) for assisting with GC-MS analysis. My sincere appreciation also goes to the staffs of Johor National Parks Corporation (JNPC) especially Mr Zamri bin Kuanglee for assistance during the medicinal plant samples collection. I would like to convey my gratitude to Mr Ishak Ayob, Madam Nazmilah Misrin and Madam Asmah for their help in Food Analysis and Microbiology Laboratory, Faculty of Applied Science and Technology.

I am thankful to the Office for Research, Innovation, Commercialization and Consultancy Management, Universiti Tun Hussein Onn Malaysia (UTHM) for financial support under UTHM Grant Contract scheme Vot no. U555.

My profound gratitude goes to my parents, brothers, sisters, wife, son and entire research group from Centre of Research for Sustainability and Uses of Natural Resources (CoR-SUNR) for their help rendered to me in one way or another during the entire study period.

May Almighty Allah in his infinite mercy reward everyone abundantly.
Tuberculosis (TB) remains an escalating health crisis globally which prompts new approaches to find more effective therapeutic strategies. Medicinal plants of Malaysia have a significant role to play in being able to provide new therapeutic remedies. The local people of Kampung Peta (Jakun tribe), Endau Rompin claimed that local preparations of some plants are used to treat symptoms of tuberculosis. There is a need to validate the claim by tradition healers scientifically. The aim of this research is to search for anti-TB from plants of Taman Negara Johor Endau-Rompin, exploiting the traditional medical practices of the Jakun people. Aqueous and organic extracts of these plant species were screened for their antimycobacterial activity using agar disk diffusion assay, Tetrazolium Microplate Assay and agar plate assay against *Mycobacterium smegmatis*. The effect of the extract on mycobacterial cell at the cellular level was investigated upon treatment with the crude extracts via time-kill analysis, leakage of compound absorbing at 280nm, and field emission-scanning electron microscopy (FE-SEM). The findings revealed that methanol extract of *Nepenthes ampularia* displayed the largest zone of inhibition (DIZ=18.67 ± 0.58 mm). Ethyl acetate extract of *Musa gracilis* and hexane extract of *N. ampularia* exhibited the lowest minimum inhibitory concentration (MIC=0.39 mg/mL). Hexane extract of *N. ampularia* showed the lowest minimum bactericidal concentration (MBC= 1.56 mg/mL). At 3-fold of MIC, hexane extract of *N. ampularia*, ethyl acetate extract of *M. gracilis* and ethyl acetate extract of *N. ampularia* killed the entire bacterial cell within 8 h of exposure by causing the cell lysis. The GC-MS analysis revealed the presence of phytoconstituents that might contribute to the antimycobacterial effect. The study scientifically justified the use of the selected medicinal plant species by Jakun people. Further studies on *N. ampularia* and *M. gracilis* could lead to the development of new anti-TB drugs.
Tuberkulosis (TB) atau batuk kering masih merupakan krisis kesihatan sejagat yang terus meningkat sehingga menyebabkan para penyelidik cuba mencari pendekatan baru untuk menemui strategi terapeutik yang lebih berkesan. Masyarakat Kampung Peta (etnik Jakun), Endau Rompin mendakwa bahawa beberapa ramuan daripada tumbuhan tempatan telah digunakan dalam perawatan simptom TB. Tujuan kajian ini ialah mencari bahan anti-TB daripada sumber tumbuhan di Taman Negara Johor Endau Rompin, serta mengeksploitasi amalan amalan tradisional masyarakat Jakun. Tumbuhan terpilih telah diselidiki bagi mendapatkan bahan anti-TB yang berpotensi terhadap *Mycobacterium smegmatis*. Ekstrak akuas dan organik tumbuhan ini telah diskrin/disaring bagi aktiviti-aktiviti anti-mikobakteria menggunakan asai cakera serapan (Tetrazolium Microplate Assay), dan asai plat agar terhadap *M. smegmatis*. Kesaran ekstrak pada sel mikobakteri di peringkat sel telah disiasat apabila rawatan dengan ekstrak mentah melalui analisis tempoh-mati, ketirisan sebatian yang diserap pada 280nm, dan mikroskopi elektron pengimbas-emisi lapangan. Dapatan menunjukkan bahawa ekstrak metanol *Nepenthes ampularia* mempamerkan zon perencatan yang lebih besar/lebar (DIZ=18.67 ± 0.58 mm). Ekstrak etil-asetat *Musa gracilis* dan ekstrak heksana *N. ampularia* mempamerkan kepekatan perencatan minimum terendah (MIC=0.39 mg/mL). Ekstrak heksana *N. ampularia* menunjukkan kepekatan bakterisidal minimum terendah (MBC= 1.56 mg/mL). Pada kepekatan 3 kali ganda MIC, ekstrak heksana *N. ampularia*, ekstrak etil asetat *M. gracilis* dan ekstrak etil asetat *N. ampularia* mematikan keseluruhan sel bakteria dalam tempoh pendedahan 8 jam, dengan cara lisis sel. Hasil analisis GC-MS menunjukkan kehadiran fitokonstituen yang mungkin menyumbang kepada kesan antimikobakterial. Kajian ini secara saintifik telah menjustifikasi penggunaan tumbuhan terpilih di kalangan suku etnik Jakun. Kajian lanjutan terhadap *N. ampularia* and *M. gracilis* berkemungkinan akan dapat membantu dalam membangunkan dadah anti TB yang baru.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>i</td>
</tr>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Abstrak</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Symbols and Abbreviations</td>
<td>xv</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xviii</td>
</tr>
<tr>
<td>List of Publication</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1. Background of the research 1
1.1 Problem statement 3
1.2 Research objectives 4
1.3 Scope of the study 5
1.4 Significance of the study 5

CHAPTER 2 LITERATURE REVIEW

2. Tuberculosis (TB) disease 6
2.1 History of TB 6
2.1.1 Classification of *M. tuberculosis* 9
2.1.2 Morphology of *M. tuberculosis* 9
2.1.3 Cultural characteristics of *M. tuberculosis* 11
2.1.4 Transmission of *M. tuberculosis* 11
2.1.5 Risk groups 12
2.1.6 Pathogenicity of TB 12
2.1.8 Clinical symptoms of TB

2.1.9 Current treatment for TB
 2.1.9.1 Mechanism of action of TB drugs
 2.1.9.2 Drawbacks and hurdles to the currently used TB therapy

2.1.10 Model strain for discovery of *M. tuberculosis* inhibitors

2.1.11 Epidemiology of TB
 2.1.11.1 Global TB Epidemiology
 2.1.11.2 Epidemiology of TB in Malaysia

2.2 Traditional medicine

2.2.1 Ethnobotanical study
 2.2.1.1 Medicinal plants
 2.2.1.2 Malaysian medicinal plants with anti-TB activity

2.2.2 Current drugs derived from natural products
 2.2.2.1 *Macaranga gigantea* (Rchb.f. & Zoll.) Müll.Arg. (Tudung)
 2.2.2.2 *Scaphium macropodum* (Miq.) Beumée ex K. Heyne (Kembang semangkok)
 2.2.2.3 *Nepenthes ampullaria* Jack (Sentoyot)
 2.2.2.4 *Campnosperma auriculatum* (Blume) Hook.f. (Habong)
 2.2.2.5 *Musa gracilis* Holttum (Pisang sum)

2.2.3 The main compounds from plants
 2.2.3.1 Alkaloids
 2.2.3.2 Flavones, flavonoids and flavonols
 2.2.3.3 Tannins
 2.2.3.4 Terpenoids
 2.2.3.5 Saponins
 2.2.3.6 Steroids

2.2.4 Crude extracts

2.2.5 Extraction techniques
 2.2.5.1 Plant samples pre-extraction preparation
2.2.5.2 Hot continuous extraction
(Soehllet extraction) 56
2.2.5.3 Maceration 56
2.2.5.4 Infusion 57
2.2.5.5 Decoction 57
2.2.5.6 Hydrodistillation 57
2.2.6 Techniques of identification and characterisation
of phytochemicals 57
2.2.6.1 Gas Chromatography-Mass Spectrometry
(GC-MS) analysis 58
2.2.6.2 High-Performance Liquid Chromatography:
(HPLC) 59
2.2.6.3 Thin-Layer Chromatography (TLC) 59
2.3 Bioassay Guidance for evaluating the antimycobacterial
activity 60
2.3.1 Agar diffusion 60
2.3.2 Macro and micro agar dilution 60
2.3.3 Micro broth dilution 61
2.4 Effect of the extracts at cellular level 62
2.4.1 Time-kill assay 62
2.4.2 Membrane integrity 64
2.4.3 Electron microscopy study 65

CHAPTER 3 METHODOLOGY 68
3.1 Endau Rompin, Johor 68
3.2 Selection of medicinal plant samples 71
3.3 Voucher specimens preparation and identification of species 71
3.4 Plants sample collection and preparation 72
3.5 Extract Preparation 73
3.5.1 Decoction 73
3.5.2 Successive maceration 74
3.6 Preparation of plant extracts/drug standard concentrations 74
3.7 Antimycobacterial bioassay 75
3.7.1 Determination of diameter of inhibition zones 75
3.7.1.1 Preparation of the Middle brook 7H10 agar medium 75
3.7.1.2 Preparation of the Middlebrook 7H9 broth medium 75
3.7.1.3 Preparation of bio discs 76
3.7.1.4 Preparation of McFarland Standards 76
3.7.1.5 Determination of diameter of inhibition zones using agar disk diffusion assay 77
3.7.2 Determination of Antimycobacterial activity using Tetrazolium Microplate Assay (TEMA) 78
3.7.2.1 Determination of Minimum Bactericidal Inhibition 79
3.8 Effect of the extracts at cellular level 79
3.8.1 Time-kill assay 79
3.8.2 Cell membrane integrity analysis 80
3.8.3 Field emission-scanning electron microscopy (FE-SEM) 80
3.9 Phytochemical analysis of the crude extracts 81
3.9.1 Test for the presence of various phytochemicals 81
3.9.1.1 Alkaloids 81
3.9.1.2 Flavonoids 82
3.9.1.3 Saponins 82
3.9.1.4 Tannins 82
3.9.1.5 Terpenoids 82
3.9.1.6 Steroids 83
3.9.2 Gas Chromatography-Mass Spectrometry (GC-MS) analysis 83
3.10 Statistical analysis 84

CHAPTER 4 RESULTS AND DISCUSSION 85
4.1 Antimycobacterial activity 85
4.1.1 Mycobacterial inhibition by agar disk diffusion assay 86
4.1.2 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 88

4.2 Effect of the extracts at cellular level 94

4.2.1 Effect of selected crude extracts on growth of \textit{M. smegmatis} using time-kill assay 94

4.2.2 Effect of selected active extracts on cell membrane integrity of \textit{M. smegmatis} 98

4.2.3 Effects of selected active extracts on cellular morphology of \textit{M. smegmatis} 100

4.3 Phytochemical profiling of the selected plant's crude extracts 113

4.3.1 Yield of the crude extract from the selected plants extracted using different solvents 113

4.3.2 Classes of phytochemicals present in the plant's crude extracts 115

4.3.3 Identification of bioactive constituents using Gas Chromatography-Mass Spectroscopy (GC-MS) analysis 118

4.3.3.1 Antimycobacterial and other biological activities of the compounds identified from MCA, ENA, HNA, and EMGR 122

CHAPTER 5 CONCLUSION AND RECOMMENDATION 125

5.1 General conclusion 125

5.2 Recommendations 126

REFERENCE 128

APPENDICES 168

VITA
LIST OF TABLES

2.1 Year of discovery, characteristics and most frequent adverse effects reported of the first and second line anti-TB agents 17
2.2 Medicinal plants used by Jakun community, Kampung Peta, Endau Rompin, Johor, Malaysia for the treatment of TB and TB-like symptoms 25
2.3 Malaysian medicinal plants with anti-TB activity 30
2.4 Terminologies used in antimycobacterial test 63
3.1 List of the medicinal plants used in the study 73
3.2 Guide for the Preparation of McFarland Standards 76
4.1 Diameter (mm) of inhibitory zone (DIZ) of plant crude extracts against *M. smegmatis* 87
4.2 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MIC) 90
4.3 Summary of the effects of HNA, EMGR, ENA, and MCA on cellular morphology of *M. smegmatis* after 8 hours treatment compared to the growth control (untreated) 101
4.4 Summary of the effects of HNA, EMGR, ENA, and MCA on cellular morphology of *M. smegmatis* after 24 hours treatment compared to the growth control (untreated) 104
4.5 Summary of the effects of HNA, EMGR, ENA, and MCA on cellular morphology of *M. smegmatis* after 48 hours treatment compared to the growth control (untreated) 106
4.6 Summary of the effects of HNA, EMGR, ENA, and MCA on cellular morphology of M. smegmatis after 72 hours treatment compared to the growth control (untreated)

4.7 Phytochemical classes of crude extracts of selected medicinal plants by qualitative chemical analysis

4.8 Phytochemical compounds identified in the hexane crude extract of N. ampularia using GC-MS analysis

4.9 Phytochemical compounds identified in the ethyl acetate crude extract of M. gracilis using GC-MS analysis

4.10 Phytochemical compounds identified in the ethyl acetate crude extract of N. ampularia using GC-MS analysis

4.11 Phytochemical compounds identified in the methanol crude extract of C. auriculatum using GC-MS analysis
LIST OF FIGURES

2.1 Schematic representation of cell envelope proteins embedded in the cell wall of the of *M. tuberculosis* complex (Forrellad *et al.*, 2013)
2.2 Illustration of TB transmission (from infected (A) to healthy (B))
2.3 Schematic illustration of the sites of action for the available anti-TB agents. [Adopted from Laurenzi *et al.* (2007)]
2.4 Leaves of *Macaranga gigantea*
2.5 Small tree of *Scaphium macropodum*
2.6 Pitchers and leaves of *Nepenthes ampullaria*
2.7 Tree of *Campnosperma auriculatum*
2.8 Fruits, flowers and leaves of *Musa gracilis*
2.9 Structures of (a) quinolone, (b) berberine, (c) carbazole, and (d) bidebiline E
2.10 Structures of (a) pinocembrin, (b) cryptocaryone and (c) fisetin
2.11 Structures of (a) ellagitannin and (b) punicalagin
2.12 Structures of (a) phytol and (b) friedelin
2.13 Structure of jujubogenin
2.14 Structures of (a) cholesterol, (b) Sitosterol, (c) ergosterol and (d) stigmasterol
3.1 The location of Kampung Peta in Johor National Park Endau-Rompin
3.2 Study framework
4.1 Percentage of antimycobacterial activity of crude plant extracts against *M. smegmatis*
4.2 Time-kill curves of the extracts (A) MCA, (B) ENA, (C) EMGR, (D) HNA, (E) RIF at X1, X2, and X3 MIC against *M. smegmatis*

4.3 The effect of selected active extracts on release of cell constituents absorbing at 280 nm from *M. smegmatis*

4.4 FE-SEM images of *M. smegmatis* after 8 hours treatment with (A) untreated control, (B) RIF as positive control, (C) HNA, (D) EMGR, (E) ENA, and (F) MCA at × 10,000 magnification

4.5 FE-SEM images of *M. smegmatis* after 24 hours treatment with (A) untreated control, (B) RIF as positive control, (C) HNA, (D) EMGR, (E) ENA, and (F) MCA at × 10,000 magnification

4.6 FE-SEM images of *M. smegmatis* after 48 hours treatment with (A) untreated control, (B) RIF as positive control, (C) HNA, (D) EMGR, (E) ENA, and (F) MCA at × 10,000 magnification

4.7 FE-SEM images of *M. smegmatis* after 72 hours treatment with (A) untreated control, (B) RIF as positive control, (C) HNA, (D) EMGR, (E) ENA, and (F) MCA at × 10,000 magnification

4.8 The percentage yield of crude extracts from the plants extracted with various solvents

4.9 GC chromatograms of (A) HNA, (B) EMGR, (C) ENA, and (D) MCA
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>°C</td>
<td>degree celcius</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
<tr>
<td>≤</td>
<td>less than or equal to</td>
</tr>
<tr>
<td>≥</td>
<td>greater than or equal to</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microliter</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>1X</td>
<td>1 fold of</td>
</tr>
<tr>
<td>2X</td>
<td>2 fold of</td>
</tr>
<tr>
<td>3X</td>
<td>3 fold of</td>
</tr>
<tr>
<td>ADC</td>
<td>Albumin Dextrose Catalase</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immunodeficiency Syndrome</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacille Calmette Gue´rin</td>
</tr>
<tr>
<td>BL-3</td>
<td>biosafety level 3</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit/mL</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetres</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>DIZ</td>
<td>Diameter of inhibition zone</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DOTS</td>
<td>Directly Observed Treatment – Short course</td>
</tr>
<tr>
<td>EMB</td>
<td>Ethambutol</td>
</tr>
<tr>
<td>EMGR</td>
<td>Ethyl acetate extract of Musa gracilis</td>
</tr>
<tr>
<td>ENA</td>
<td>Ethyl acetate extract of Nepenthes ampularia</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FE-SEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography–mass spectrometry</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>H</td>
<td>Hour</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HNA</td>
<td>Hexane extract of Nepenthes ampularia</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IM</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>INH</td>
<td>Isoniazid</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>JNPC</td>
<td>Johor National Park Corporation</td>
</tr>
<tr>
<td>MABA</td>
<td>Microplate Alamar Blue Assay</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>MCA</td>
<td>Methanol extract of Campnosperma auriculatum</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug-Resistant</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>NA</td>
<td>Not active</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standard and Technology</td>
</tr>
<tr>
<td>nm</td>
<td>nanometres</td>
</tr>
<tr>
<td>OADC</td>
<td>Oleic acid, Albumin, Dextrose and Catalase</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>ORAC</td>
<td>Oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>PAS</td>
<td>Para-Amino Salicylic acid</td>
</tr>
<tr>
<td>PYR</td>
<td>Pyrazinamide</td>
</tr>
<tr>
<td>RIF</td>
<td>Rifampin</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Retention time</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>STR</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TDM</td>
<td>Trehalose dimycolate</td>
</tr>
<tr>
<td>TEMA</td>
<td>Tetrazolium microplate assay</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin-Layer Chromatography</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll like receptors</td>
</tr>
<tr>
<td>TMM</td>
<td>Trehalose monomycolate</td>
</tr>
<tr>
<td>TNJER</td>
<td>Taman Negara Johor Endau-Rompin</td>
</tr>
<tr>
<td>UTHM</td>
<td>Universiti Tun Hussein Onn Malaysia</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>Extensive drug-resistant</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Research approval letter from PTNJ</td>
<td>168</td>
</tr>
<tr>
<td>B</td>
<td>Sample collection images</td>
<td>169</td>
</tr>
<tr>
<td>C</td>
<td>Herbarium specimens</td>
<td>170</td>
</tr>
<tr>
<td>D</td>
<td>Summary of percentage yield, color, odor, and consistency of plants crude extracts</td>
<td>172</td>
</tr>
<tr>
<td>E</td>
<td>Images of diameter of inhibition zone (DIZ) by agar disk diffusion assay</td>
<td>173</td>
</tr>
<tr>
<td>F</td>
<td>Images of minimum inhibitory concentration (MIC) using TEMA</td>
<td>176</td>
</tr>
<tr>
<td>G</td>
<td>Statistical analysis of diameter of inhibition zone</td>
<td>181</td>
</tr>
<tr>
<td>H</td>
<td>Statistical analysis of time kill analysis</td>
<td>191</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

Journals:

Conferences

(i) **Sanusi, S. B.,** Bakar, M. F. A., Mohamed, M., Sabran, S. F., and Isha, A. (2017). Preliminary phytochemical and anti-mycobacterial investigation of
some selected medicinal plants of Endau Rompin, Johor, Malaysia. The 3rd International Conference on the Application of Science and Mathematics, SCIEMATHIC2017. Organized by Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, 84600 Pagoh, Johor, Malaysia on 24-25th October 2017.

CHAPTER 1

INTRODUCTION

This thesis described the anti-tuberculosis potential of selected medicinal plants utilised by Jakun ethnic group, residing in Kampung Peta, Mersing, Johor, Malaysia in the treatment of TB and TB-like symptoms. This study was carried out by using standardised chemical procedures to extract the compounds from the selected medicinal plants. The extracts were bioassayed using standard antimycobacterial test against a model organism of TB strain, \textit{M. smegmatis} mc2 155. Furthermore, the effect of the selected plant extracts on mycobacterial cell at cellular level was investigated. The phytochemical profiling of the selected plant extracts identified some compounds that could be responsible for the antimycobacterial properties. The claim by Jakun people for using the selected plants in the treatment of TB and TB-like symptoms were scientifically validated.

1.1 Background of the research

Tuberculosis (TB) is a deadly and common infectious disease caused by a pathogenic bacterium known as \textit{Mycobacterium tuberculosis}. This disease is endemic in every country in the world, and it is the number one human killer among bacterial diseases (Hunter \textit{et al.}, 2006; Adaikkappan \textit{et al.}, 2012; Akintola \textit{et al.}, 2013). Approximately, two billion individuals or around one-third of the entire global population are said to be infected with TB (Ch’ng \textit{et al.}, 2017). Unprecedented decision was made by World Health Organization (WHO) in 1993 to declare TB as a public health global emergency (Abdallah & Ali, 2012; Rennie \textit{et al.}, 2011), which is the only disease to be declared a global emergency by WHO (Palomino, 2009).
Among adults in their most productive age, TB can be the most significant causes of mortality and morbidity (Liao et al., 2012). In the year 2015 WHO reported that there were 10.4 million occurrences of TB, equal to 142 cases for every 100,000 individuals. Around 1.4 million mortalities due to TB among HIV-negative persons were documented in 2015. TB accounted for one out of ten causes of mortality globally and instigated more death in comparison to HIV/AIDS in 2015 (Almatar et al., 2017; WHO, 2016). It has been reported that 22 countries have the higher global TB prevalence. Over 50% of entire TB incidence happens in 5 countries of the Asian region (Liao et al., 2012), viz.; Bangladesh, Myanmar, India, Thailand and Indonesia (Tasnim et al., 2012).

In spite of government policies on prevention and control of TB, the disease is still regarded as a public health predicament in Malaysia (Rafiza et al., 2011). In 2001, it was rated as the second most contagious infectious disease in Malaysia (Jetan et al., 2010). Aside from being a killer disease, TB is an expensive disease to treat as well, which can contribute to a significant economic blow to the country. The resurfacing of this dilemma can be accredited to the high entry of foreign workers from neighboring countries with high TB incidence including Indonesia, Myanmar and Bangladesh into the country (Rafiza et al., 2011). Hence, the justification why TB could be referred to as “a disease without borders” in Malaysia (Nissapatorn et al., 2007).

Modern chemotherapy is used as a treatment to combat TB including isoniazid, rifampicin, ethambutol, streptomycin, and pyrazinamide (Altaf et al., 2010). However, these drugs have drawbacks of causing adverse side effects such as hepatitis, gastrointestinal discomfort, and hearing loss (Famewo, Clarke, & Afolayan, 2017). Besides, there is always a chance of “relapse TB” due to course discontinuation of medication within the first year of treatment. Consequently, this situation results in a more severe condition where the Mycobacterium develops resistance to the TB drugs (Adaikkappan et al., 2012; Gupta & Bhakta, 2012). The TB resistance can be classified into two: the multidrug-resistant TB (MDR-TB), which does not respond to the first-line standard treatment, and the extensive drug-resistant TB (XDR-TB), which happens when there is resistance to second-line TB drugs. According to WHO report in 2012 on surveillance and response to MDR-TB and XDR-TB, an estimate of 310,000 MDR-TB cases occurred among pulmonary TB patients recorded in 2011, with 84 countries reporting at least one case of XDR-
TB (Robles-Zepeda et al., 2013; Shashidhar et al., 2015). Furthermore, 450,000 individuals in 2012 developed MDR-TB globally, and 170,000 deaths were reported from it, even though over half of these cases were reported from Brazil, China, Russia, and India; the overall picture is somewhat still alarming. The challenges present a unique opportunity to start exploring new approaches to treating MDR-TB (Umesiri et al., 2015).

Due to these disadvantages of synthetic drugs, the potential efficacy of traditional medicines has motivated the interest of scientists and health care providers to turn onto conventional medicinal products for the treatment of some chronic diseases, including the treatment of TB (Abd Jalil et al., 2012). Hence, the urgent need arises towards the search of a component with a higher anti-TB activity, easy availability and less side effects (Adaikkappan et al., 2012; Bueno-Sánchez et al., 2009; Kirimuhuzya et al., 2009). Medicinal plants offer great hope to overcome these needs due to their chemical diversity and their significant role in the drug sighting and development. These plants have been used extensively as pure compounds or as a crude material. Only a few plant species have been thoroughly investigated for their medicinal properties (Gupta et al., 2010; Gemechu et al., 2013; Kaur & Kaur, 2015). For long, plant-based medicines have been traditionally used to treat a variety of illnesses worldwide. Around 75% of the global populace relies on medicinal plants for its primary health care (Jamal et al., 2011). The phytochemical study of some of these plants has yielded a number of active natural products, although very little species have been comprehensively explored for their medicinal properties. So far, few plants have been tested against mycobacteria, and a few plants showed anti-TB activity (Bueno-Sánchez et al., 2009; Kaur & Kaur, 2015).

Malaysia’s tropical rainforest is occupied with various flora including herbal plants. In Malaysia, there are around 14,500 species of flowering plants of which over 2000 possess different medicinal qualities and have high potential to be commercialised (Jamal et al., 2011; Nazmul et al., 2011; Ahmad & Othman, 2013).

1.2 Problem statement

Of all the infectious diseases, TB is one of the leading killers of adults in the world today. Treatment regimens available have drawbacks of causing adverse side effects
such as hepatitis, gastrointestinal discomfort, nausea, and hearing loss. More so, the duration of the treatment is too long, taking 6-9 months for complete medication. Because of this reason, many individuals especially the rural inhabitants do not adhere to the prescribed duration for comprehensive treatment. Consequently, this situation results in a more severe condition where the *Mycobacterium* develops resistance to the TB drugs given rise to multidrug-resistant TB (MDR-TB) and extensive drug-resistant TB (XDR-TB). On the other hand, there are claims by traditional healers that the selected medicinal plants are used in the treatment of TB and TB related, but there is no study reported the scientific evaluation of the mycobacterial cells in these plants to justify the claim. As such, a laboratory screening of these plants needs to be carried out. Hence, the need for this study to determine and evaluate the anti-tuberculosis effects of medicinal plants. Researches have been done on anti-mycobacterial agents derived from natural products especially plants elsewhere in the world, however despite Malaysia being rich in plant diversity, very little attention has been given to the laboratory evaluation and detection of anti-mycobacterial activity from Malaysian medicinal plants.

1.3 Research objectives

This research aims to search for anti-TB potential from plants of Taman Negara Johor Endau-Rompin, exploring the traditional medical practices of the indigenous people of Kampung Peta (Jakun ethnic group).

In view of the aforementioned problems, this research embarks on the following objectives:

i. To determine the anti-mycobacterial activity of selected medicinal plant using *in vitro* assay.

ii. To investigate the effect of the extracts on mycobacterial cell at cellular level using time-kill assay, membrane integrity and cell damage (FESEM).

iii. To identify the phytochemical compounds present in the selected crude extracts potentially contributing to anti-mycobacterial activity.
REFERENCES

Belisle, J. T., Vissa, V. D., Sievert, T., Takayama, K., Brennan, P. J., & Besra, G. S. (1997). Role of the major antigen of *Mycobacterium tuberculosis* in cell wall

Buch, F., Rott, M., Rottloff, S., Paet, C., Hilke, I., Raessler, M., & Mithöfer, A.

Dziadek, J., Rutherford, S. A., Madiraju, M. V., Atkinson, M. A. L., & Rajagopalan,

Natural Sciences (IJANS), 1, pp. 8–26.

Lydia, B. (2010). Anti-mycobacterial activity and acute toxicity of *Erythrina abyssinica*, *Cryptolepis sanguinolenta* and *Solanum incanum*. Makerere University Kampala, Uganda: Master’s project.

by Traditional Healers in Three Districts of the Limpopo Province (South Africa). Evidence-Based Complementary and Alternative Medicine.

Rahmatullah, M., Hosain, M., Rahman, S., Akter, M., Rahman, F., & Rehana, F.

Complementary and Alternative Medicine, 17, pp. 1–17.

Sneader, W. E. (2007). *Drug Discovery (The History)*. Glasgow, Scotland, UK Keywords: JohnWiley & Sons, Inc.

Mycology, 4.

Wang, G., Tang, W., & Bidigare, R. R. (2005). Terpenoids as therapeutic drugs and
pharmaceutical agents. In In Natural products (pp. 197–227). Humana Press.

